

Large-Scale Comprehensive Thermal Simulation of the CBM Silicon Tracking System (STS) on the Virgo Cluster at GSI

Elizarov Ilya

on behalf of the CBM Collaboration

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Compressed Baryonic Matter (CBM) Experiment

Silicon Tracking System (STS) Detector Structure

Challenges for the Thermal Simulations

How does every silicon sensor perform in complex 3D geometry?

Can particles physics related effects be integrated in the thermal performance?

		Non-ionizing energy loss, n_{ed} /cm ² after 1 month at Z = -10.0 cm from target						get			
						2 10 10 60	- 4		Z -10.0 cm from target		
		5							Entries	1680	
		÷ ⁶⁰							Mean x	-6.033	
		_							Mean v	-2 481	
									Std Dov	× 26.72	
		40							Stu Dev	X 20.73	
									Std Dev	y 15.38	
		20									
		20									
		0									
Year	Setup	Reaction	Beam Energies	Days on Target	Number of	Remarks					
0	ELEHAD	C+C, Ag+Ag, Au+Au	2,4,6,8,10,max	60		Commissioning					
1	ELEHAD	Au+Au	2,4,6,8,10,max	30 (5 each)	2-1010 each	EB minBias					
1	ELEHAD	C+C	2,4,6,8,10,max	18 (3 each)	4-1010 each	minBias					
1	ELEHAD	p+Be	3,4,8,29	12 (3 each)	2.1011 each	minBias					
2	MUON	Au+Au	2,4,6,8,10,max	30 (5 each)	2.1011 each	minBias					
2	MUON	C+C	2,4,6,8,10,max	18 (3 each)	4-1011 each	minBias					
2	MUON	p+Be	3,4,8,29	12 (3 each)	2.1012 each	minBias					
3	HADR	Au+Au	2,4,6,8,10,max	12 (2 each)	4·10 ¹¹ each	EB + Selector(s)			1 1 1 1		
3	HADR	C+C	2,4,6,8,10,max	6 (1 each)	8-10 ¹¹ each		0	50 1	100	150	
3	HADES	Ag+Ag	2,4	28 (14 each)	10 ¹⁰ each					X, cm	
3	ELEHAD	AgtAg	2.4	8 (4 each)	2.10 ¹⁰ each	minBias					

How does irradiation scenarios affect the sensors thermal performance?

alpha d	4.81e-16;
I ORef	0.1875;
T_ref	263;
intensity	1;
irradiationTime	2;
E_g	1.12;
<u>к</u> _р	8.6173303e-

Can a broad group of scientists, students and engineers be involved?

Open Source Computational Software

- OpenFOAM (Open Field Operation And Manipulation) is the free, open source computational software that utilizes finite volume method for thermofluidic simulations
- Allows parallel computations, as a result, suitable for high performance computing in computer clusters
- Can be easily customized for specific tasks

SALOME

- The Salome platform is an opensource software for preprocessing
- Allows for simplifying geometry for simulations and initial meshing

ParaView

- Power open source visualization engine
- Allows for results analysis

High Performance Computing at GSI – Green IT Cube

GSÅ

The Green IT Cube is one of the largest high-performance data centers in the world

Partition	CPUs max	RAM max [TB]	Time limit
debug	2048	8	30 minutes
main	2048	8	8 hours
high_mem	2048	16	7 days

Two regions (conjugate heat transfer)

- Region VolAir 20,4 million cells
- Region VolSiliconSensors: 1 million cells

Elapsed time [min]

Customization for STS: Non-Ionizing Energy Loss (NIEL)

FLUKA diagrams in Root-format can be converted into OpenFOAM directly

Customization for STS: Thermal Model for Sensors

Conjugate heat transfer solver was modified to account power dissipation caused by radiation damage

forAll(solidRegions, i)

fvMesh& mesh = solidRegions[i];

#include "readSolidMultiRegionSIMPLEControls.H"
#include "setRegionSolidFields.H"

/* --- Customization --- */

```
// Calculate fluence from gold ion normalized flux, intensity and time exposure
phi_neq[i] = phiGoldIonNorm[i] * intensity[i] * irradiationTime[i];
```

// Calculate irradiated leakage current at reference temperature [A/m^3], formula (2.8) Momot I_irrRef[i] = alpha_d[i] * phi_neq[i]+ I_0Ref[i];

// Calculate irradiated leakage current at actual temperature [A/m^3]
const volScalarField& T = solidRegions[i].lookupObject<volScalarField>("T");
I irr[i] = I irrRef[i] * pow(T/T ref[i], 2) * exp(-E g[i]/(2*K b[i])*(1/T - 1/T ref[i]));

// Calculate heat disspation $[W/m^3]$

 $Q_{irr[i]} = I_{irr[i]} * U_{bias[i]};$

#include "solveSolid.H"

Radiation damage properties are combined in one file

$$\Delta I(T) = I(\Phi) - I_{Vol}(\Phi = 0) = \alpha \Phi V$$

$$I(T_0) = I(T_1) \times \left(\frac{T_0}{T_1}\right)^2 e^{-\frac{E_g}{2k_B} \left(\frac{1}{T_0} - \frac{1}{T_1}\right)}$$

Q = I x U

Solving for solid region VolSiliconSensors Additional heat dissipation due to the radiation damage of the sensors is taken into account GAMG: Solving for h, Initial residual = 0.630116, Final residual = 0.0285421, No Iterations 3 Total heat dissipation due to the leakage current [W]: 0.181431 Min/max T:263.002 263.023 ExecutionTime = 1294.83 s ClockTime = 1411 s

The solver prints power dissipation every time step for controlling computation

Analytical Noise Estimation Model

<_bn	1.380649e-23; // Boltmann constant [J/K]
≘	1.60217663e-19; // electron charge [C]
R_bias R_fback R_inter R_al_m R_cable_m	<pre>1e6; // [Ohm] 12e6; // [Ohm] 12.7; // [Ohm] 10.5e2; // R_al per meter [Ohm/m] 0.6e2; // R_cable per meter [Ohm/m]</pre>
C_sensor_m	1.02e-10; // C_sensor per meter [F/m]
C_cable_m	0.382e-10; // C_cable per meter [F/m]
C_FEBc	8e-12; // FEB-C fanout lines capacitance [F]
alpha	0.5; // [-]
gamma	1; // [-]
g_m	0.044; // [A/V]
ī_s	90e-9; // integration constant [s]
F_i	0.64; // [-]
F_v	0.85; // [-]
F_vf	3.41; // [-]
4_f	9.5e-12; // [C^2/F^2]

Source: Rodriguez Rodriguez, Adrian "STS FRONT-END ELECTRONICS ENC measurements & estimation"

Work on the STS Detector's Model: Geometry

STS detector simplified geometry

Front-end electronics Box

First Results from the Detector Thermal Simulation: Sensors

Power dissipation

Non-ionizing energy loss

11

First Results from the Detector Thermal Simulation: Air Convection

Air velocity field inside the thermal enclosure

First Results from the Detector Thermal Simulation: Supplementary Results

Thermal enclosure walls

C-Frame

First Results from the Detector Thermal Simulation: Noise analytical model

• series voltage noise (e_n^2)

$$e_n^2 = 4k_BTR_{Al} + 4k_BTR_{cable} + 4k_BTR_{inter} + e_{na}^2$$

Silicon sensor module

Series voltage noise

GSI

Experimental Verification of the Model

Geometry of the thermal demonstrator prepared for the simulation

Actual assembly of the thermal demonstrator

First Simulation Results of the Thermal Demonstrator: Pressure Loss

Results from thermal demonstrator

Thermal demonstrator measurements of the sensors dummies temperatures

Preliminary simulation of the STS sensors temperatures

Courtesy of K. Agarwal

Summary

- A comprehensive thermal model of the STS detector is being prepared
- OpenFOAM[®] allows for implementation of the specific features for the detector
- Power dissipation of the silicon sensors with respect to irradiation and signal-to-noise model is implemented
- This model is suitable for high performance computing on the Virgo cluster at GSI
- Utilizing open-source software allows for the broad usage of the model and results analysis

Outlook and future work

- Experimental results have been acquired from the thermal demonstrator
- These results will be used for cross-validation of our detector model
- Geometry of the thermal demonstrator was prepared for the simulation
- Simulated results has been acquired for the pressure loss in the cooling plates

The results of this work (know-how) is foreseen as a contribution for DRD8