

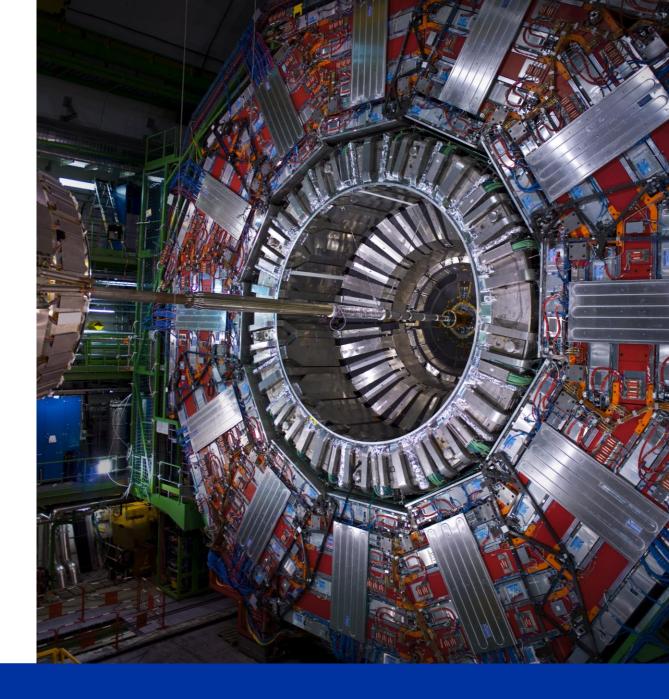
Flow distribution capillary tube testing for the CMS silicon detector upgrades

Forum on Tracking Detector Mechanics 2024 Purdue University, Indianapolis, Indiana U.S.

Derek Jan Langedijk CERN, CMS Cooling Integration May 29th, 2024

Content

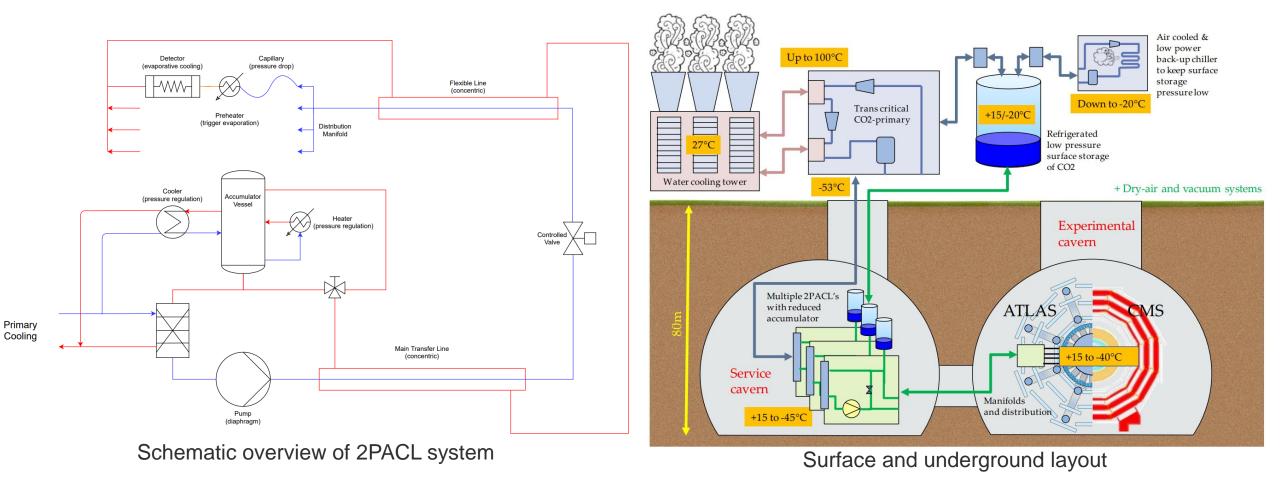
- Introduction


- The 2PACL Principle
- Capillaries in CO2 Cooling Why?
- Theoretical Prediction
 - Principle
 - Example
 - Effectiveness & Difficulties
 - Conclusion

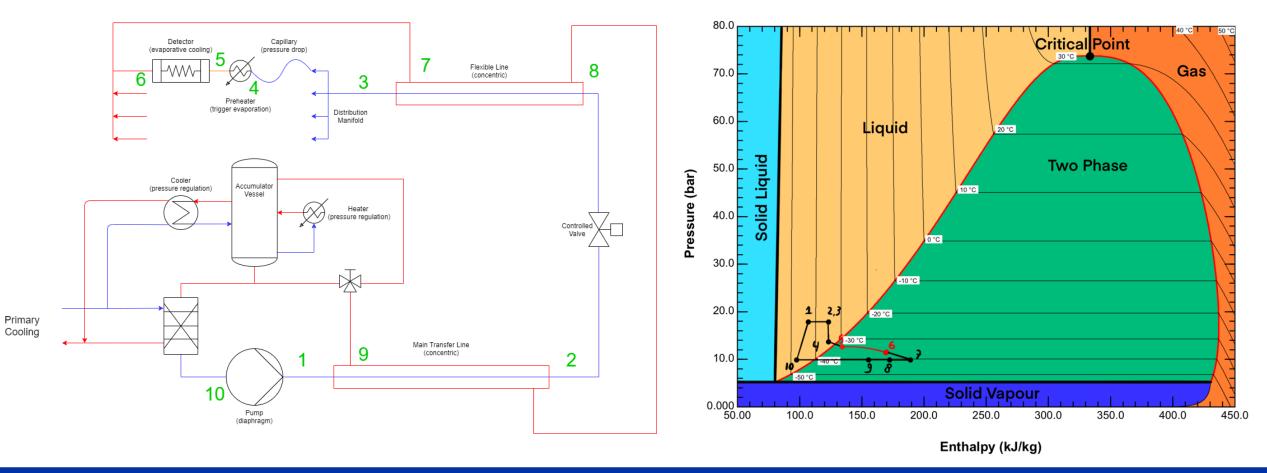
- Capillary Open System

- Working Principle
- Mechanical Design

- In practise

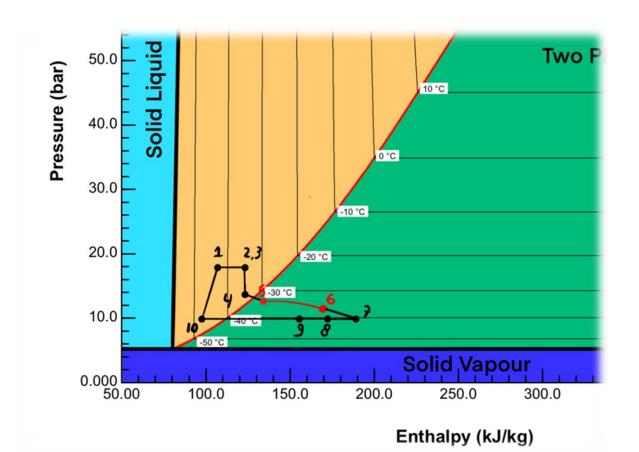

- Capillary manufacturing
- Testing
- Consistency
- Conclusion

The 2PACL Principle – Components and Layout

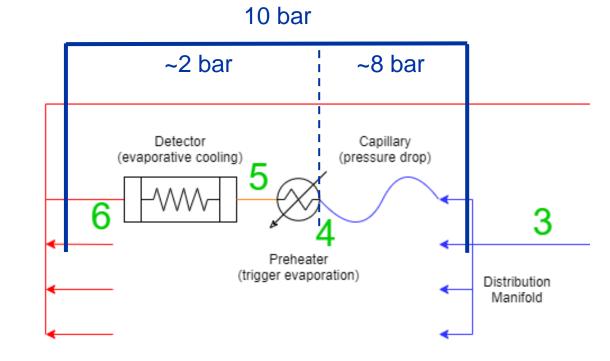

Surface and Underground layout with schematic system overview

The 2PACL Principle – Thermodynamic Cycle

Components visualized in PH-Diagram

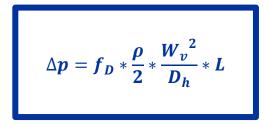


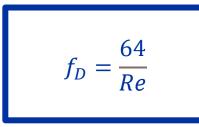
Capillaries in CO2 Cooling – Why?


1. Trigger Boiling

CERN

- 2. Passive Flow Distribution
- 3. Detector Loop Failure


29 May 2024


Theoretical Prediction – Principle

Prediction based on the Darcy-Weisbach equations modelled in MatLab

 Δp using Darcy-Weisbach:

f_D during laminar flow:

 $\mathbf{f}_{\mathbf{D}}$ during turbulent flow:

$$\frac{1}{\sqrt{f_D}} = -2 * \log_{10} \left(\frac{e}{3.71 * D_h} + \frac{2.51}{Re * \sqrt{f_D}} \right)$$

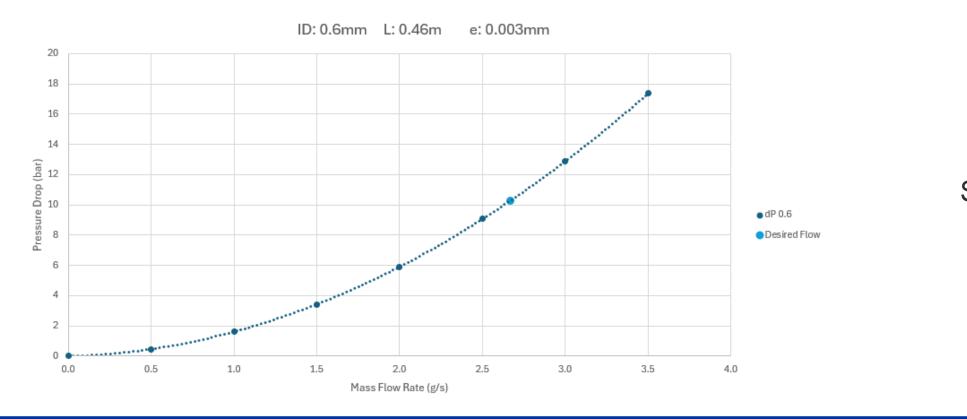
Differential Pressure	(Δp)	[Pa]
Length of Tube	(L)	[m]
Darcy friction factor	(f _D)	[-]
Density of the Fluid	(p)	[kg/m ³]
Fluid Velocity	(₩ _∨)	[m/s]
Hydraulic Diameter of the Tube	(D _h)	[m]
Inner Surface Roughness	(e)	[mm]
Reynolds Number	(Re)	[-]

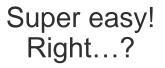
Reynolds number:

$$Re = \rho * W_{v} * \frac{D_{h}}{\mu}$$

Theoretical Prediction – Example from Detector List

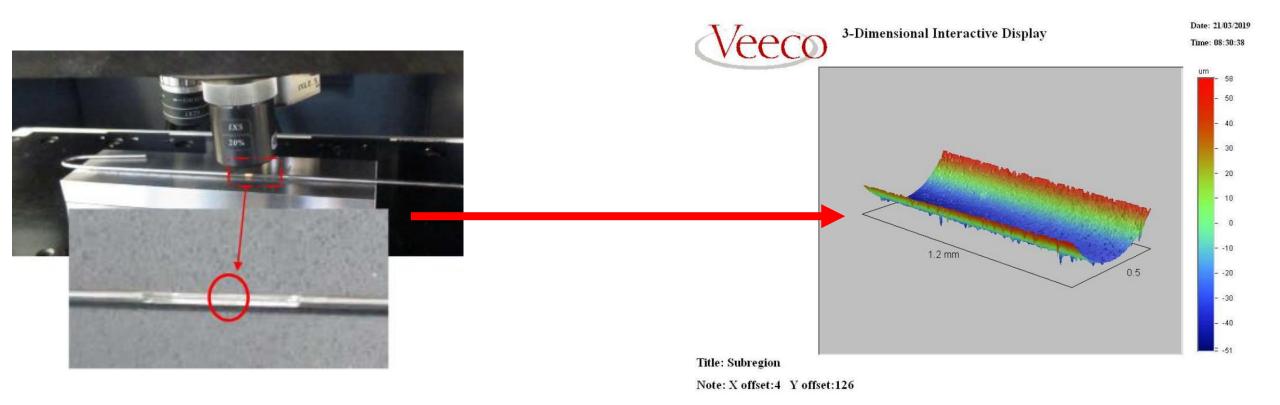
Prediction based on the Darcy-Weisbach equations modelled in MatLab

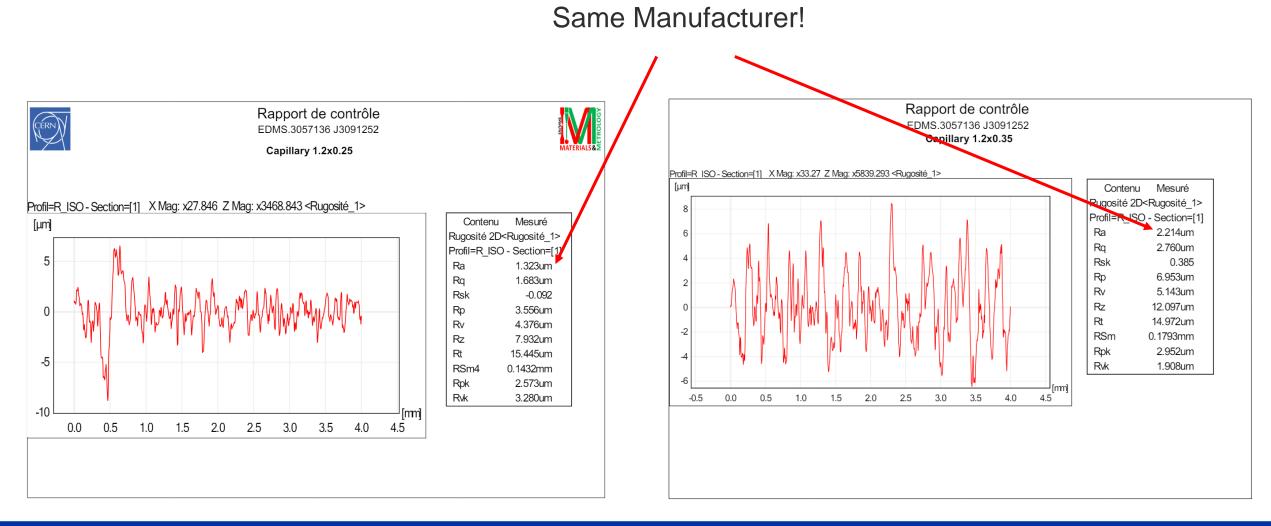

	to	<i>•</i>					anillan			Desi	red							
.ec etc	ctor em		Sub-S	ysten	n	Ui Dro	apillary opertie			∆p Capill)			Quant	tity			
	5111									Capil	lary							
	A	в	c	D	E	F	G	н	I.		к	L	м	Ν	0	р	Q	R
	s	System	Component	ID (mm)	OD (mm)	Min length (m)	Max length (m)	Min Mass flow (g/s)	Max Mass flow (g/s)	Max dP (bar (EOL)	Min d? (bar) (EOL)	Roughness (micron)	Quantity	Predicted Length (m)	Fraction of total (quantity)) Fraction of total (Length per Size)	Budgetcode	Responsible
$H \downarrow$		BTL		0.6	1.2	0.46	0.46	2.67	2.67	7.9	7.3	1	144	66.24	7.84%	6.32%	T641901	Adi Bornheim
	MTD		Evap 1	0.7		1.40	1.40	2.39	2.39	9.17	9.17	1	17	33.80		5.20%		
-1		ETL				1.3		3.54	4.69			-			8.33%		T273310	Natalia Koss
++	L	Electromagnetic	Evap 2 to 9	0.9	1.4	1.3	2.30	3.54	4.69	9.41	8.68	1	136 336	352.80 463.68		100.00%		
н	IGCAL			0.8	1.2	113	2.00	1.84	2.52	9.46	8.38	1	216	432.00	44.42%	66.51%	38354	Karol Rapacz
		Hadronic		0.6	1.2	0.94	1.46	1.45	1.84	9.3	8.31	1	264	385.44	36.80%			
			Layer 1	0.5	1.2	1		1.47	1.8				8	8.00		11.59%		
		Layer 2	0.5	1.2	1	1	1.22	1.72				14	14.00		20.29%			
	Γ	тврх	Layer 3	0.5	1.2	1	1		1.94				16	16.00	23.19%	23.19%		38352 Francesco Bianchi
	п		Layer 4	0.5	1.2	1	1	1.04	1.92				18	18.00		26.09%	20353	
2		TFPX		0.7	12	1	1	2.22	- 11				64	64.00		9.85%	36332	Duccio Abbaneo
3		терх	TEPX 1	0.7	12	1	1	1.11	in.				32	32.00		4.93%		
1			TEPX 2	0.7	12	1	1	1.11	1.11				32	32.00		4.93%		
		FBCM		0.5	1.2	1	1						4	4.00	4	5.80%		
			Layer 1	0.5	1.2	1.00	1.00	1.25	1.25			1	9	9.00	39.41%	13.04%		Chi Meng Lei
		TBPS flat	Layer 2	0.7	1.2	1.70	1.70	1.84	1.84			1	13	22.10		3.40%	38352	Douglas Ryan Berry
			Layer 3	0.8	12	2.00	2.00	2.45	2.45			1	18	36.00		6.66%		
		TBPS tilted	Layer 1 Layer 2	0.6	1.2	1.25	1.25	1.63 2.2	2.2			1	24 24	30.00 33.60		2.86%	38352	Fernando Perea Albela
		ibrs tilted	Layer 3	0.7	1.2	1.70	1.40	2.2	2.2			1	24	40.80		7.55%	36332	remando Peres Albera
		TB2S	All layers	0.6	1.2	1.90	1.90	1.33	1.39			1	24	349.60		33.38%	T630250	Antti Onnela
			TEDD 1	0.6	1.2	0.90	0.90	2	2			1	96	86.40		8.25%		
í.		TEDD	TEDD 2	0.6	1.2	0.90	0.90	1.61	1.61			1	144	129.60		12.37%	T630260	Christof Delaere
5									Total				1837		100%	500%		
5																		
7	Capillarie	es Procurement		Inner Diameter	Outer Diameter									Predicted length	pares	To be ordered (Spools of ~300m)		
3					0.5 1	2								69.00)	33 300		
9					0.6 1	2								1047	125	1500		
) Ba	atch#1				0.7 1	2								650	77	900		
L					0.8 1	2								540				
2					0.9 1	4								353	42	23		



Theoretical Prediction – Example from Detector List

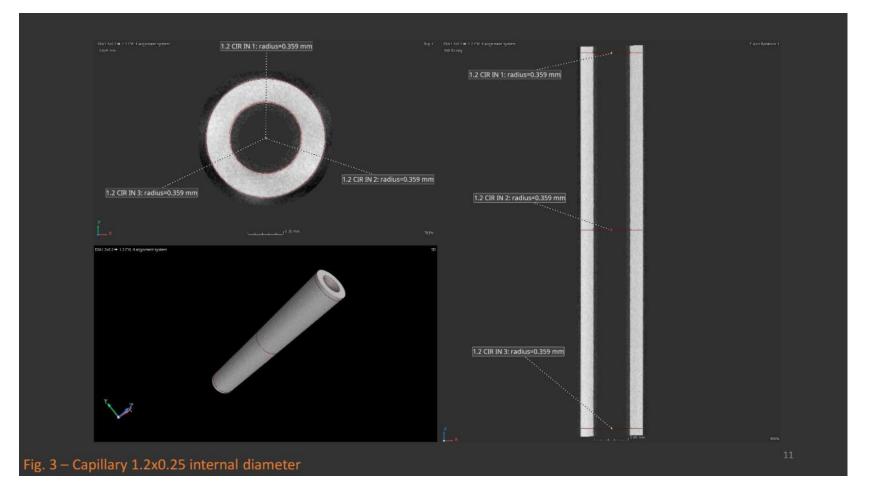
System	Component	ID (mm)	Max length (m)	Max Mass flow (g/s)	Max dP (bar) (EOL)	Predicted Length (m)
BTL		0.6	0.46	2.67	7.9	66.24


Result Theoretical Prediction:



Capillaries are not perfect...





CERN

CT Scan on capillaries... BIGGER Inner Diameters

Overview of Results – Tolerance between +0.01mm and +0.03 mm

Results

Below are the results of the internal and external diameters/radiuses.

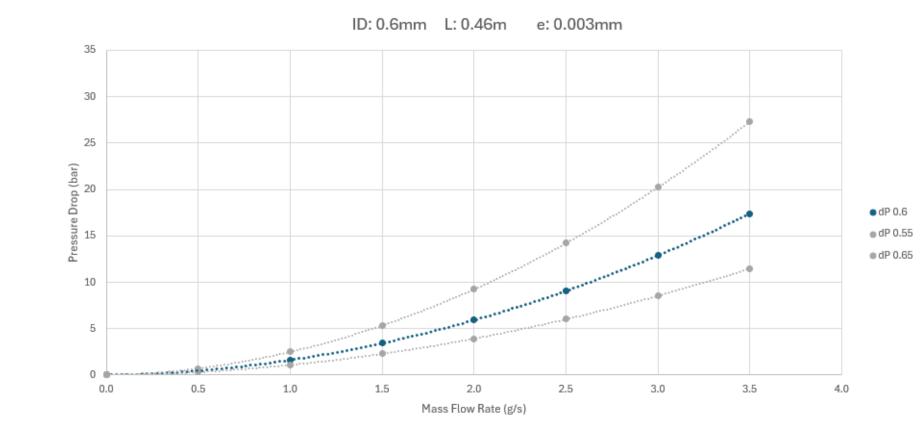
1.2x0.2						
Exterior	Diameter	1.194				
Exterior	Diameter	1.194	1			
Exterior	Diameter	1.194				
Interior	Diameter	0.824	W. th.	0.185		
Interior	Diameter	0.824	W. th.	0.185		
Interior	Diameter	0.824	W. th.	0.185		

1.2X0.55	
Exterior	Diameter
Exterior	Diameter

encerior	orannecer	2.20			
Exterior	Diameter	1.184	0.5mm		
Exterior	Diameter	1.184			
Interior	Diameter	0.536	W. th.	0.324	
Interior	Diameter	0.534	W. th.	0.325	
Interior	Diameter	0.532	W. th.	0.326	

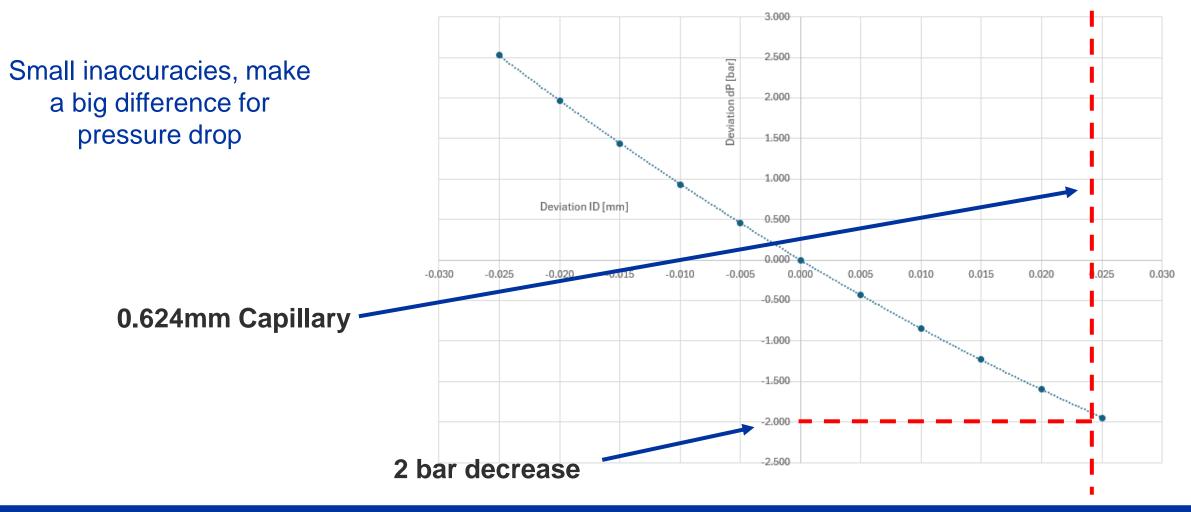
1.184

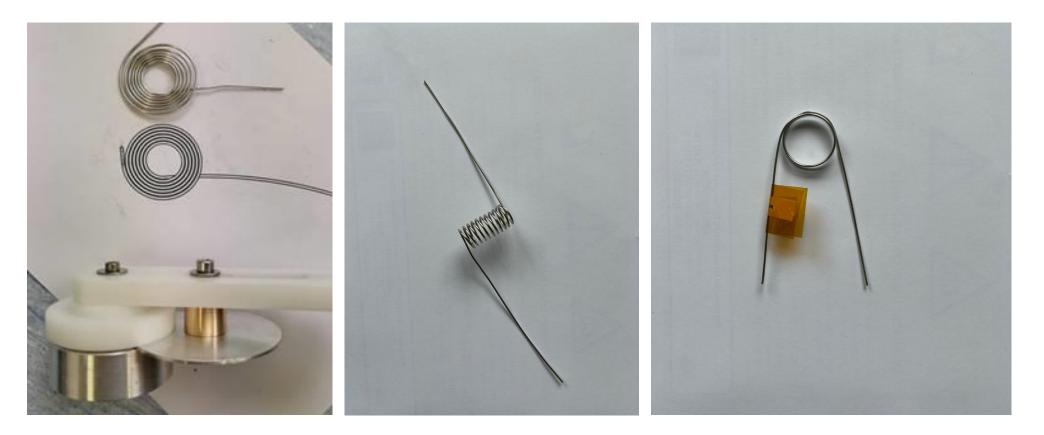
1.2x0.25				
Exterior	Diameter	1.194		
Exterior	Diameter	1.194	0.7	mm
Exterior	Diameter	1.194		
Interior	Diameter	0.718	W. th.	0.238
Interior	Diameter	0.718	W. th.	0.238
Interior	Diameter	0.718	W. th.	0.238


1.4x0.25						
Exterior	Diameter	1.386				
Exterior	Diameter	1.386	0.9mm			
Exterior	Diameter	1.386				
Interior	Diameter	0.916	W. th.	0.235		
Interior	Diameter	0.916	W. th.	0.235		
Interior	Diameter	0.916	W. th.	0.235		

1.2x0.3			_			
Exterior	Diameter	1.188				
Exterior	Diameter	1.188	0.6 mm			
Exterior	Diameter	1.188				
Interior	Diameter	0.624	W. th.	0.282		
Interior	Diameter	0.624	W. th.	0.282		
Interior	Diameter	0.624	W. th.	0.282		

1 2-0 25


How strong is a 0.05mm ID tolerance influencing the pressure drop?



How strong is a 0.05mm ID tolerance influencing the pressure drop?

Coiling increases pressure drop. Also, coiling is subjective... see below:

Research is ongoing to better understand the effects of coiling on pressure drop!

Theoretical Prediction – Testing each capillary!

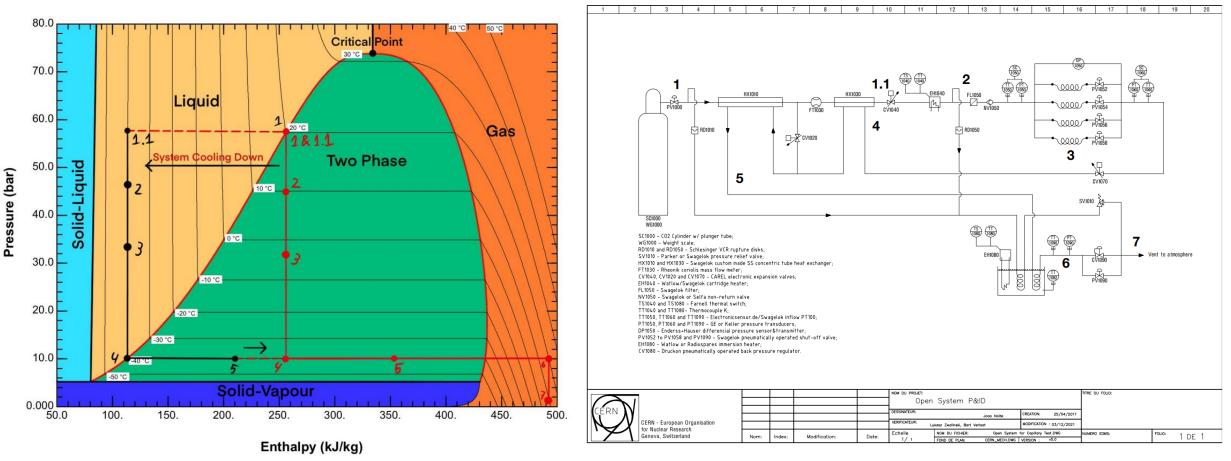
Conclusion: Testing is a necessity; theory does not give sufficient accuracy.

Capillaries are not consistent:

- 1. Uncertainties with roughness
- 2. Uncertainties with inner diameter
- 3. Uncertainties with coiling


Solution: Build a test factory that can test all capillaries!

Capillary Open System – Principle


"2 Identical Setups for ATLAS and CMS"

- Capillaries
 - $\Delta p \ sensor$
 - Shut-off valves
- Flow measurement and regulation
- Bottle supply
- Exhaust system (Single phase, gas)
- Safety Burst Discs
- Supply Subcooling
 - Heat exchangers
 - Bypass Valve
- Subcooling regulator
- Warm Nose Heater (ATLAS Only)


Capillary Open System – Principle

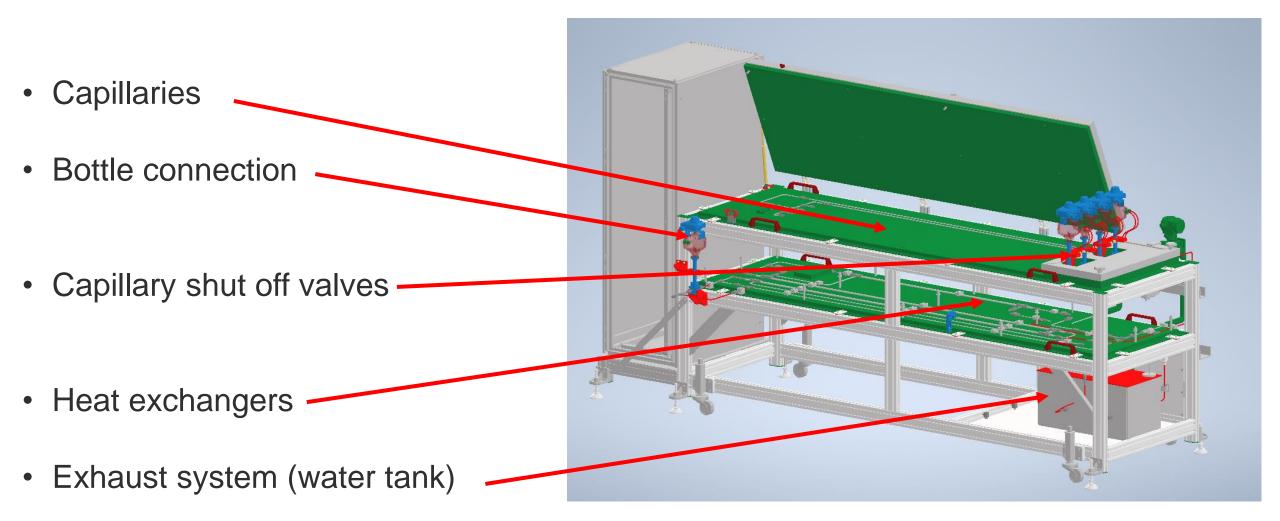
P&ID COS – Joao Noite, ATLAS Collaboration

Capillary Open System – Mechanical Design

Original Design

Liam Cooper Science & Technology Facilities Council, United Kingdom

Final Design


Martin Machac & Derek Jan Langedijk CERN

29 May 2024

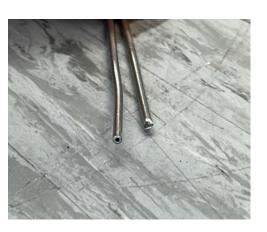
Derek Jan Langedijk | Capillary Flow Distribution

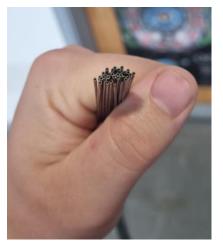
Capillary Open System – Mechanical Design

Capillary Open System – Constructed @ CERN

February 2023

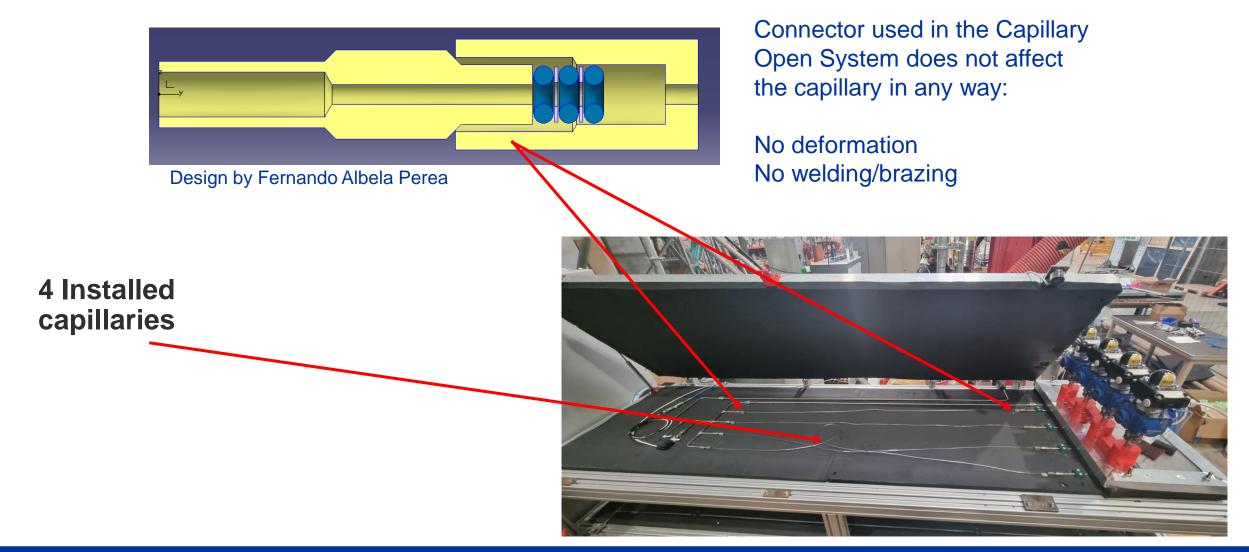
Commissioning with ATLAS Setup October 2023


29 May 2024


Derek Jan Langedijk | Capillary Flow Distribution

Making a Capillary – Electronic Discharge Machining

Spools with different ID's Over 2km (1.25mi) total Cut from Spool using pliers


Flattened ends... because of pliers (right side)

Remove ends with EDM Wire Cutting

Result

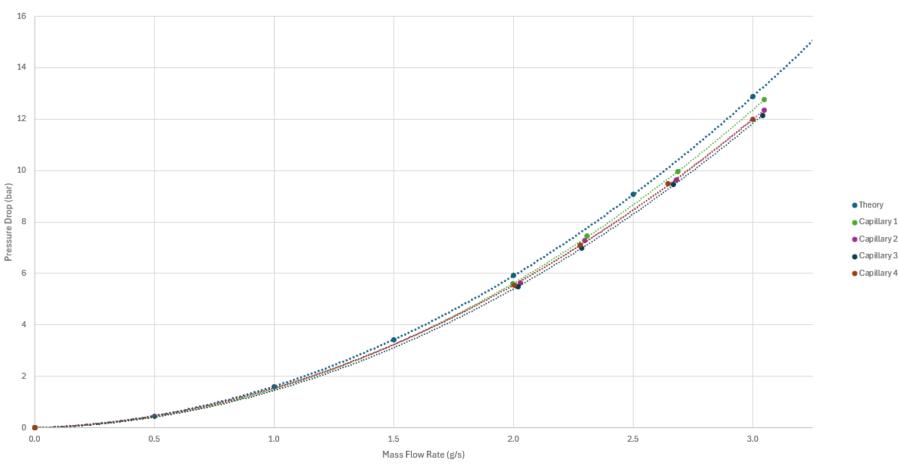
Measurement – Example in Practise

Measurement – SCADA Data Acquisition

Operation and Data Acquisition through SCADA

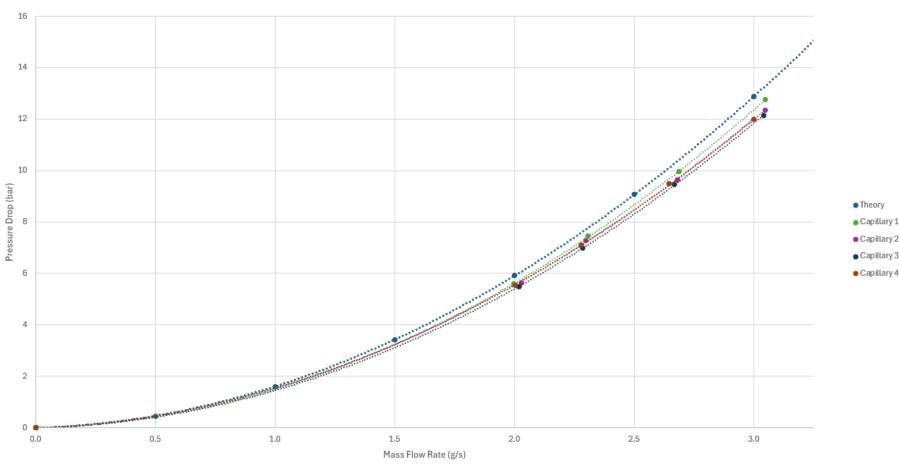
Important: Always ensure stable conditions on inlet and outlet of the capillary.

After which, data is recorded for 5 minutes and averaged.



Measurement – Example in Practise

First measurements compared to theory from earlier:



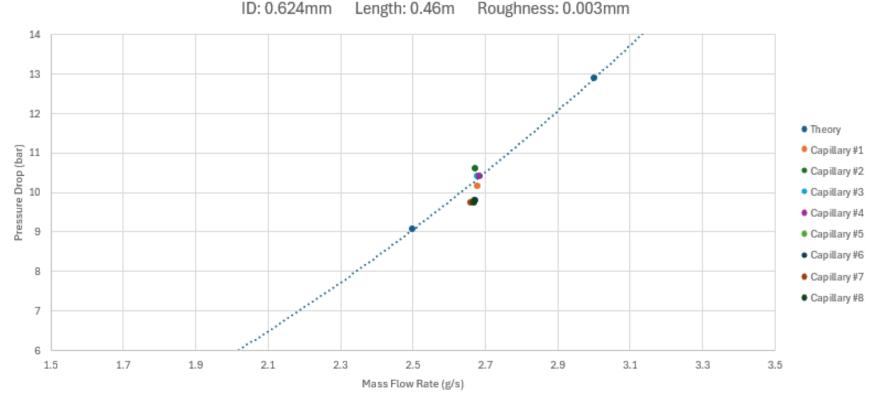
Measurement – Example in Practise

First measurements compared to theory from earlier:

Measurement – Consistency in larger batches

A batch of 8 capillaries, what consistency are we measuring?

ID: 0.624mm Length: 0.46m Roughness: 0.003mm 20 18 16 14 Theory Pressure Drop (bar) 80 01 05 05 Capillary #1 Capillary #2 Capillary #3 Capillary #4 Capillary #5 6 Capillary #6 Capillary #7 4 ****** Capillary #8 2 0 0.5 1.0 1.5 2.0 2.53.0 3.5 4.0 0.0 Mass Flow Rate (g/s)



Measurement – Example in Practise

Performance of the Theoretical prediction when compared to measured data

Result: +-5% Still acceptable for flow distribution inside the detector

29 May 2024

Capillary Tested – Now what?

Capillary is done, and ready for installation in the detector system:

- Vacuum Brazing of end connections
- Installation and routing into the detector

Future:

We are currently waiting for the detector teams to give us the final pressure drops of the evaporators, after this we can size the capillaries accordingly...


The End Thank you for your attention

Thank you to all the contributors of the project:

Derek Jan LANGEDIJK^(a), Joao NOITE^(a), Liam COOPER^(b), Leonid HLUSHENKO^(a), Szymon MLECZKO^(a), Karol GORNY^(a), Martin MACHAC^(a), Szymon GALUSZKA^(a), Aleksandra ONUFRENA^(a), Michal ZIMNY^(a), Loic DAVOINE^(a), Lukasz ZWALINSKI^(a), Jerome DAGUIN^(a), Bart VERLAAT^(a)

> ^(a) CERN, Geneva, 1211, Switzerland, <u>derek.jan.langedijk@cern.ch</u> ^(b) STFC, Polaris House, North Star Avenue, Swindon, SN2 1SZ, United Kingdom

