

Outsourced production and the design of Phase-2 CO2 cooling systems.

29th May 2024

K. Sliwa

On behalf of EP-DT-FS section

Introduction and Background

Phase 2 CO2 cooling systems

- The 2PACL cooling plants are located in USA-15 / USC-55
- Detector evaporator loops are connected via manifolds and concentric transfer lines to the 2PACL plants
- The 2PACL plants are cooled by the primary R744 which is located on the surface
- The primary R744 plants are cooled by water from the towers and air cooling
- Surface storage of CO₂ to control the charges of the underground 2PACL plants
 - o Optimize accumulator volume in the caverns
 - o Level control is important

2PACL final cooling system

- 2PACL final cooling system specs
 - $\,\circ\,$ 433L and 543L accumulator
 - \circ 3-head plant \rightarrow 1.58 kg/s
 - $\,\circ\,$ 100 kW dummy load
 - -45°C on Accumulator
 - -50°C on R744 chiller evaporator
 - 1 back-up plant per experiment

Plant and Accumulator design

Accumulator design overview

Main functions :

- Cooling : Pressure decrease
- Heating : Pressure increase
- Level measurement : Empty/Fill to/from surface storage
- Back pressure regulator : Pressurize detector
- 3way valve : 2PACL/Flow through mode swap

2 Different designs : Short version: ST1647910_01 Long version : ST1681442_01

Design compliant with Pressure equipment directive 2014-68-UE

Different in height

2PACL Design – Overall view

Detector Technologies

EP-DT

ATLAS and CMS systems

• ATLAS:

EP-DT

- 7 cooling plants
 - 1x3H, 5x2H, 1x1H
- 6 accumulators
- CMS:
 - 9 cooling plants
 - 3x3H, 6x2H
 - 8 accumulators

EP-DT

Detectors numbers Detector Technologies

D	etector ty	rpe	Evaporator set point (°C)	Detector design load (kW)	Ambient Pick- up (kW)	Pre-heaters or Warm-nose(kW)	Maximum load for cooling plant (kW)	#of units	#of pum p heads	Load per unit(kW)	Load per head (kW)	Design VQ @ cold	Detector flow(g/s)	Flow incl.MTFLBy pass (10%)	Flow Incl. plant by- pass (10%)	Cooling plant name
	от		250	114.9	0	0.0	162.4	2	2	01 7	27.2	0.42	621	602	750	D1 D2
	п		-35 C	48.5	0	0.0	105.4	2	5	81.7	27.2	0.42	021	085	/32	F1, F2
CMS	BTL		-35°C	36.1	6.5	1.2	43.8	1	2	43.8	21.9	0.33	424	466	513	P3
	CE		-35°C	242	15	0.0	257	4	2	64.3	32.1	0.42	488	537	591	P4, P5, P6, P7
	ETL		-35°C	69.5	2	3.0	74.5	1	2	74.5	37.3	0.42	566	623	685	P8
	HCTD	Nominal	-40° C	35.2	2.5	0.0	20.2	1	2	20.3	10.7	0.33	360	405	447	D1
	narb	Maximal	-40 C	36.8	2.5	0.0	35.5	1	2	33.3	13.7	0.35	303	400	44/	F1
	SRD	Nominal		45.1												
	306	Maximal	-37°C	54.1	10.2	86	102.0	2	2	51.4	25.7	0.33	492	541	505	P2 P3
	SEC	Nominal	5/ 0	26.1	10.2	0.0	102.5	-	-	51.4	23.7	0.00	452		555	12,13
ΔΤΙΔ	520	Maximal		30.0												
	POB	Nominal		50.6												
	100	Maximal	-40° C	60.7	92	94	112.7	2	2	56.4	28.2	0.33	530	583	641	P4 P5
	PEC	Nominal	-40 C	27.8	5.2	3.4	112.7	2	2	50.4	20.2	0.35	330	585	041	F 4, F 3
	FLC	Maximal		33.4												
	PXI	Nominal	-40° C	20.1	27	3.0	29.8	1	1	29.8	29.8	0.33	280	308	339	P6
		Maximal	100	24.1	2.7	0.0	25.0	-	-	2510	25.0	0.00	200		005	10

Vibration

2PACL System vibration

EP-DT

Vibration measurements for 1H 2PACL plant was done as a worst-case scenario with help of EN-MME.

- Test performed:
 - warm and cold saturation temperature on without dummy load (fully liquid worst possible scenario).
 - damping solutions: passive dampers (rubber metal isolators), fixed solution (system fixed to the floor)
- Instrumentation used:
 - 2 seismic accelerometers (impact of the 2PACL plant on the floor)
 - 4 ICP triaxial accelerometers (EN-MME select worst case piping and flanges)
- Standards used to estimate system vibration levels
 - Engines / pumps ISO 10816-7

Room temperature	35 Hz	50 Hz
fixe	3.0 mm/s - B	<mark>3.0 mm/s - B</mark>
With dumper	2.5 mm/s - B	35 mm/s - D
-40 °C	35 Hz	50 Hz
-40 °C fixe	35 Hz	50 Hz

EP-DT

2PACL plant – Vibration campaign Detector Technologies

• Pipes / connections API618

0			Fixe su	pport	0		Dumper s	support	(
		base li	ne 35Hz	worse ca	se 50 Hz	base lin	e 35Hz	worse ca	se 50 Hz
Temperatu	ire	Room Temp. & 58 <u>bar</u>	Cold Temp. & 10 bar	Room Temp. & 58 <u>bar</u>	Cold Temp. & 10 bar	Room Temp. & 58 <u>bar</u>	Cold Temp. & 10 bar	Room Temp. & 58 <u>bar</u>	Cold Temp. & 10 <u>bar</u>
Requireme	nts	< 32 mm/s	< 32 mm/s						
	x	17 mm/s	14 mm/s	22 mm/s	16 mm/s	18 mm/s	11 mm/s	30 mm/s	20 mm/s
Inlet Pipe	Inlet Pipe Y		8 mm/s	46 mm/s	12 mm/s	29 mm/s	6 mm/s	36 mm/s	10 mm/s
	Z	28 mm/s	12 mm/s	43 mm/s	20 mm/s	29 mm/s	10 mm/s	48 mm/s	13 mm/s
	x	13 mm/s	8 mm/s	13 mm/s	16 mm/s	14 mm/s	8 mm/s	21 mm/s	14 mm/s
Outlet Pipe	Y	11 mm/s	6 mm/s	28 mm/s	10 mm/s	12 mm/s	7 mm/s	20 mm/s	10 mm/s
	Z	10 mm/s	12 mm/s	22 mm/s	20 mm/s	20 mm/s	12 mm/s	30 mm/s	20 mm/s
condenseur	x	39 mm/s	25 mm/s	75 mm/s	34 mm/s	34 mm/s	35 mm/s	68 mm/s	60 mm/s

			Fixe s	support			Dumper	support			
	base line 35Hz worse case 50 Hz base line 35Hz							worse case 50 Hz			
Temperatu	ure	Room Temp. & 58 <u>bar</u> Cold Temp. & 10 <u>bar</u>		Room Temp. & 58 <u>bar</u>	om Temp. & 58 <u>bar</u> Cold Temp. & 10 <u>bar</u>		Cold Temp. & 10 bar	Room Temp. & 58 <u>bar</u>	Cold Temp. & 10 <u>bar</u>		
Requireme	ents	< 0.5 mm	< 0.5 mm	< 0.5 mm	< 0.5 mm	< 0.5 mm	< 0.5 mm	< 0.5 mm	< 0.5 mm		
	Х	0.3 mm 0.3 mm		0.4 mm	0.3 mm	0.7 mm	0.5 mm	0.6 mm	0.4 mm		
Inlet Pipe	Y	0.2 mm 0.1 mm		0.3 mm	0.3 mm 0.1 mm		0.7 mm	1.4 mm	1.6 mm		
	Z	0.4 mm	0.3 mm	0.5 mm	0.3 mm	0.5 mm	0.4 mm	4.3 mm	4.0 mm		
	x	0.2 mm	< 0.1 mm	0.1 mm	< 0.1 mm	0.2 mm	0.4 mm	0.5 mm	0.4 mm		
Outlet Pipe	Y	0.1 mm	< 0.1 mm	< 0.1 mm	< 0.1 mm	0.1 mm	0.4 mm	2.0 mm	2.0 mm		
	Z	0.2 mm	< 0.1 mm	0.1 mm	< 0.1 mm	0.2 mm	0.3 mm	2.5 mm	2.6 mm		
condenseur	X	0.3 mm	0.1 mm @-	0.3 mm	0.2 mm	2.0 mm	1.6 mm	2.0 mm	1.2 mm		

Flexible hoses- Selection & installation guide

All the information taken from the manufacturer catalogue

If there is vibration in more than one direction, either install a longer hose bent at 90° or install a "Dog Leg" assembly.

Correct		Incorrect	

Vibration:

The following graph is a representative guideline for estimation purposes only. For any questions, or if your application is near the "Consult Factory" region, please contact your HAM-LET local representative.

Vibration Chart :

Vibration measurements campaign:

- Max Amplitude 0.5 mm Cycles per second 3 (Hz)

According to the manufacturer no need of additional fatigue tests.

Accumulator & Plant construction

EP-DT

Accumulators – construction partner

FOR ATLAS: 6 x Short Accumulator 0 x Long Accumulator

FOR CMS: 5 x Short Accumulator 3 x Long Accumulator

FOR CMS Inheritance: 1 x Long Accumulator

Tender for the Accumulator construction was won by consortium:

Norrköping, Sweden

15x Accumulators According PED and Machine directive All units will be CE marked

Completed by the July 2025

Accumulator vessel due to wall thickness will be made by:

Pålsboda, Sweden

- Technical discussions on weekly basis since 19th of October 2023
 - Design started by company from the October 2023
- Documentation ITP, WPS, WPQR, and many others received
 - Drawings received
- Construction of first batch (4 Accumulators) started from 18th of March 2024
 - Free issued components from CERN were delivered to
 Kompressor Teknik in three batches
- Visit of CERN representative on the 14th 15th of March 2024 JohSjo and BTR

2PACL plant types – construction partner

1x 1 Head 2PACL plant

11x 2 Head 2PACL plant

4x 3 Head 2PACL plant

FOR ATLAS:

1 x 1 Head 2PACL plant 5 x 2 Head 2PACL plant 1 x 3 Head 2PACL plant

FOR CMS:

0 x 1 Head 2PACL plant 6 x 2 Head 2PACL plant 3 x 3 Head 2PACL plant Tender for the 2PACL construction was won by:

Esbjerg, Denmark

16 x 2PACL Plants According PED and Machine directive All units will be CE marked

Completed by the July 2025

Tender for the 2PACL cold insulation boxes construction was won by:

Ellwangen, Germany

17 x Cold insulations boxes

EP-DT

SubC, Thalheimer – discussions, design, documentation, construction **Detector Technologies**

- Technical discussions on weekly basis since 19th of October 2023
 - Design started by company from the October 2023
- Documentation ITP, WPS, WPQR, and many others received ٠
 - Drawings received
- Construction of first batch (2x 2 Head Plants and 1x 1Head Plant) started from 23rd of February 2024
- Free issued components from CERN were delivered to SubC in three batches
 - Visit of CERN representative on the 13th of March 2024

- Technical discussions on daily basis since 2nd of February 2023
 - **3** D Design received (few correction was needed)
 - 3D models and 2D Drawings received approved
- Construction of first batch started from 4th of February 2024
- Factory acceptance tests of first units on the 16th of May 2024

First 2PACL Frames

The CE marking process

1. Applicable Directive:

Detector Technologies

- Pressure equipment
- Machine

EP-DT

- Euro code
- 2. Requirements for applicable directive:
- Harmonised standards
 - Metallic industrial piping EN 13480
 - Unfired pressure vessels EN 13445
 - Euro code EN 1090-1
- 3. Route to conformity:
- Third party
- Notified body
- Inspection and test plan
- 4. The Product conformity :
- NDT weld test(x-ray)
- Pressure test, leak test
- Risk assessment and HAZOP

- 5. The Technical documentation:
- Technical description.
- Drawings, circuit diagrams and photos.
- Bill of materials.
- Specification and, where applicable, Declarations of Conformity for the critical components and materials used.
- Details of any design calculations.
- Test reports and/or assessments.
- Instructions.
- As-built documentation
- 6. Declaration and affix the CE Mark:
- EU Declaration of Conformity
- Marking plates on the unit (from cat 2 NoBo stamp)

2PACL plant current construction status

2PACL plant current construction status

Accumulator current construction status

Delivery schedule for 2PACL plants

Label	Description (CERN use)	Type of plant	Due by date AT CERN
CU5A_P9	1 - CMS P9 Back-up	3-heads	02.07.2024
CU5A_P7	2 - CMS CE4	2-heads	02.07.2024
CU5A_P6	3 - CMS CE3	2-heads	22.08.2024
CU5A_P5	4 - CMS CE2	2-heads	22.08.2024
CU5A_P4	5 - CMS CE1	2-heads	04.10.2024
CU5A_P2	6 - CMS TK2	3-heads	04.10.2024
CU5A_P8	9 - CMS ETL	2-heads	02.12.2024
CU5A P9	10 - ATLAS P9 Back-up	3-heads	02.12.2024
CU5A_P1	7 - CMS TK1	3-heads	01.11.2024
CU5A_P3	8 - CMS BTL	2-heads	01.11.2024
CU1A_P1	11 - ATLAS HGTD	2-heads	28.02.2025
CU1A_P2	12 - ATLAS A side; SEC, SBR	2-heads	28.02.2025
CU1A_P3	13 - ATLAS C side; SEC, SBR	2-heads	25.04.2025
CU1A_P4	14 - ATLAS A side; PEC, POB	2-heads	25.04.2025
CU1A_P5	15 - ATLAS ATLAS C side; PEC,	2-heads	27.06.2025
CU1A_P6	16 - ATLAS PXI	1-heads	27.06.2025

Delivery schedule for Accumulators

Label	Description (CERN use)	Type of accumulator	Due by date AT CERN
CS5D_A1	CMS INH	Long	05.07.2024
CU5A_A7	CMS CE4	Short	05.07.2024
CU5A_A6	CMS CE3	Short	04.09.2024
CU5A_A5	CMS CE2	Short	04.09.2024
CU5A_A4	CMS CE1	Short	18.10.2024
CU5A A2	CMS TK2	Long	18.10.2024
CU5A_A8	CMS ETL	Long	15.11.2024
CU1A_A1	ATLAS HGTD	Short	15.11.2024
CU5A_A1	CMS TK1	Long	08.01.2025
CU5A_A3	CMS BTL	Short	08.01.2025
CU1A_A2	ATLAS A side; SEC, SBR	Short	28.02.2025
CU1A_A3	ATLAS C side; SEC, SBR	Short	28.02.2025
CU1A_A4	ATLAS A side; PEC, POB	Short	25.04.2025
CU1A_A5	ATLAS C side; PEC, POB	Short	25.04.2025
CU1A_A6	ATLAS PXI	Short	27.06.2025

Plans

May-24		Jun-24	Ju	-24	Au	g-24	Se	o-24		Oct-24	Nov-24	Dec-2	24	Jan-2	5 LATER
Plant installation			Installatio	on P9 & CE4		Installation	of CE3 & CE2		1	nstallation of CE1 & TK2	Installation of TK1 & BTL	Install CE4			
Accu instalaltion			Installa	tion CE4		Installation	of CE3 & CE2		1	nstallation of CE1 & TK2	Installation of TK1 & BTL	Install CE4			
			Wi	ring of P9 and	CE4 (plant & a	ccu)	I/O comm P9 & CE4			GAS TESTING P9 & CE4					
						Wir	ing of CE3 and	CE3 and CE2 (plant & accu)							
									I/O co	mm CE3 & CE2		GAS TESTING CE3 & CE2			
										Wiring of CE1 and	TK2 (plant & accu)				
											I/O comm CE1 &	TK2 GA		GAS TESTING CE1 & TK2	
											Wiring of TK1 and BTL (plan	t & accu)			
												I/O co	omm TK1 & E	BTL	GAS TESTINGTK1 & BTL
												Wiring ETL (plan	t & accu)		I/O comm TK1 & BTL

CERN

Blue: Liquid supply line. Red: Gas return line. Orange: Heaters White: R744 HE & lines Green: Main sensors Pink: Safety valves

EP-DT

Back-up Chiller Detector Technologies

Back-up chiller selected is the Danfoss iCO₂ unit of ~5 kW together with an expansion valve on the liquid line.

K.Sliwa EP/DT/FS

BT OT T

Suction accumulator 2.5 L

turn line ball valve Jourd line ball valve

Sight glass

- Visit of CERN representative on the week 11th 2024
 - No doubts about the work quality make by the companies
 - mechanical, electrical, storage
- Construction of the 2PACL Plants & Accumulator ongoing
- A lot of effort was made to collect all documentation needed for achieve CE mark
- Realising invitation for tender for Surface Storage vessel
- Testing back-up chiller soon

FOR CMS installation:

Starts July 2024 Ends December 2024 First circulation tests January 2025 (no liquid test allowed during ongoing installation in the cavern) No limitation during beam run

FOR ATLAS installation:

Starts YETS 2024-2025 (I 2PACL plant and 1 Accu for early testing) The rest of equipment will be installed during LS3 First circulation tests early 2025 Only serious intervention/installation during the beam run

Thank you !

BACK-UP Slides

Engine / pump according to ISO10816-7

29/05/2024

^{logies} 2PACL Plant piping - intervention

FINAL CO₂ Plant piping redesign aspects:

Central splitting plane

Main benefit: we no longer need to slide the entire piping assembly but half of it \rightarrow simpler operation and shorter intervention time

• Optimization of pipe routing:

- More space for maintenance
- less welds + less connectors
- Less piping sub-assemblies

Experiments footprint requirements

CERN

2PACL Plants Connection Interfaces

Piping – fatigue analysis

According to EN 13480 Metallic industrial piping standard: 10.3.2 Simplified fatigue analysis

10.3.2.1 General

Where cyclic loading requiring calculation arises only from variations in pressure, the simplified fatigue analysis shall be permitted.

EN 13480-3:2017 (E) Issue 1 (2017-06)

It uses the static design criteria and takes into account the relevant fatigue peak stresses by the use of a stress concentration factor η for a range of typical geometries. The method is approximate, and less conservative dimensioning may result from the use of more detailed analysis in accordance with 12.4.

The rules shall apply for pressure containing parts of piping of ferritic and austenitic rolled and forged steels manufactured and tested in accordance with EN 13480-2 and EN 13480-4.

The calculation only applies for components dimensioned on the basis of non-time-dependent strength characteristics and subjected to cyclic loadings only in the form of pressure fluctuations.

NOTE 1 The term \ll cyclic loading \gg is the change over time of a load regardless of the magnitude and arithmetic sign of the mean value.

Additional cyclic loads, for example loads due to rapid changes in temperature during operation or from external forces and moments, shall be assessed within the framework of a detailed fatigue analysis (see 12.4).

The rules shall apply if there are no influences from the fluid which will reduce the fatigue life (see 10.3.2.8).

NOTE 2 10.3.2 does not need to be applied if the pressure fluctuations superimposed on the service pressure do not exceed 10 % of the allowable operating pressure.

2PACL Frame FEA

Detector Technologies

EP-DT

CERN

Fixed support on 4 feet (B, D, F, H)

Max stress = 14,6 MPa E: Copy of Static Structural Maximum Combined 3zess Type: Maximum Combined 3zess - Top/Bottom Unit: MPa Time: 1 Custom Obsolete Min: 3,0078 0:02.02021 T1001 14,628 12,669 10,709 8,7495 6,79 4,8304 2,8709 0,91134 -1,0482 -3,0078 Max displacement = 0.258mm E: Copy of Static Structural Total Deformation Type: Total Deformation Unit: mm Time: 1 Custom Max: 0,25554 Min: 0 03.02.2022 11:08 0,25854 0,22981 0,20109 0,17236 0,14363 0,11491 0,06618 0,057453 0,028727 Deformation shape scale:

Frame was studied under 3 different fixed supports scenarios. More results are available on request

620x true deformation

Maintenance plan **Detector Technologies**

Every year:

EP-DT

- Pump basic maintenance
 - Replacement of membranes (plus associated gaskets and O-rings), oils (gear box and hydraulic) and pump valves
- Filters cleaning •
- Valves piloting verification and position switches • calibration (if needed)
- Sensors inspection and calibration (if needed) •
- Verification of electrical connections
 - With thermal camera while system is running before the maintenance
 - Re-torquing of all electrical connections with dynamometric tools when system is OFF
- Pumps and heaters current measurement (while system is running)
- Resistance measurements for motors, coils... ٠
- Heaters insulating resistance measurement up to • 1000VDC
- EMS STOP testing •
- Differential circuit breakers tests •

Every 2 years: •

- Safety valves calibration
- Pump internal safety valve inspection and ٠ calibration
- Valves battery packs replacement
- Flexible inspection (CO_2 leak test sniffer)

Every 5 years:

- Pump in-depth maintenance (performed at the • supplier's premises):
 - Membrane replacement (plus associated gaskets and O-rings) + oils replacement (gear box and hydraulic), valves replacement + gear box inspection and replacement of worn parts + piston and hydraulic head inspection and replacement of worn parts

Every 10 years:

Burst discs replacement ٠

Every 12 years:

Accumulators inspections by HSE •

DEMO modular prototype

Each block (Module/subsystem) has its own control cabinet and a dedicate control PCO . Each module can be operated independently and partly tested

Control cabinets Surface storage simulator

2PACL plant – Vibration campaign

Vibration measurements for 1H 2PACL plant was done as a worst-case scenario with help of EN-MME.

- Before taking measurements EP-DT-FS carefully provide all the inputs regarding the project (technical information about the 2PACL plants, Lewa pumps, their integration in both caverns).
- Test performed:
 - warm and cold saturation temperature on without dummy load (fully liquid worst possible scenario).
 - damping solutions: passive dampers (rubber metal isolators), fixed solution (system fixed to the floor)
- Instrumentation used:
 - 2 seismic accelerometers (impact of the 2PACL plant on the floor)
 - 4 ICP triaxial accelerometers (EN-MME select worst case piping and flanges)