Thermal Metrology for Understanding

Tracking Detector Materials

2D Laser Angstrom Method

IR Microscopy Enhanced
Reference Bar Method
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Designing Thermal Measurements

Fourier'sLaw: q" = — k VT Heat Diffusion Eqn: lg—T:VZT
a ot

1. How to measure temperature?

[Heat Diffuses into Sensor] [Heat Diffusion Not Required]
Thermocouples, electrical Temperature sensitive device
(generally electrical) resistance thermometers, behavior (e.g. temperature

scanning probe techniques dependent resistance of a nanowire)

Interactions with thin coatings Temperature sensitive device
(generally optical) J(Fluorescence, Liquid Crystals, or material behavior
Thermoreflectance, etc.) (IR emission, Raman spectroscopy,
Thermoreflectance)

2. How to measure heat flux?
Joule heating, use reference materials, quantify optical absorption, ...
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ASTM D5470 Reference Bar Method
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Reference Bar Method

ASTM D5470 Reference Bar Method
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Disadvantages:
» Lack information on contact resistance between sample and the reference bars.

Place thermocouple directly on sample may damage sample and create
unintended heat loss through thermocouple wire.

‘ Temperature mapping using high resolution Infrared microscopy



MWIR-1024 IR camera

Computer-controlled microscope XYZ

Highest resolution at 0.6 um per pixel.
Can measure samples with thickness
from 10s pm to several millimeters.
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The interface is clearly visible in the
temperature map and can be
eliminated from thermal conductivity
calculation of the sample.



IR- Microscopy Enhanced Angstréom Method
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Hahn, Reid, and Marconnet, “Infrared microscopy enhanced Angstrom's method for thermal
diffusivity of polymer monofilaments and films”, Journal of Heat Transfer, 2019.



Anisotropic Property Characterization
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Sample
Sample Clamp
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« Measure in-plane isotropic and anisotropic k of self-supporting
and free-standing sheets
 Temperature Range: 5-200°C
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1. Solve a set of linear equations, only

2. Minimize objective function
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ﬁ:alculate the in-phase and out-of-phase components of temperature
using Fourier Transform. These correspond to the real (P) and imaginary
(Q) parts of the complex amplitude

2.Numerically evaluate derivatives (
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Solvay PEKK Prepreg
with Carbon Fiber

Ty: 160 °C
Thickness: 200 pm
Density: 1300 kg/m?3
Tensile Strength: 15 MPa
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Key advantages of our method:

» Orthotropic thermal conductivity resolved in a single
measurement without significant sample preparation

 Measurements can be conducted in air (insensitive to convection)

* No knowledge of boundary conditions or heater power required

* Relatively insensitive to calibration of emissivity

Solvay PEKK-CF sample received from Dr. Eduardo Barocio
at The Composites Manufacturing and Simulation Center, Purdue University
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Can tune frequency or change
diameter of suspended region to
Improve sensitivity across different
parameters

Relatively insensitive to convection
losses and to the boundary conditions
For opaque samples, minimum sample
preparation required

For transparent samples, an infrared
opague coating is required
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Check out our newest paper:

Gaitonde et al., “A laser-based Angstrom method for in-plane thermal characterization of isotropic
and anisotropic materials using infrared imaging”, Review of Scientific Instruments, 2023.

DOI: 10.1063/5.0149659



https://doi.org/10.1063/5.0149659

Dol Summary

» To accurately estimate the heat extraction and thermal risks within the tracking
detector, a robust understanding of thermal transport is needed

 New metrology techniques can fully characterize the thermal properties in all
directions with high precision

* New thermal challenges in the design of the next generation tracking detector drive the
development of new thermally-engineered materials and new metrology techniques to
understand performance

Contact Info:

For potential collaboration: For details on 2D Angstrom method:

| Amy Marconnet

Mechanical Engineering
marconnet@purdue.edu
engineering.purdue.edu/MTEC

Aalok Gaitonde

Mechanical Engineering
agaitond@purdue.edu




Heating Frequency Limits
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Flux

* Heat transfer must be predominantly in the in-plane direction
- Assumption valid when the temperature gradients are negligible across the thickness of the sample
- Heating frequency should be much lower than the thermal penetration depth
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* The frequency should be high enough to minimize the effect of the boundaries

- This limits the in-plane conductivity relative to experimental setup dimension (R)
f 2.98 ky
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