A thermal interface material for the PS modules of the CMS Outer Tracker upgrade.

M. Guthoff

On behalf of the CMS Tracker group

Forum on Tracking Detector Mechanics 2024 30.05.2024

HELMHOLTZ

CMS outer tracker PS modules cooling

- Module is assembled on a thin CF base plate. Cooling is facilitated through the underside of the base plate.
- Pixel layer (MaPSA) is creating most of the heat and hence is cooled via the large area.
- Strip sensor (PSs) is cooled through AIN spacers and the MaPSA.
- The DC-DC converter (POH) is directly on the baseplate for efficient cooling.
- Readout hybdrids are cooled through small AIN blocks on the "ears" of the base plate.

PS cooling mechanics

Key requirements for a Thermal Interface Material

- Many different thermal interface materials (TIM) on the market: pastes, pads, phase change foils, gap fillers, ...
- Detector is in operation 10+ years and not accessible.
 - Should cure to maintain form over many years
- Should remain re-workable during integration.
 - Gluing the modules it is not an option.
- Reliable contact on an area of about 5 x 13 cm²
- Needs to be radiation hard to about 800 kGy.
- Phase change foils make good contact if a force is applied (not possible), or the baking is done in vacuum.
 - Baking in vacuum with a phase change foil is the baseline solution for the flat barrel planks.
 - Tilted rings and endcap Dees are too large for a vacuum oven.

Thermal Gap Filler as interface material

- Thermal Gap Filler: Typically silicone based two-component material with filler for thermal contact.
 - Self curing -> no heat treatment necessary.
 - Cured material is not a glue, but tacky. A thin layer between plates is fairly robust.
- Tests with glass plates showed that a thin layer can be produced.
 - Visually successful tests with 150 μm, 200 μm and 250 μm.
 - Separation without much force is possible.
- Materials under test here are from Bergquist/Henkel
 - TGF3500LVO: 3.5 $\frac{W}{m \cdot K}$, low silicone volatility (aka LVO)
 - TGF4500CVO: $4.5 \frac{W}{m \cdot K}$, controlled silicone volatility (aka CVO)
 - + TGF3000SF: 3.0 $\frac{W}{m \cdot K}$, silicone free (aka SF)

Thermal test setup at DESY

- Thermal conductivity setup using two brass blocks with 30 x 30 mm² cross section and 6 temperature sensors (NTCs) embedded in each.
- Thermal interface material Keraterm KP12 between blocks and sample.
 - Low viscosity allows to use a very thin layer.
 - Thermal conductivity: $10 \frac{W}{m \cdot K}$
- To ensure the same conditions of the measurement, samples are compressed with compression spring. Resulting clamping force is ~70 N.
- Setup covered with radiation shield to reduce radiative heat exchange and placed in vacuum to remove convective heat exchange.

TIM thermal test samples

- Gap filler is sandwiched between 2 mm thick Aluminium plates.
- Spacer wires (off-the-shelve copper wire) to define different thicknesses (nominally: 0.2 mm, 0.3 mm, 0.4 mm) are removed after curing.
- Coating of the edges with epoxy for stability.
- Samples are pre-conditioned with 70 N force in our material test station.
- Measurement of final sample thickness with calipers.

DESY. | M.Guthoff | A TIM for PS module cooling at the CMS OT | 30.05.2024

Irradiation

- Dose level increases significantly towards small radii.
 - Dose to ring 1 modules decrease from ~800 kGy to ~550 kGy after 4000 fb⁻¹.
 - Chose 600 kGy as first irradiation test. Roughly corresponds to center of ring 1.

- ⁶⁰Co irradiation at Ruder Boskovic Institute.
- Special sample holder designed to allow air flow for cooling and prevention of ozone build up.

Thermal tests - degradation

• Degradation d of a sample is defined as: d

$$= \frac{resistance_{unirradiated} - offset}{resistance_{irradiated} - offset}$$

- An offset of 6 x $10^{-5} \frac{K \cdot m^2}{W}$ is used, based on measurement of thermal grease and Aluminium plates.
- Degradation of LVO is between 0.9 and 1 which is within the errors of the measurement.
- CVO samples show a significant degradation (~ 0.6)
- SF samples of 0.2 mm thickness show a very strong degradation (~0.5), while 0.3 mm and 0.4 mm not as much (0.7-0.9).
- TGF3500LVO shows least amount of degradation and most consistent measurement result.

LVO thermal conductivity

- Absolute thermal conductivity measurement result can be very sensitive to small errors in the thermal resistance. Not all samples gave consistent sets to calculate thermal conductivity.
- Unirradiated measurements of LVO are consistent with the specified 3.5 $\frac{W}{m \cdot K}$.
- After irradiation about $3 \frac{W}{m \cdot K}$ is measured.

New geration of samples

- Future tests focus on TGF3500LVO.
- Samples have been improved for better quantitative measurements.
 - 5 mm Al plates offer better flatness
 - Thickness of individual plates have been measured before sample production.
 - Improves estimation of TIM thickness in finished sample.
- More samples of different nominal thickness: 0.2, 0.3, 0.4, 0.7 mm
- Thermal resistance of all samples are very consistent.
- Thermal conductivity: $4.54 \pm 0.09 \frac{W}{M \cdot K}$
- Samples will be irradiatiated to 900 kGy.

Mechanical tests

- Silicone is expected to harden under irradiation.
 - The main concern is the detachment from the surface due to the material becoming more brittle.
- TIMs are not adhesives. Adhesive properties are weak resulting in very low forces to be measured properly.
 - All samples use 50 x 50 mm² contact area to maximize forces with 0.2 mm TIM thickness.
- All test samples use He/O plasma cleaned carbon fibre plates to have a surface quality to the intended application.
- **Shear test** similar to ISO 4587 lap shear test with modified sample geometry.
 - Pull force parallel to the plane of the TIM material.
- Fracture test similar to ISO 25217 mode-1 fracture test.
 - Pull force orthogonally to the plane of the TIM material.

Mechanical test results

- Silicone based materials (LVO and CVO) harden significantly.
 - Significantly increased adhesive strength, mostly seen in shear test. (about x10 breaking force)
 - Fracture test after irradiation shows adhesion failure instead of cohesion failure.
 - No surface detachment
 - CVO and LVO could be used from the mechanical aspects.
- Silicone free material decreases in strength
 - Much lower breaking force in fracture tests, still showing cohesion failure.
 - Given potential CTE stress, SF is potentially unreliable after irradiation.

Application tests

- Procedure (for endcaps Dees):
 - A stencil as large as the module real estate is positioned.
 - Gap Filler is applied on one side and a straight edge is used as squeegee to distribute the material evenly.
 - Place module and perform an in-plane circular motion many times to create a surface contact. Only very lille movement is necessary (~1 mm radius)
 - No way to verify good contact with a module during integration, only by learning how to apply reliably.
 - Tests with glass plate succesfull and reproducible.
- Similar tests are ongoing in Pisa for the TBPS rings.
 - Placing a mask is more difficult, as the module support plate is just as large as the module.

Thermal tests

- Currently ongoing thermal tests with realistic objects to optimize thermal contact.
 - A single PS module structure was built reflecting the geometry inside a Dee, including embedded temperature sensors.
 - A thermal dummy module was built as a heat load.
- Comparison of different thermal interfaces is ongoing.
- Tests with PS modules equipped with temperature sensors will follow.

Summary & Outlook

- Thermal gap filler (TGF) materials have been studied for its thermal and mechanical performance before and after irradiation to 600 kGy.
 - Silicone based TGF harden as expected however the thermal coupling to the surface is maintained. The thermal conductivity of LVO is maintained better compared to the CVO variant.
 - Silicone free TGF does not harden and rather gets weaker with irradiation.
 - Thermal conductivity results are inconclusive, since different sample thicknesses showed different levels of degradation.
- Additional irradiations are planned, focusing on TGF3500LVO with improved sample design and to a higher dose level.
- Process of establishing a procedure to apply the material is underway. Tests of thermal performance comparing different thermal interfaces is ongoing.
 - Tests with an actual module would damage the module for other purposes when removing it.
 - Will be done as soon as we do not need prototype modules for other integration tests anymore.
 - A prototype module equipped with temperature sensors was prepared but not used for this test yet.

Backup

| M.Guthoff | A TIM for PS module cooling at the CMS OT | 30.05.2024

Thermal test setup – data processing

- Heat flux through the sample q is obtained from the temperature gradient: $q = \frac{dT}{dl} \cdot k_{block} \cdot A_{block}$
- Temperature at the interfaces to the sample are obtained from a fit of the temperature measurements by extrapolation: $\Delta T = T_{top} - T_{bottom}$ is measured.
- Thermal resistance is calculated: $R = \frac{\Delta T}{q}$
- To remove the thermal resistance (R) of the contact, samples with different thicknesses (t) are measured.
 - The thermal conductivity is extracted from a linear fit: $\mathbf{k} = \frac{\Delta t}{\Delta R}$
- Reference measurements using brass blocks and sapphire glass are consistent with the nominal value within 0.5% in a combined fit.

