

Overview of the CO₂ cooling DEMO obtained results and a prediction of future system behaviour

Viren Bhanot, Loic Davoine, Yann Herpin, Cedric Landraud, Jerome Noel, Youri Penders, Kzrysztof Sliwa, Dani Texeira, Bart Verlaat, Michal Zimny

29/05/2024

Challenges & Goals

Challenges for Phase 2

High cooling capacities required

- 300 kW for ATLAS \rightarrow 7 plants, 6 accumulators
- 550 kW for CMS \rightarrow 9 plants, 8 accumulators
- Redundancy important for continuous operation

Operation temperatures down to -45°C

- -45°C close to CO₂ triple point
- Increased gradients at lower temperatures
- Stable primary cooling is required in limited range temperature zones

Need for surface facilities

- Smaller accumulators in cavern, therefore surface storage of CO2
- Primary cooling system on surface, therefore large transferlines to service cavern

Energy efficiency considerations

Improvement of energy efficiency with scaled up systems

The cold challenge

Detector Technologies

CERN

The surface challenge

- 2PACL cooling plants located in USA-15 / USC-55 underground
- Detector evaporator loops are connected via manifolds and concentric transfer lines to the 2PACL plants
- The 2PACL plants are cooled by the primary R744, which is located on the surface
- The primary R744 plants are cooled by water from the towers and air cooling
- Surface storage of CO2 to control the charges of the underground 2PACL plants

Uninsulated transfer lines

 Requires warm liquid supply and warm return gas to cavern to avoid condensation

Reduced accumulator sizes

 Good interaction required between cavern plants and surface storage

Scaled-up DEMO system

DEMO

- Full scale system containing all system elements
- Real size plant and accumulator
- Short low-capacity transferline
- 100 kW dummy load to simulate detector heat
- Able to circulate 1.58 kg/s of CO2
- Includes one-head back-up plant for redundancy swap
- Surface Storage Simulator unit

Challenges for Phase 2

- Demonstrate operation with 100 kW cooling
- High cooling capacities required power at -45°C at the plant
 300 kW for ATLAS → 7 plants, 6 accumulators
 550 kW for CMS → 9 plants, 8 accumulators

 - Redundancy important for continuous operation
- **Operation temperatures down to -45°C**
 - -45°C close to CO2 triple point
 - Increased gradients at lower temperatures table operation in all conditions,
 - Stable primary cooling is requires precially danged temperatures temperature zones
 - Demonstrate specific design updates
- Need for surface facilities Smaller accumulators in cavern, therefore surface
 A reliable accumulator level control
 - storage of CO2-
 - Primary cooling system on sur acmonstrate the warm return of the R744 gas transferlines to service cavern (R744 transfer is without insulation)
- Energy efficiency considerations Demonstrate the new method of accumulator
 Improvement of energy efficiency with scaled up flow-through (2PACL-FT)

Operation and Performance

Flow-through vs. non-flow-through

CERN

Typical system behavior in 2PACL-FT mode

- 2PACL-FT mode shows a very stable and easy to control system
- It has a very good liquid temperature controllability so that at high temperature set-points there is no risk of cold drift anymore
 - Very good experience with a liquid dT of only 5°C
- No need to condense pump flow to -50°C, as a few degrees subcooling is sufficient

Accumulator Redesign

Addition of a plunger tube to keep heat exchanger flooded -13.4°C Plunger tube Too little convective flow without a plunger tube **Plunger and Q-pipe have** increased cooling capacity from 15 kW at -35°C to 50 kW at -45°C

EP-DT

Detector Technologies

Installation of a Q-pipe in heat exchanger to improve flow distribution in the heat exchanger

Heat Exchanger Configuration

EP-DT Detector Technologies

CÈRN

Our performance goal: 100kW @ -45°C

The DEMO R744 chiller is not powerful enough to maintain -53°C above 60kW, a drift to -45 °C is observed at 100kW, and is therefore not able to cool down the accumulator sufficiently

Our performance goal: 100kW @ -45°C

- We have two heat exchangers operated in parallel on the accumulator
- -45°C was kept at 50kW on a single heat exchanger!
- With two heat exchangers, our goal of 100 kW at -45°C would be reached!
- ATLAS maximum systems power: 60 kW; CMS maximum systems power: 90 kW

Heat Exchanger Configuration

CERN

EP-DT

Operation of the Condenser/Subcooler

- Recently implemented new control strategy ensures sufficient ٠ pump subcooling at -45°C at high and low load cases
 - Dynamic dT setpoint only requests no more than what • the chiller can provide in cooling
 - Output high limiter on the valve to keep return gas warm ٠
 - 'Boost mode' implemented to speed up valve action at ۲ low subcooling

10

17

Control strategy in action at 30 kW load step at -45°C in T2PACL

Operation of the Condenser/Subcooler

- Recently implemented new control strategy ensures sufficient ٠ pump subcooling at -45°C at high and low load cases
 - Dynamic dT setpoint only requests no more than what • the chiller can provide in cooling
- Output high limiter on the valve to keep return gas warm ٠ 'Boost mode' implemented to speed up valve action at • 10 low subcooling

18

Control strategy in action at 30 kW load step at -45°C in T2PACL

Surface Storage

20

7

The surface storage is in fact 1 large common accumulator for all systems

The pressure is controlled by heating and cooling

Small back-up chiller for maximum pressure safety

29/05/2024

6

The surface storage is in fact 1 large common accumulator for all systems

The pressure is controlled by heating and cooling

Small back-up chiller for maximum pressure safety

The liquid must be brought underground, which goes by a natural

- Several degrees sub cooling is needed before sending down
- A heater is present underground in return line to help start-

The surface storage is in fact 1 large common accumulator for all systems

The pressure is controlled by heating and cooling

Small back-up chiller for maximum pressure safety

The liquid must be brought underground, which goes by a natural

- Several degrees sub cooling is needed before sending down
- A heater is present underground in return line to help start-

A supply valve is used to inject liquid at the condenser inlet, while a return valve is used to take liquid at the pump discharge

EP-DT

22

The surface storage is in fact 1 large common accumulator for all systems

The pressure is controlled by heating and cooling

- Electrical heating
- R744 branch cooling connection
- Small back-up chiller for maximum pressure safety

The liquid must be brought underground, which goes by a natural convection thermosiphon

- Several degrees sub cooling is needed before sending down
- A heater is present underground in return line to help startup the convective flow

A supply valve is used to inject liquid at the condenser inlet, while a return valve is used to take liquid at the pump discharge

A discharge control valve keeps discharge pressure above surface storage pressure

A back-pressure regulation valve will allow detector pressure to be high, such that the accumulator can always be kept below surface storage pressure

Evaporators

5

23

Surface Storage 2PACL Operation

- The Surface storage pressure underground is foreseen to work between 20 bar and 56 bar (~14-51 bar in SS-tank)
- Discharge valve will keep discharge pressure 5 bar above surface storage setpoint, such that emptying will always be possible
- Back pressure regulator (BPR) will be able to keep detector pressure at higher setpoints than surface storage setpoint, allowing us to keep the accumulator below surface storage setpoint
 - This will allow us to always be able to fill
- Surface storage and accumulator setpoints will be aligned as much as possible, but with multiple plants, BPR will be required in some cases

Detector Technologies

Accumulator Level Control Level plot at -40°C accumulator setpoint and 20 bar surface storage pressure

- Implementation of level control will of the accumulator will keep the liquid level of the accumulator always in a specified range
- If level is low, surface storage valves will open to fill the plant until accumulator reaches the desired level
- Vice versa, if the accumulator level is high, surface storage emptying valve will regulate until level setpoint is reached
- Pump speed will be boosted during emptying to keep detector flow steady

SurfaceStorageLeveling: SurfaceStorageLeveling Time Range * YAxes * Save Other * 1:1 log auto Close Detector dP Pump Speed Nabadah Mika, Mdahasis and the second second sadd barran i Accumulator Level Marshall M 2/19/2024 9 40:00 PM 2/19/2024 10:10:00 PM 2/19/2024 10:40:00 PM 2/19/2024 11:10:00 PM 2/19/2024 11:40:00 PM 2/20/2024 12:10:00 AM 2/20/2024 12:40:00 AM 22/2024 9:51:24 AM .444 \checkmark CS0b_P1_CV9s82.PosSt \checkmark CS0b P1 CV1a16.PosSt \checkmark \checkmark CS0b A1 LT4080.PosSt

Pre-vaporization

Pre-vaporization

- Pre-vaporizing of the transfer line helps a lot, 5% VQ reduces the vapor volume with 50%
- Accumulator charge reduction after pre vaporization and detector powering
- With pre vaporization a power cycle will require less accumulator volume

Accumulator Level Control 300 Accumulator Level 105 520 (%) Position (%) Heat Load Pre-vaporization helps Surface Storage Valve contain level Accumulator Level (%) 0 0 5 0 100 هار مارد 120 کم Heat Load (kW) 100 85 50 80 0 1300 Accumulator Pressure 30 Pump Discharge Pressure 1200 Mass Flow 1100 25 Mass Flow (g/s) Pressure (bar) 1000 20 900 800 15 700

With Pre-vaporization

EP-DT

Detector Technologies

10

0

2000

4000

6000

8000

10000

14000

12000

Plant and Accumulator start-up

Start-up with surface storage starts from plant vapour state

Plant and Accumulator start-up

Back-up Plant Functionality

- Back-up plant is circulating in standby instantly kicks in and starts sending liquid to detector in case of main plant failure
- A temporary high flow is given due to the discharging of the higher pressurized back-up plant
- Pressure differential is maintained, and flow has not dipped to interlock values. Therefore, detector continues running during a swap
- Once the main plant is restarted, a swap takeover is performed in return, and the back-up plant returns to standby

Back-up Plant Swap & Takeover at -40°C

Summary & Conclusions

Summary & Conclusions

The DEMO has successfully been operated full time since October 2022

• Including some technical stops for upgrades

Many aspects of DEMO operation have been thoroughly tested

- Design load of 100 kW at -45°C is attainable
 - Both in flow-through and traditional mode
- Stable performance at different heat loads at -45°C has been achieved
 - Heat exchanger performance considerably improved
 - Flow-through mode tested and applied successfully as baseline operation
 - Good control strategies for stable detector cooling at ultimate conditions
 - Also good temperature control when in liquid
- Surface storage interaction
 - Accurate accumulator level control has turned out to be possible
 - New start-up procedures have been run through using surface storage interactions
- Back-up plant functionality has successfully been tested at different temperature setpoints and configurations

Predictions for the Final Systems

- Stable operation at temperatures from +15°C to -40°C at the detectors is expected from DEMO operation, irrespective of the load
- Performance of DEMO meets foreseen detector heat loads, and the system is expected to handle heat load deviations and other perturbations well
- With thorough commissioning campaign, good performance is expected throughout the final system lifetime

Thank you!!

On behalf of the EP-DT team!

home.cern

The basic concept: 2PACL

Two-Phase Accumulator Controlled Loop \rightarrow 2PACL Low vapor quality cooling for best heat transfer in small tubes Large temperature range

- +20°C / -45°C
- Independent to applied heat load Liquid loop start-up
- No thermal shocks

Very stable evaporator temperature control at a distance

• Detector Pressure ≈ Accumulator Pressure

All active control in distant plant in an accessible area

Successful in first LHCb Velo detector and Velo upgrades, CMS Pixel detector and ATLAS IBL

Detector Specifications

Detector type			Evaporator set point (°C)	Detector design load (kW)	Ambient Pick- up (kW)	Pre-heaters or Warm-nose(kW)	Maximum load for cooling plant (kW)	# of units	# of pump heads	Load per unit (kW)	Load per head (kW)	Design VQ @ cold	Detector flow(g/s)	Flow incl.MTFL By pass (10%)	Flow Incl. plant by- pass (10%)	Cooling plant name
CMS	ОТ		-35°C	114,9	0	0,0	- 163,4	2	3	81,7	27,2	0,42	621	683	752	P1, P2
	IT			48,5		0,0										
	BTL		-35°C	36,1	6,5	1,2	43,8	1	2	43,8	21,9	0,33	424	466	513	Р3
	CE		-35°C	242	15	0,0	257	4	2	64,3	32,1	0,42	488	537	591	P4, P5, P6, P7
	ETL		-35°C	69,5	2	3,0	74,5	1	2	74,5	37,3	0,42	566	623	685	Р8
ATLAS	HGTD	Nominal	-40°C	35,2	- 2,5	0,0	39,3	1	2	39,3	19,7	0,33	369	406	447	Р1
		Maximal		36,8												
	SBR	Nominal	-37°C	45,1	10,2	8,6	102,9	2	2	51,4	25,7	0,33	492	541	595	P2, P3
		Maximal		54,1												
	SEC	Nominal		26,1												
		Maximal		30,0												
	РОВ	Nominal	۸۵°C	50,6	9,2	9,4	112,7	2	2	56,4	28,2	0,33	530	583	641	P4, P5
		Maximal		60,7												
	PEC	Nominal	-40 C	27,8												
		Maximal		33,4												
	ΡΧΙ	Nominal	40°C	20,1	2,7	3,0	29,8	1	1	29,8	29,8	0,33	280	308	339	P6
		Maximal	-40 C	24,1												

