

29.05.2024

Design and testing of a dynamic support frame structure for the CMS tracker installation process

Mikko Barinoff, Nicolas Siegrist, Hans Postema

on behalf of the CMS Tracker -group

Contents

- Introduction to the eiffel tower concept
- Study of the old structure, motivation and overview of the new design
- Design validation
 - Dummy load test results

Eiffel tower concept

Eiffel tower concept

Study of the old structure

Can we re-use the old eiffel tower?

Structural study of the old Eiffel tower

Structural study of the old Eiffel tower

Structural study of the old Eiffel tower

Buckling

New eiffel tower design

Make or buy?

New eiffel tower design

Your search - Installation tooling for particle trackers - did not match any documents.

Suggestions:

- Make sure that all words are spelled correctly.
- Try different keywords.
- Try more general keywords.
- Try fewer keywords.

Inspiration for the new design

New horizontal eiffel tower

- Duratruss <u>DT 104/6-200 DT</u> High Load Rigging Truss
 - Welded from 60x6 aluminum tube
- Would imply re-designing the vertical Eiffel tower and an adapter between the truss and the tracker nose-cone

New vertical eiffel tower

New vertical eiffel tower

New eiffel tower design

Horizontal tower assembled Cus from the truss elements tow

Custom design vertical eiffel tower welded from steel beams

Testing

Test plan

Test and validate the new big ear load transfer mechanisms

m.test = 8000kg, to produce 120% reactions loads to nominal

Test and validate the new Eiffel tower, and its motion mechanism

Setup at P5

(video)

Step 3: Heaviest loading case on the vertical eiffel tower, testing the height adjustment

Test, scenario #1, challenges

New magnet

New magnet

(video)

Special measurement point when rolling over the truss element joints

Results

Test, scenario #2, challenges

Some surface damage (mainly paint peel-off) was seen on the cradle beam

(video)

Conclusions (design)

- The old structure would've not been fit for the phase-2 loading conditions without notable adaptations
- It was easier to build a completely new one to implement all the "secondary" improvement in parallel as well
- The horizontal tower assembled from offthe-shelf welded truss elements, the vertical tower was custom built at P5

Conclusions (testing)

- Static structural configurations
 - Got all the worst case static load configurations done as planned
 - Structurally, no issues observed
 - Simulated value on the maximum deflection within 7% of the measured value
 - Good result, as limits in the measurement are a bit faint
- Z-direction motion mechanism
 - Got both of the motion configurations done as planned
 - The first magnet was too small, changed the to one which is 2x in capacity (10kN)
 - Highest measured rolling resistance values with that around 5kN
- The cradle deflections to be analyzed, will be used to benchmark the cradle FEM-models

Photos and videos:

- Dry test
- <u>Scenario 1</u>
- <u>Scenario 2</u>
- <u>Scenario 2 (new magnet)</u>

Documentation (in work)

Thanks!

 <u>https://edms.cern.ch/document</u> /2872784

Spares

Dry run

Scenario #1

Scenario #2

Scenario #2 (new magnet)

Structural study of the old Eiffel tower

Horizontal Eiffel tower - stability

An Eigenvalue Buckling analysis predicts the theoretical buckling strength of an ideal elastic structure. This method corresponds to the textbook approach to an elastic buckling analysis: for instance, an eigenvalue buckling analysis of a column matches the classical Euler solution. However, imperfections and nonlinearities prevent most real-world structures from achieving their theoretical elastic buckling strength. Therefore, an Eigenvalue Buckling analysis often yields quick but non-conservative results.

Structural study of the old Eiffel tower

Reaction loads

Appendix F: The moment in the inner end of the truss during the installation travel

The moment on the inner end of the truss decreases along the installation travel.

Extraction of the current- vs. installation of the Phase-2 tracker

- For the extraction of the current tracker, some elements of the tooling are going to be already replaced with new designs
 - Mainly the roller assemblies on the ears, and Eiffel tower push/pull mechanism
- Ideally, most of the installation tooling could be re-used with the phase-2 -tracker with minor modifications due to changed interfaces
- The Phase-2 –tracker will be heavier than the current tracker
 - Current tracker: 5350kg (as measured, minus the mass of cradle)
 - Phase-2 tracker: ~6500kg (A. Filenius & G. Reales 02/03/2021)
- To avoid duplicate work, all the dimensioning and validation of the new designs are done already with phase-2 boundary conditions

(2021, phase-2 tracker estimate)

Design and testing of a dynamic support frame structure for the CMS tracker installation process, FTDM2024, Mikko Barinoff, Nicolas Siegrist & Hans Postema

Beginning of installation

Beginning of installation

Reaction load on the BE-end

Distance from the tracker COG to eiffel tower axis line (mm)

Reaction load on the ET-end

Figure 1 Beginning of installation, distances from tracker COG to rolling axles

- The beginning of installation is:
 - Worst case for the BE-mechanism
 - Heaviest loading for the cradle

Beginning of installation (scenario #2)

End of installation (scenario #1)

Beginning of installation

Reaction load on the ET-end

Distance from the tracker COG to eiffel tower axis line (mm)

N.ET.fully_out.nominal = 15.3kN

Figure 1 Beginning of installation, distances from tracker COG to rolling axles

Reaction moment on the ET-NS-joint

M.ET.fully_out.nominal = 94.0kNm

- The beginning of installation is:
 - Worst case for the horizontal Eiffel tower in stress and in deflection

Test scenario #2, fully extended

Design and testing of a dynamic support frame structure for the CMS tracker installation process, FTDM2024, Mikko Barinoff, Nicolas Siegrist & Hans Postema

End of installation

Reaction load on the BE-end

End of installation

Distance from the tracker COG to eiffel tower axis line (mm)

Figure 2 End of installation, distances from tracker COG to rolling axles

- The end of installation is:
 - Worst case for the vertical Eiffel tower structure, and its height adjustment mechanism

Test scenario #1, fully in

Step 3: extending the actuator, connecting the magnet

Step 3: extending the actuator, connecting the magnet

(video)

"Inverse" boundary conditions:

Nominal phase-2, end of installation scenario

Scenario #2, searching for equal reaction

Test cage, Scenario #2 furthest point in