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Marina Artuso

https://indico.slac.stanford.edu/event/8288/contributions/7707/attachments/3591/9883/FutureColliderDetectorsRev1.pdf
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Marina Artuso

Snowmass 2021 IF Report

https://indico.slac.stanford.edu/event/8288/contributions/7707/attachments/3591/9883/FutureColliderDetectorsRev1.pdf
https://arxiv.org/pdf/2209.14111.pdf


MATERIAL BUDGET

▪ Improving precision = reducing 

material budget, esp. inactive 

material

– Non-negligible amount of this 

comes from support structures

• Important to optimize the 

mechanics and cooling
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ATLAS ITk TDR

https://cds.cern.ch/record/2257755/files/ATLAS-TDR-025.pdf


CURRENT WORK: ITK PIXEL MECHANICS



Integrating

Quarter Shell StructurePP0s

Rings

Staves

Barrel

Endcap

ATLAS ITK PIXEL
INNER SYSTEM
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ATLAS ITK PIXEL INNER SYSTEM (IS) COOLING
200+ meters of titanium cooling tubes – built at ANL

7



TWO-PHASE CO2 COOLING
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CERN Courier

https://cerncourier.com/a/co2-cooling-is-getting-hot-in-high-energy-physics/


DETECTOR COOLING
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Thermal conductivity of support structures important

arXiv:2203.14347v1

https://arxiv.org/pdf/2203.14347.pdf


ATLAS ITK PIXEL IS COOLING & LOCAL SUPPORTS
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LIMITATIONS

▪ Complex geometries

▪ Time consuming bending, weld 

qualification, welding, annealing, etc

▪ Long lead times: custom tubes, carbon 

foam from defense contractors, laser 

welding vendors

▪ How do we make this more scalable, more 

granular, and even smaller?

Due to small spaces
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Bending Bending Annealing

Many flavors of cooling tubes

Laser welding ~1 mm welds



DETECTOR R&D AT ANL: EARLY IDEAS



NANOMATERIAL RESEARCH AT ANL

Carbon Nanotubes (CNTs) 
for solid state devices
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Engineering Cathode Composites for 

Solid-state Li Metal Secondary Batteries

Mill

“Dry” Cast

Press 

Cathode

Mix Precursors

or

Desirable cathode composites must have:

➢ High electronic and ionic conductivity

➢ High capacity (e.g. >160 mAh/g)

Multi-walled carbon nanotubes have desirable properties to increase 

the electrical conductivity of solid-state cathode composites

Carbon 

nanotubes

Solid-state 

electrolyte

Synthesis:
CNTs: rolled-up graphene sheets 

• Single layer of carbon atoms

• Diameter ~nm, length ~μm

Zach Hood
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High conductivity



APPLICATIONS TO HEP DETECTORS
▪ Synthesis of new composites

▪ Epoxy matrix composites - high thermal conductivity

▪ Carbon nanotubes, etc

– High thermal conductivity

– Non-absorbent

– Film can be sprayed onto composites

– Possible use for embedded cooling channels

– Bond directly to active detector material for 

cooling?

▪ To investigate: radiation hardness, strength,

material budget, scaleability, chip and services 

integration
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doi:0.1016/S0008-6223(01)00112-9

Epoxy composites

doi:10.1016/j.progpolymsci.2010.11.004

doi: 10.1039/D2EE00279E

LBNL CNT Cooling

https://doi.org/10.1016/S0008-6223(01)00112-9
https://doi.org/10.1016/j.progpolymsci.2010.11.004
https://pubs.rsc.org/en/content/articlehtml/2022/ee/d2ee00279e
https://newscenter.lbl.gov/2014/01/22/cooling-microprocessors-with-carbon-nanotubes/


RADIATION HARDNESS

▪ Carbon nanomaterials ✅

▪ Epoxies ✅

▪ Composites to be checked 
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ATLAS-TDR-030

Embedded Computing

MaxRAD CERN Database

https://cds.cern.ch/record/2285585/files/ATLAS-TDR-030.pdf
https://embeddedcomputing.com/technology/security/hardware-security/the-rise-of-carbon-nanotube-electronics
https://maxrad.web.cern.ch/


EPOXY-CARBON NANOTUBES COMPOSITE FILMS

Epoxy Composites Fabrication Raman Analysis

➢ Epoxy-carbon nanotube composites can be formed with high throughput without degradation 

of the carbon structure; future studies will evaluate the thermal properties of these composites

D-band

G-band

G-band



NEXT STEPS: MECHANICAL STRENGTH
Can we support the active detector material and maintain stability?
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NEXT STEPS: SCALEABILITY

▪ Slot die coating

– Equipment with variations 

< 5% across many meters, and 

< 50 μm over 100 mm (0.05%)

– Can be used for roll-to-roll

scale-up

– Deposit epoxy composite onto 

non-adhering substrate

Scale up for a full detector using ANL’s MERF
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Roll-to-roll thin film detector:

Kim CPAD

https://indico.slac.stanford.edu/event/8288/contributions/7503/attachments/3720/10098/%5BSLAC-CPAD%5D%20Thin%20film%20particle%20detectors%20-%20Sungjoon%20Kim.pdf


COOLING CHANNELS

▪ [Micro]fluidic channels

▪ Use well-established soft lithography

How do we add in cooling? 
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arxiv:2112.12763

Soft Lithography

LHCb Velo microfluidic channels

Soft lithography

https://arxiv.org/pdf/2112.12763.pdf
https://www.sciencedirect.com/topics/materials-science/soft-lithography


LONGER TERM: INTEGRATE READOUT

Example option: graphene oxide thin-film electrodes for high-
performance transparent and flexible all-solid-state supercapacitors
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arxiv:2112.12763

https://arxiv.org/pdf/2112.12763.pdf


OUTLOOK
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CNT composite + embedded cooling channels

Short term goal: reduce material budget of supports

• CNT/epoxy composites with embedded cooling

• Determine properties and applications

Long term goal: 

• Incorporate readout electronics (carbon-based?)

• Fully printable, in-house scalable roll-to-roll detectors

arXiv:2203.14347v1

arXiv:2209.08149

How can we leverage materials science research to make scalable,
multifunctional support structures? 

Thin-film roll-to-roll detectors Thin-film electrodes

Supports + cooling

https://arxiv.org/pdf/2203.14347.pdf
https://arxiv.org/pdf/2209.08149.pdf


ADDITIONAL MATERIAL



AT ARGONNE: 3D METAL PRINTING



3D PRINTING
▪ Advantages:

– Eliminate welding and machining

– Enables more complex geometries –

needed for tighter spaces

▪ Considerations: cost, microstructure 

changes

▪ At Argonne:

– 70-micron resolution

– For microreactors – two different 

materials on each side

– Print steels and some nickels;

looking into titanium

▪ More information: ANL Metal Additive 

Manufacturing
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https://www.anl.gov/nse/metal-additive-manufacturing-laboratory


3D PRINTING 
APPLICATION TO ITK

▪ Decrease difficulty of distribution 

piping – can print internal 

structure
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STRUCTURAL ANALYSIS
▪ IVEM – Intermediate Voltage 

Electron Microscope

– Automated analysis of 

irradiation-induced voids

– Individual voids measured 

frame-by-frame to 

understand microstructural 

evolution during irradiation

▪ Example: comparing printed vs 

machined “dog bones” after 

heat treatment 

and creep tests
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IVEM

doi:10.1016/j.jnucmat.2021.153469

https://www.anl.gov/ivem/ivem-tem-capabilities
https://www.sciencedirect.com/science/article/pii/S0022311521006899#fig0001
https://www.sciencedirect.com/science/article/pii/S0022311521006899
https://www.sciencedirect.com/science/article/pii/S0022311521006899#fig0001


AT ARGONNE: STRUCTURE OPTIMIZATION



TOPOLOGY OPTIMIZATION
...in one slide
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𝑠∗ = arg min
𝑠∈𝒮

𝑓(ℳ(𝑥; 𝑠))

Material model

Objective function

Optimal topology

Typical application
Find the optimal topology of the material to 

maximize property X subject to constraint Y.

Gary Hu



APPLICATION 1
Solar receiver
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Objective
Find the optimal topology of the material to maximize the outlet temperature subject to 

appropriate pressure drop constraints.

Gary Hu



APPLICATION 2
Lattice material
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Objective
Find the optimal lattice structure to minimize the coefficient of thermal expansion subject to 

appropriate stress constraints.

Idea
Material A has good thermal stability, while material B has high mechanical strength. 

So why don’t we mix A with B?

Gary Hu



OTHER CONSIDERATIONS
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Challenge
Traditional manufacturing techniques have trouble with most of the optimal topologies.

Our solution
1. Additionally impose printability constraint.

2. Use additive manufacturing.

Other applications
Find the optimal topology/shape of the material to maximize electrical/thermal conductivity 

subject to stress constraints.

Gary Hu



R&D + DESIGN

▪ Add on:

– Composites R&D

– Other ANL additive manufacturing and materials science

– Interfaces between mechanics/cooling + sensors and electronics
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arXiv:2203.14347v1

https://arxiv.org/pdf/2203.14347.pdf


OTHER BACKUP



TWO-PHASE CO2 COOLING
Low-mass evaporative cooling option
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OR SO
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Barrel quarter – 8 unique flavors

Endcap



HOW IT’S BUILT

▪ 14 bends, then annealing to hold shape 

Barrel
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HOW ITS BUILT

▪ Constrained spaces require laser welding

Barrel
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Elbow #2

Elbow #1

Vendor laser 

welds

elbows to 

capillary

Elbow #3

Elbow #2

In-house orbital welding 

of elbows to evaporator



HOW ITS BUILT 
Endcap
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Laser Spot Weld

Tube bending
Laser Spot Weld

Elbow #1

Elbow #2

Laser Spot Weld

Laser Spot Weld



LOCAL SUPPORTS PRODUCTION MODEL
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Cooling Tube 

Assemblies

Bare Local 

Supports

Loaded local 

Supports

Fabrication

ANL

Fabrication

LBNL

Testing

UMass

Loading

SLAC



INTEGRATION AT SLAC

▪ Barrel staves orbital welded at SLAC

▪ Developed custom welding fixture
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TRACKING DETECTOR R&D

▪ Community goal: < 0.1% X0 per detector layer

– Large portion of community focused on the active sensors

– My focus – cooling pipes and support structures

“Invisible” detectors for Higgs
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Advanced Electrochemical Materials (AEM)

RESEARCH OVERVIEW

Advanced Solid-State Electrolytes and 

Membranes for Next-Generation Batteries
• Synthesis and processing of sulfide-, oxide-, 

and polymer-based solid-state electrolytes and 

their composites 

• This thrust is expected to enable future solid-

state battery architectures with more room for 

cathode volumes and reduce processing 

temperatures and costs
References: 
1. Z.D. Hood, H. Wang, A. Samuthira Pandian, J.K. Keum, and C. Liang. Journal of the American Chemical Society, 138(6), 1768-1771.

2. M. Balaish, J.C. Gonzalez-Rosillo, K.J. Kim, Y. Zhu, Z.D. Hood, J.L.M. Rupp. Nature Energy, 6(3), 227-239.

3. Z.D. Hood, X. Chen, R. Sacci, G. Veith, X. Liu, Y. Mo, J. Niu, N.J. Dudney, M. Chi. Nano Letters, 21, 151-157.

4. E.C. Self, Z.D. Hood, T. Brahmbhatt, F.M. Delnick, H.M. Meyer, G. Yang, J.L.M. Rupp, J. Nanda. Chem. Mat., 32, 8789-8797. 

New Two-Dimensional Materials and 

Heterostructures for Electrocatalysis
• Synthesis and processing of two-

dimensional transition metal carbides 

and nitrides (known as MXenes)

• This thrust is expected to enable more 

efficient electrocatalysts that have 

higher faradaic efficiency and 

selectivity towards specific reactions
References: 
1. S.K. Nemani, B. Zhang, B.C. Wyatt, Z.D. Hood, S. Manna, R. Khaledialidusti, S.K. Sankaranarayanan, and B. Anasori. ACS Nano, 15(8), 12815-

12825.

2. S.P. Adhikari, Z.D. Hood, K.L. More, V.W. Chen, and A. Lachgar. ChemSusChem, 14, 1869-1879.

3. T. Su, Z.D. Hood, M. Naguib, L. Bai, S. Luo, C.M. Rouleau, I.N. Ivanov, H. Ji, Z. Qin, Z. Wu. ACS Applied Energy Materials, 2, 4640-4651.

Emergent Electrochemical Materials, 

Processes, and Devices
• Fabrication of next-generation 

electrochemical devices (e.g., memristors, 

thin film batteries, sensors, etc.) and 

tailored heterostructures at the nanoscale

• This thrust is expected to enable 

architectures with energy storage, 

sensing, and memory on the same chip
References: 
1. Y. Zhu, J.C. Gonzalez-Rosillo, M. Balaish, Z.D. Hood, K.J. Kim, J.L.M. Rupp. Nat. Rev. Mat., 6(4), 313-331.

2. W. Gao, Z.D. Hood, and M. Chi. Accounts of Chemical Research 50(4), 787-795.

Decarbonized Electrochemical 

Processes for Industrial Manufacturing
• Decarbonized ammonia production by 

electrochemically converting N2 and protons to 

NH3 via Lithium metal at room temperature and 

under ambient pressures

• This thrust is expected to enable low-cost and 

environmentally-friendly methods to replace state-

of-the-art industrial processes
References: 
1. Z.D. Hood, S.P. Adhikari, J. Hryn. 2022 Invention Disclosure (ANL).

2. M. Zhao, Z.D. Hood, M. Vara, K.D. Gilroy, M. Chi, and Y. Xia. ACS Nano, 13, 7241-7251.

Zach Hood



CAPABILITIES: MANUFACTURING AND TESTING
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241 A229: Dry/wet processing and analysis of 

composite materials

362 C288: Sulfides, oxides, polymers, and 

composite synthesis

362 B200: Solution-based processing of 

composites

362 B324: Materials testing

▪ Dry processing of sulfides, 

oxides, polymers, and 

composites in an Ar-filled 

glovebox

▪ Membrane prototyping (1 –

4 cm2)

▪ Custom solid-state cells for 

testing materials under 

pressure

▪ Composite 

fabrication

▪ Solution-based 

casting of solid-state 

materials

▪ Solid-state battery 

prototyping and testing

▪ Solution phase processing 

and scale up

▪ In-line TCD + GC/MS for 

the identification of off-gas 

products

▪ Integrated electrochemical 

capabilities inside an Ar-

filled glovebox

▪ Potentiostat/galvanostat for 

testing material properties 

from -60 °C - 190 °C

▪ Mechanical testing of 

composite and polymer 

materials (Instron)

▪ Glovebox for prototyping 

solid-state batteries

Cu(111)

Cu(200)

(200)

(220)

(311)

(222)

(422)

(400)

(333, 511)

(440)

NMC(003)

SS

NMC

NMC

Li (111)

Example X-ray diffraction data set: 

Zach Hood


