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Marina Artuso

Tracking detectors — solid state

(U High granularity is needed to achieve high spatial resolution & high radiation resistance. Lepton
colliders require high granularity and small pixel size in the innermost region, and a broader area
covered with pixel devices.
® Pixel size ~10 um
® |arge distributed system:

® Low noise, low power electronics

® Low mass integration (mechanics and cooling)

® Large volume of data transmission (interconnection, data processing —intelligent tracker)
L Hadron colliders: all of the above + O(1ps timing) and radiation resistance up to fluences of the

order of 1018?1,eq/cm2
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https://indico.slac.stanford.edu/event/8288/contributions/7707/attachments/3591/9883/FutureColliderDetectorsRev1.pdf

Marina Artuso

Tracking Iletectors — solill SIate Snowmass 2021 IF Report

(U High granularity is needed to achieve high spatial resolution & high radiation resistance. Lepton
colliders require high granularity and small pixel size in the innermost region, and a broader area

IF03-1 Develop high spatial resolution pixel detectors with precise per-pixel time resolution to resolve
individual interactions in high-collision-density environments

IF03-2 Adapt new materials and fabrication/integration techniques for particle tracking in harsh environ-
ments, including sensors, support structures and cooling

IF03-3 Realize scalable, irreducible-mass trackers in extreme conditions

IF03-4 Push advanced modeling for simulation tools, developing required extensions for new devices, to
drive device design.

L Hadron colliders: all of the above + O(1ps timing) and radiation resistance up to fluences of the
order of 1018?1,eq/c?‘nt2
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https://indico.slac.stanford.edu/event/8288/contributions/7707/attachments/3591/9883/FutureColliderDetectorsRev1.pdf
https://arxiv.org/pdf/2209.14111.pdf

ATLAS ITK TDR

MATERIAL BUDGET

IF03-3 Realize scalable, irreducible-mass trackers in extreme conditions

* Improving precision = reducing o BT T T
material budget, esp. inactive 2 [ raa ATLAS ]
m ateri a| = 5[ ——— Electrical Cabling imulation ]

.. . @ === Titanium Cooling Pipes ITk Inclined ]

— Non-negllglble amount of this S 4L ~ support Structure =
comes from support structures % [T el Chies ]

* Important to optimize the T 3 % BeamPipe -
mechanics and cooling - .
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https://cds.cern.ch/record/2257755/files/ATLAS-TDR-025.pdf

CURRENT WORK: ITK PIXEL MECHANICS
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ATLAS ITK PIXEL
INNER SYSTEM

Endcap

Barrel

7 \ Integrating
PPOs = \ RS = Quarter Shell Structure

Staves
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ATLAS ITK PIXEL INNER SYSTEM (1S) COOLING

200+ meters of titanium cooling tubes — built at ANL
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CERN Courier

TWO-PHASE CO, COOLING

2-phase

shielding
accumulator

wall

evaporator inside

detector (4-5)
< heat in —
<

long distance
(50~100m)

transfer line illari
capillaries (3-4)
(heat exchanger) for flow distribution

U.s. DEPARTMENT OF _ Argonne National Laboratory is a
ENERGY U.S. Department of Energy laboratory
managed by UChicago Argonne, LLC.

Argonne &


https://cerncourier.com/a/co2-cooling-is-getting-hot-in-high-energy-physics/

arXiv:2203.14347v1

DETECTOR COOLING

Thermal conductivity of support structures important

&-Ieat generated by
different components 20

Silicon Module (Chip + pixel sensor)

—— 100+50 pm TIM layer

18 200 pm carbon fiber layer

100+50 pm epoxy between
carbon fiber and foam

16 Carbon foam layer

100£50 pm epoxy

around cooling pipe

Epoxy Interface, 100um thick, kyom=1.1 W/mK

14 Nominal thermal
conductivities of

different layers

AT between chip and coolant [K]

12 -
10 -
8_ 1 1 \IIIIII 1 1 \IIIIII 1 1 \IIIIII 1
; ; Epoxy Interface, 100pum 107 1 10 10°
Coolmg pipe thick kN =1.1W /mK Through-plane thermal conductivity of layer [W/mK]
'’ om .
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https://arxiv.org/pdf/2203.14347.pdf

ATLAS ITK PIXEL IS COOLING & LOCAL SUPPORTS
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LIMITATIONS

Due to small spaces

TN

Bending Annealing

» Complex geometries

» Time consuming bending, weld
gualification, welding, annealing, etc

» L ong lead times: custom tubes, carbon
foam from defense contractors, laser N\ I
welding vendors

Bending

= How do we make this more scalable, more /
granU|ar, and even Sma”er? Many flavors of cooling tubes

Laser welding ~1 mm welds
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DETECTOR R&D AT ANL: EARLY IDEAS
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NANOMATERIAL RESEARCH AT ANL

Zach Hood

SEM Image

fOf SO“d state devices Solid-state Li Metal Secondary Batteries
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Multi-walled carbon nanotubes have desirable properties to increase
the electrical conductivity of solid-state cathode composites

) Synthesis:
CNTs: rolled-up graphene sheets
« Single layer of carbon atoms i j
« Diameter ~nm, length ~ym
J Press
f
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Carbon  Solid-state
nanotubes electrolyte =




NANOMATERIAL RESEARCH AT ANL

Zach Hood
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Multi-walled carbon nanotubes have desirable properties to increase
the electrical conductivity of solid-state cathode composites

) Synthesis:
CNTs: rolled-up graphene sheets
« Single layer of carbon atoms i j
« Diameter ~nm, length ~ym
J Press
f
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doi:0.1016/S0008-6223(01)00112-9
doi:10.1016/j.progpolymsci.2010.11.004
doi: 10.1039/D2EE00279E

APPLICATIONS TO HEP DETECTORS

= Synthesis of new composites o >

| | | . =™ Epoxy composites -~
= Epoxy matrix composites - high thermal conductivity £ 0 el
= Carbon nanotubes, etc 2 oo =
— High thermal conductivity £ oo A
2 goo - . 1260 Wim-K
— Non-absorbent E 400 | e
— Film can be sprayed onto composites Foam) &
. . 0 F— T T T T T T
— Possible use for embedded cooling channels 0 10 20 3 40 50 6 70 80 %W 100
— Bond directly to active detector material for rioer Yolume Fracton ()
- L i
cooling? T ]
» To investigate: radiation hardness, strength,
material budget, scaleability, chip and services R
integration

thick, kyom=1.1 W/mK Argorgnq 9


https://doi.org/10.1016/S0008-6223(01)00112-9
https://doi.org/10.1016/j.progpolymsci.2010.11.004
https://pubs.rsc.org/en/content/articlehtml/2022/ee/d2ee00279e
https://newscenter.lbl.gov/2014/01/22/cooling-microprocessors-with-carbon-nanotubes/

ATLAS-TDR-030
Embedded Computing

RADIATION HARDNESS MaxRAD CERN Database

= Carbon nanomaterials
= Epoxies
= Composites to be checked

E& ATLAS Simulation
FLUKA + PYTHIAS
Kl [Tk Inclined Duals
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https://cds.cern.ch/record/2285585/files/ATLAS-TDR-030.pdf
https://embeddedcomputing.com/technology/security/hardware-security/the-rise-of-carbon-nanotube-electronics
https://maxrad.web.cern.ch/

EPOXY-CARBON NANOTUBES COMPOSITE FILMS

Epoxy Composites Fabrication Raman Analysis
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» Epoxy-carbon nanotube composites can be formed with high throughput without degradation
of the carbon structure; future studies will evaluate the thermal properties of these composites
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NEXT STEPS: MECHANICAL STRENGTH

Can we support the active detector material and maintain stability?

CNTs in Epoxy
2/16/24
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MATERIALS ENGINEERING
A 370 RESEARCH FACILITY

NEXT STEPS: SCALEABILITY

Scale up for a full detector using ANL’s MERF
= Slot die coating
— Equipment with variations \\\'
< 5% across many meters, and \ -
< 50 ym over 100 mm (0.05%) W=
— Can be used for roll-to-roll
scale-up
— Deposit epoxy composite onto
non-adhering substrate

\

Roll-to-roll thin film detector:
19 Kim CPAD Argonne &
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https://indico.slac.stanford.edu/event/8288/contributions/7503/attachments/3720/10098/%5BSLAC-CPAD%5D%20Thin%20film%20particle%20detectors%20-%20Sungjoon%20Kim.pdf

arxiv:2112.12763
Soft Lithography

COOLING CHANNELS

How do we add in cooling?

= [Micro]fluidic channels

» Use well-established soft lithography Soft lithography

E-beam lithography B) YR

|

/ Cooling plate TOP

i Cast Sylgard 184
"/SolderQCsamplesxl» l R ———
0 —— - Bk

77 /: %
- g 184

l Spin coat h-PDMS

g 7 f ¢ P #~—— Pressure QC samples x24
RN
SRS Cure
K Peel off from master Cui
Cooling plate BOT =y ] =

LHCb Velo microfluidic channels
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https://arxiv.org/pdf/2112.12763.pdf
https://www.sciencedirect.com/topics/materials-science/soft-lithography

arxiv:2112.12763

LONGER TERM: INTEGRATE READOUT

Example option: graphene oxide thin-film electrodes for high-
performance transparent and flexible all-solid-state supercapacitors

a) ’
UV/Ozone
c=0

:/GOIHZO COOH con P

' y % AT ﬁ
Substrate cleaning Drop-casting GO Ambient air drying Vacuum assisted

at room temperature thermal reduction
to form rGO

Before reduction After reduction
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https://arxiv.org/pdf/2112.12763.pdf

arXiv:2203.14347v1

O U T L O O K arXiv:2209.08149

How can we leverage materials science research to make scalable,
3 multifunctional support structures?
Heat generated by
different components

Sikcon Module (G + phutsenson Short term goal: reduce material budget of supports
 CNT/epoxy composites with embedded cooling
« Determine properties and applications

Long term goal:
* Incorporate readout electronics (carbon-based?)
* Fully printable, in-house scalable roll-to-roll detectors

Uv/Ozon

(Not to scale)

Substrate cleaning Dp-castlgGO Ambient air drying ~ Vacuum assisf
at room temperature th mlrod t

b) |
CNT composite + embedded cooling channels /_\ ’l (
Supports + cooling st =3, - lm
@ENERGY Thin-film electrodes 5, Thin-film roll-to-roll detectors Argonne a



https://arxiv.org/pdf/2203.14347.pdf
https://arxiv.org/pdf/2209.08149.pdf

ADDITIONAL MATERIAL
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AT ARGONNE: 3D METAL PRINTING

{g’g U.S. DEPARTMENT OF  Argonne National Laboratory is a

u r | Argonne
g LAl Y

,ﬂ‘i;g- ENERGY managed by UChicago Argonne, LLC. g

NATIONAL LABORATORY



3D PRINTING

= Advantages:
— Eliminate welding and machining
— Enables more complex geometries —
needed for tighter spaces

= Considerations: cost, microstructure
changes

= At Argonne:
— 70-micron resolution
— For microreactors — two different
materials on each side
— Print steels and some nickels;
looking into titanium

= More information: ANL Metal Additive
Manufacturing

U.S. DEPARTMENT OF _ Argonne National Laboratory is a
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https://www.anl.gov/nse/metal-additive-manufacturing-laboratory

3D PRINTING
APPLICATION TO ITK

» Decrease difficulty of distribution
piping — can print internal
structure

10/8
PP1 MM tube bungjes

DN50 o
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IVEM

ST R U CTU RA L A NA LYS I S d0i:10.1016/j.jnucmat.2021.153469
» [VEM — Intermediate Voltage IVEM-Tandem Facility at Argonne National Laboratory
. Automatic Segmentation of /n-situ video by computer vision
E|eCtI’0n M ICI’OSCOpe Nickel under in-situ 1 MeV Xr lon irradiation from 0.7 dpa to 1.9 dpa

Veids coorty

— Automated analysis of
irradiation-induced voids

— Individual voids measured
frame-by-frame to
understand microstructural
evolution during irradiation

= Example: comparing printed vs
machined “dog bones” after
heat treatment
and creep tests

Ave Sioe (Lacgest % volda)

27 Argonne &
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https://www.anl.gov/ivem/ivem-tem-capabilities
https://www.sciencedirect.com/science/article/pii/S0022311521006899#fig0001
https://www.sciencedirect.com/science/article/pii/S0022311521006899
https://www.sciencedirect.com/science/article/pii/S0022311521006899#fig0001

AT ARGONNE: STRUCTURE OPTIMIZATION
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Gary Hu

TOPOLOGY OPTIMIZATION

...iIn one slide

s* = arg min f (M (x; s))

4 SES I

Material model
I

Obijective function

Optimal topology

U.s. DEPARTMENT OF _ Argonne National Laboratory is a
ENERGY U.S. Department of Energy laboratory
managed by UChicago Argonne, LLC.

Initial

l

Sizing Shape Topology

Typical application
Find the optimal topology of the material to
maximize property X subject to constraint Y.

29 Argonne &



Gary Hu

APPLICATION 1

Solar receiver

Objective
Find the optimal topology of the material to maximize the outlet temperature subject to
appropriate pressure drop constraints.

U.s. DEPARTMENT OF _ Argonne National Laboratory is a
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Gary Hu

APPLICATION 2

Lattice material

Objective
Find the optimal lattice structure to minimize the coefficient of thermal expansion subject to
appropriate stress constraints.

ldea

Material A has good thermal stability, while material B has high mechanical strength.

So why don’t we mix A with B? :
e 7S

31 Argonne &




Gary Hu

OTHER CONSIDERATIONS

Challenge
Traditional manufacturing techniques have trouble with most of the optimal topologies.

Our solution *

1. Additionally impose printability constraint.
2. Use additive manufacturing.

Other applications
Find the optimal topology/shape of the material to maximize electrical/thermal conductivity
subject to stress constraints.

U.s. DEPARTMENT OF _ Argonne National Laboratory is a
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R&D + DESIGN

arXiv:2203.14347v1

Multi process design
simulations for part
manufacturing and

performance

Material selection and
studying radiation
hardness

Weight and mass
optimization
simulations

QJi
get it right g
€/_Digimat } ;53
S 2 g
DS SGTEEE E‘l
Moldex 3D =
- masnnr I
| P convERGENT / =
=)
i Emerging Codes (JL 8

Multi functional part
manufacturing

Composites Additive Manufacturing

Compression Molding

= Add on:
— Composites R&D

— Other ANL additive manufacturing and materials science
— Interfaces between mechanics/cooling + sensors and electronics

U.S. DEPARTMENT OF _ Argonne National Laboratory is a
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https://arxiv.org/pdf/2203.14347.pdf

OTHER BACKUP
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TWO-PHASE CO, COOLING

Low-mass evaporative cooling option

Joule heating effect as a
function of sensor temperature

(thermal-electrical elements) Module Flex + Fraction of Type-0 Services power dissipation
(homogeneous heat flux)

l l v l l Bumps modelled as
Vbias bonded contact
V=0 between Sensor and

EEEE NN EEEEEERN EF BN EEEEEEEENR -«

FEs with
constant thermal
conductance

Heat Flux
(FE periphery)
Loading Adhesivi
Heat Flux ng e Loading Adhesive

CFRP Skin
(FE pixel matrix) Foam-Skin Adhesive

Pipe Convection

(Tsatcozs HTCco2
corresponding to the
conditions at the inlet of the

evaporator)
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Barrel quarter — 8 unique flavors
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HOW IT’S BUILT

Barrel
» 14 bends, then annealing to hold shape

TN
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HOW ITS BUILT

Barrel
= Constrained spaces require laser welding

Elbow #1

N

Vendor laser

welds Elbow #2
elbows to

capillary

In-house orbital welding
of elbows to evaporator

!
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HOW ITS BUILT
Endcap

Laser Spot Weld

!

Laser Spot Weld

Tube bending

Laser Spot Weld

~ Elbow #1

Elbow #2~
Laser Spot Weld

U.s. DEPARTMENT OF _ Argonne National Laboratory is a
US. Department of Energy laboratory 39 A
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LOCAL SUPPORTS PRODUCTION MODEL

Cooling Tube Bare Local Loaded local
Assemblies Supports Supports
Fabrication N Fabrication Testing Loading
ANL LBNL UMass SW\e
£

Q8
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INTEGRATION AT SLAC

= Barrel staves orbital welded at SLAC

= Developed custom welding fixture

#7559, US. DEPARTMENT OF  Argonne National Laboratory is a
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TRACKING DETECTOR R&D

“Invisible” detectors for Higgs

(=]

A e S e o an a p 2at e

AL A N B B B SN B B B B

~ [ Dry Nitrogen - [ Ory Nitrogen

- L)

x x

2 F %= Patch Panels 0 + 1 g"—“l‘st 2 |~ PatchPanel1 gnﬁ, "
© 5[ == Electrical Cabling imulation © 5[ == Electrical Cabling imulation
@ [ === Titanium Cooling Pipes 9 [ === Titanium Cooling Pipes

o | - -

S [ W Support Structure Run2 c [N Support Structure Phase-ll
2 *F 14 Pixel Chips 2 P i Pixel Chips

) - = C Active Sensors

s [

Lscu #3444 Beam Pipe U pg rade

......
...............
ey Loewrssssaiies : e 2o T R e s et e s sttt be ey

= Community goal: < 0.1% X0 per detector layer
— Large portion of community focused on the active sensors
— My focus — cooling pipes and support structures

U.s. DEPARTMENT OF _ Argonne National Laboratory is a
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RESEARCH OVERVIEW

Zach Hood

Advanced Electrochemical Materials (AEM)

Advanced Solid-State Electrolytes and

Membranes for Next-Generation Batteries

» Synthesis and processing of sulfide-, oxide-,
and polymer-based solid-state electrolytes and
their composites

 This thrust is expected to enable future solid-
state battery architectures with more room for
cathode volumes and reduce processing
temperatures and costs
References:

2.D. Hood, H. Wang, A. Samuthira Pandian, J.K. Keum, and C. Liang. Journal of the American Chemical Society, 138(6), 1768-1771.
M. Balaish, J.C. Gonzalez-Rosillo, K.J. Kim, Y. Zhu, .D. Hood, J.L.M. Rupp. Nature Energy, 6(3), 227-239.

2.D. Hood, X. Chen, R. Sacci, G. Veith, X. Liu, Y. Mo, J. Niu, N.J. Dudney, M. Chi. Nano Letters, 21, 151-157.

E.C. Self, Z.D. Hood, T. Brahmbhatt, F.M. Delnick, H.M. Meyer, G. Yang, J.L.M. Rupp, J. Nanda. Chem. Mat., 32, 8789-8797.

PONPE

New Two-Dimensional Materials and
Heterostructures for Electrocatalysis

» Synthesis and processing of two-
dimensional transition metal carbides
and nitrides (known as MXenes)

2011-2020 MXenes 2021

Mono-M

High-Entropy MXenes

Double-w » « This thrust is expected to enable more
efficient electrocatalysts that have
higher faradaic efficiency and
selectivity towards specific reactions

and B. Anasori. ACS Nano, 15(8), 12815-

References:

1. S.K.Nemani, B. Zhang, B.C. Wyatt, Z.D. Hood, S. Manna, R. Kt
12825.

2. S.P.Adhikari, Z.D. Hood, K.L. More, V.W. Chen, and A. Lachgar. ChemSusChem, 14, 1869-1879.

3. T.Su, Z.D.Hood, M. Naguib, L. Bai, S. Luo, C.M. Rouleau, I.N. lvanov, H. Ji, Z. Qin, Z. Wu. ACS Applied Energy Materials, 2, 4640-4651.

idusti, S.K. Sar

Decarbonized Electrochemical
Processes for Industrial Manufacturing

N
Lis) N » Decarbonized ammonia production by

@ w *9  electrochemically converting N,, and protons to

NHj, via Lithium metal at room temperature and

Li*sol) LigNis) .
® under ambient pressures

NHg oy Aol

A oy * This thrust is expected to enable low-cost and

environmentally-friendly methods to replace state-
_ of-the-art industrial processes
References:

1. Z.D.Hood, S.P. Adhikari, J. Hryn. 2022 Invention Disclosure (ANL).
2. M. Zhao, Z.D. Hood, M. Vara, K.D. Gilroy, M. Chi, and Y. Xia. ACS Nano, 13, 7241-7251.

Emergent Electrochemical Materials,

Processes, and Devices

=t o Fabrication of next-generation
&2 electrochemical devices (e.g., memristors,
ol thin film batteries, sensors, etc.) and
= tailored heterostructures at the nanoscale

B AT . .
~——=u architectures with energy storage,

sensing, and memory on the same chip

el
3 >C< n— = o This thrust is expected to enable

References:
1. Y. Zhu, J.C. Gonzalez-Rosillo, M. Balaish, Z.D. Hood, K.J. Kim, J.L.M. Rupp. Nat. Rev. Mat., 6(4), 313-331.
2. W.Gao, Z.D. Hood, and M. Chi. Accounts of Chemical Research 50(4), 787-795.
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CAPABILITIES: MANUFACTURING AND TESTING Zach Hood

362 C288: Sulfides, oxides, polymers, and

composite synthesis

Dry processing of sulfides,
oxides, polymers, and
composites in an Ar-filled
glovebox

Membrane prototyping (1 —
4 cm?)

Custom solid-state cells for
testing materials under
pressure

362 B200: Solution-based processing of

composites

| —— = Solution phase processing
and scale up

* In-line TCD + GC/MS for
the identification of off-gas
products

q- Integrated electrochemical

capabilities inside an Ar-

filled glovebox

241 A229: Dry/wet processing and analysis of

composite materials

Example X-ray diffraction data set:

= Composite
fabrication

= Solution-based
casting of solid-state
materials

= Solid-state battery
prototyping and testing

= Potentiostat/galvanostat for
testing material properties
from -60 °C - 190 °C

= Mechanical testing of
composite and polymer
materials (Instron)

= Glovebox for prototyping
solid-state batteries
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