Thermal Metrology for Understanding Tracking Detector Materials

Zixin Xiong Mechanical Engineering xiong49@purdue.edu engineering.purdue.edu/MTEC

12th Forum on Tracking Detector Mechanics

MTEC Lab

PI: Amy Marconnet Birck Nanotechnology Center West Lafayette, IN 47907-2057 marconnet@purdue.edu

Metrology Development & Property Analysis

Heat Sink

Absorber

Laser Beam

Laser Head

PHONON

PHONON

Fundamental Transport Phenomena Analysis Phonon-Phonon-Phonon-Phonon-Imperfection Impurity Electron Phonon Scattering Scattering Scattering Scattering IMPERFECTION PHONON PHONON ELECTRON IMPURITY

ATOM

PHONON

Fourier's Law:
$$\overrightarrow{q''} = -k \nabla T$$

Heat Diffusion Eqn:
$$\frac{1}{\alpha} \frac{\partial T}{\partial t} = \nabla^2 T$$

1. How to measure **temperature**?

	Indirect [Heat Diffuses into Sensor]	Direct [Heat Diffusion Not Required]
Contact (generally electrical)	Thermocouples, electrical resistance thermometers, scanning probe techniques	Temperature sensitive device behavior (<i>e.g.</i> temperature dependent resistance of a nanowire)
Non Contact (generally optical)	Interactions with thin coatings (Fluorescence, Liquid Crystals, Thermoreflectance, etc.)	Temperature sensitive device or material behavior (IR emission, Raman spectroscopy, Thermoreflectance)

2. How to measure **heat flux**?

Joule heating, use reference materials, quantify optical absorption, ...

Reference Bar Method

ASTM D5470 Reference Bar Method

filled thermal interface materials using carbon nanotube inclusions," in *The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITHERM '04)*, 2004, pp. 63-69 Vol.1.

Reference Bar Method

ASTM D5470 Reference Bar Method

Disadvantages:

- Lack information on contact resistance between sample and the reference bars.
- Place thermocouple directly on sample may damage sample and create unintended heat loss through thermocouple wire.

Temperature mapping using high resolution Infrared microscopy

IR Microscope Reference Bar Method

QFI IR Microscope Stage

from 10s µm to several millimeters.

Sample Mounting Rig

Temperature Mapping and Data Analysis

IR- Microscopy Enhanced Ångström Method

9

Hahn, Reid, and Marconnet, "Infrared microscopy enhanced Angstrom's method for thermal diffusivity of polymer monofilaments and films", *Journal of Heat Transfer*, 2019.

Anisotropic Property Characterization

Isotropic, low k

Anisotropic, high k

10

2D Laser Ångström Method

Experimental Setup

- Measure in-plane isotropic and anisotropic k of self-supporting and free-standing sheets
- Temperature Range: 5-200°C

Model and Data Processing

Demonstration with PEKK Composite

400

Wide Range of Applicability

- Can tune frequency or change diameter of suspended region to improve sensitivity across different parameters
- Relatively insensitive to convection losses and to the boundary conditions
- For opaque samples, minimum sample preparation required
- For transparent samples, an infrared opaque coating is required

Check out our newest paper:

Gaitonde et al., "A laser-based Ångström method for in-plane thermal characterization of isotropic and anisotropic materials using infrared imaging", Review of Scientific Instruments, 2023. DOI: 10.1063/5.0149659

- To accurately estimate the heat extraction and thermal risks within the tracking detector, a robust understanding of thermal transport is needed
- New metrology techniques can fully characterize the thermal properties in all directions with high precision
- New thermal challenges in the design of the next generation tracking detector drive the development of new thermally-engineered materials and new metrology techniques to understand performance

Contact Info:

For potential collaboration:

Amy Marconnet

Mechanical Engineering marconnet@purdue.edu engineering.purdue.edu/MTEC

For details on 2D Ångström method:

Aalok Gaitonde

Mechanical Engineering agaitond@purdue.edu

Heating Frequency Limits

Heat transfer must be predominantly in the in-plane direction

- → Assumption valid when the temperature gradients are negligible across the thickness of the sample
- \rightarrow Heating frequency should be much lower than the thermal penetration depth

$$t \ll \left(\frac{k_z}{\rho C_p \pi f}\right)^{1/2}$$
 or $f \ll \frac{k_z}{\rho C_p \pi t^2}$

• The frequency should be high enough to minimize the effect of the boundaries

 \rightarrow This limits the in-plane conductivity relative to experimental setup dimension (R)

$$f \geq \frac{2.98 \, k_{x,y}}{\pi \rho C_p R^2}$$

