DRD7: Cooling plates

On behalf of the DRD7.4c collaborators

DRD7.4: EXTREME ENVIRONMENT AND LONGEVITY

IMPLEMENTING DRD7: AN R&D COLLABORATION ON ELECTRONICS AND ON-DETECTOR PROCESSING

Oscar Augusto de Aguiar Francisco (The University of Manchester) oscar.augusto@cern.ch

Introduction

- <u>No single solution for the cooling structure nor coolant</u>
 - Different material budget constraints, power dissipation, ...
- Three (sub-)projects will be described today:
 - Ceramics cooling plate and metal 3D printing (UoM)
 - Microchannel cooling and active interconnection developments (CNM, DESY, IFIC)
 - Microchannel cooling manufacturing via thermocompression (CPPM)
- DRD7:
 - DRD7.4c "covers the cooling structures in direct contact with electronics"
 - Cooling plates are included (e.g.: coolant R&D not included)
 - Recently approved
 - DRDC open session on June 3rd (link)

DRD7: AN R&D COLLABORATION ON ELECTRONICS AND ON-DETECTOR PROCESSING

Ceramics

- Manufacturing at IKTS Fraunhofer (Germany)
- Different base materials: YSZ, Al_2O_3 , ... including SiC and AlN
- Manufacturing based on several layers
- <u>Why?</u>
 - Robustness, reliability, stability in ultra-high-vacuum
 - Possible to embed conductive layers in between ceramics layers and metalize the surface
 - Potential to integrate electronics or high conductivity elements
 - Mechanically robust and compatible with high ultra vacuum

Ceramics

- Experience with fluidic applications
- First prototype based on the early VELO Upgrade I CERN design
 - Initial channel with 70µm width (restrictions)
 - Channels height $100 \mu m$
 - Overall dimensions: $40 \times 60 \text{mm}^2$
 - Based on LTCC
 - Al₂O₃/Glass ~1:1
 - Al_2O_3 HTCC is ~96%
 - Possible to move to SiC or AlN
- Encouraging results from FEA studies
 - Geometry based on the VELO Upgrade I design (5 mm overhang)
 - For $2W/cm^2$, $\Delta T \sim 9^{\circ}C$ (coolant heat transfer coefficient not considered)

DRD7: AN R&D COLLABORATION ON ELECTRONICS AND ON-DETECTOR PROCESSING

MANCHESTER

The University of Manchester

parameters/test

feasibility

Simplified FEA focusing on the 5 mm overhang. Substrate in alumina and heat conduction on one side of the cooling plate and Stycast (100um).

Ceramics: Goal and status

• Goal:

- ✓ Manufacture first samples (IKTS)
 - Miniaturized version (2x smaller inplane)
 - ✓ Expected 35um and 100um width restrictions and main channels respectively!
- Second round being prepared
- Validate initial prototypes to high pressure, leak tightness and cooling performance
- Benchmark: LHCb VELO Upgrade 2 requirements (High pressure 186 bar, leak tight (vacuum operation) and excellent thermal performance
- Very encouraging first manufacturing results!!!

3D metal

- Exploration phase
- Considering evaporative CO₂ as baseline solution
- Power dissipation of up to 2W/cm²

Aggressive U-track like design

- More aggressive design for reduced material budget due to the cooling substrate
- Largest variation of temperature on the sensor part around 25°C (with respect to the inner side wall)
 - Larger ΔT would have to be compensated by the coolant working temperature
- Alternative strategy to cooldown off-chip electronics would have to be improved (cooling routing lines)

Passive medium integration

- Lower material budget contribution compared to same silicon thickness (factor x2)
- Cooling line integration via soldering (NanoFoil, 35– 50W/mK)
- FEA indicates a $\Delta T{\sim}21^{\circ}C$ when pushing away the Ti2 cooling lines by ${\sim}30mm$

3D metal: LHCb VELO

- Different designs were submitted to <u>Royce</u> <u>Institute</u> (Innovation Center - Sheffield)
 - U-shaped design
 - Squared tube and connector prototypes
- X-ray tomography via <u>NXCT</u>
- Filling factor being improved, and different approaches being tested
 - Single squared tubes and easier integration with a plate-like design
 - Potential to also explore better integration
- New round of printing on-going:
 - Different printing parameters to improve distortions and fill factor
 - Half of the samples will be electropolished (easier integration?)

X-ray 2D tomography (one projection)

- Miguel Ullán (IMB-CNM, CSIC), Carlos Mariñas (IFIC-UV, CSIC), Marcel Vos (IFIC, CSIC-UV), Ingrid Gregor (DESY), Sergio Díez (DESY) and Jonathan Correa (from DESY)
- In the past, we developed a technology of micro-channel cooling for High Energy Physics detectors
 - N. Flaschel, et al. "Thermal and hydrodynamic studies for micro-channel cooling for large area silicon sensors in high energy physics experiments", NIMA, vol. 863, pp. 26-34, 2017. (<u>link</u>)
 - Ph.D Thesis: Micro-channel Cooling For Silicon Detectors. Nils Flaschel. Hamburg University. 2017 (<u>link</u>)

- Technological process for microchannels at IMB-CNM
- Creation of microchannels:
 - Deep Reactive ion etching (DRIE)
- Microchannels enclosure via:
 - Wafer bonding

- Previous results on fluidic and thermal tests
- Laminar flow
- Coolant: 3M HFE7100
- Low power density: 30.8mW/cm^2
- Good agreement with simulation
- Thermal homogeneity across the sample(~4 × 4 cm² large),
 < ±1 °C (for lowest flow rate)

DRD7: AN R&D COLLABORATION ON ELECTRONICS AND ON-DETECTOR PROCESSING

• Main Objective I: Integration of micro-channels in silicon interposers with integrated signal and power routing (RDL)

Main Objective II: Full integration of the sensor (CMOS technology) with the microchannel cooling in a single silicon piece

- Full integration of DMAPS chip with the microchannels in a single monolithic piece
- Post-processing at wafer level with a CMOS compatible process
- Following the "post-processing" technique developed previously
- Additional technological developments
 - ✓ Low temperature (350°C) anodic bonding
 - Microchannels created on glass substrates (isotropic wet etching)
 - Eutectic and/or fusion bonding
 - Improve post-processing compatibility
 - Full demonstrator

CMOS sensor + microchannels

R&D to develop a low-cost micro-channel production process

As an alternative to the complicated and costly direct Si/Si bonding, investigate bonding techniques with intermediate thin layers:

 \circ Anodic bonding with glass (BF33)

 $\circ \ensuremath{\mathsf{Thermocompression}}$ with gold

Anodic bonding

Thermocompression

CPPN

Bonding strength evaluated through a series of destructive pressure burst tests, recording the maximum pressure reached in microfluidic test structures before breakage (à la LHCb)

⇒ Test chips produced both with the anodic and with the thermocompression bondings can sustain very high pressure

 \Rightarrow Focus on thermocompression as

- It generally allows to reach higher maximal pressures
- It is a widespread technique available
 in most clean room facilities

DRD7: AN R&D COLLABORATION ON ELECTRONICS AND ON-DETECTOR PROCESSING

Bargiel et al., Micromachines 2023, 14, 1297

- Towards the bonding of a connector using thermocompression process:
 - Investigate chip level bonding replacing the bonder with a mechanical press at atmospheric pressure outside the clean room
 - Two configurations tested:
 -Si/Si bonding (for reference)
 -Si/Invar
 - → Both types can sustain high pressure
 - → Proof of concept validated!

Hyperbar bonding

Replace the mechanical press with an hyperbar chamber

- Allow to reach very high pressure on large • surface
 - \geq 400 bar in chamber
 - Force applied in bonder typically limited to 40kN
 - (i.e. 5.1MPa for 4" wafer, 2.3MPa for 6" wafer)
- Pressure more uniform •
- Less stress applied on wafer •
- Bonding at room temperature •
- Can adapt various geometries •
- Visualizing the pressure applied in the hyperbar chamber
- Using a pressure sensitive film
- "Pressure boost" around the channel as expected from numerical simulation

- Replace the mechanical press with an hyperbar chamber
 - Allow to reach very high pressure
 - ≥ 400 bar in chamber
 - Force applied in bonder limited to 40kN
 - (i.e. 5.1MPa for 4" wafer, 2.3MPa for 6" wafer)
 - Pressure more uniform
 - Less stress applied on wafer
 - Bonding at room temperature
 - Can adapt various geometries
- Test wafer bonding with fixed width pressure test structures (w=850µm)
- \Rightarrow All samples sustained very high pressure
- ⇒ All breakage occurred in the silicon (i.e. bonding has held)
- \Rightarrow Proof of concept validated !

R&D to develop low-cost micro-channel production process is being pursued at CPPM

Currently focusing on the bonding process, very appealing technique identified:

- "Hyperbar" bonding with thin intermediate Au layers
- Can be used to bond wafer
- Bonding of connector in hyperbar chamber being investigated

Goal is a functional prototype in the coming years

Part of a global R&T effort in CNRS/IN2P3, shared among 3 French laboratories and including developments on boiling flow modelling and testing.

Conclusion

- Microchannel cooling and active interconnection developments (CNM, DESY, IFIC)
 - Aiming to bring more functionalities to the cooling plate
 - Redistribution layer could be an interesting solution for ASICs with through-silicon vias
 - CMOS compatible process to integrate the cooling to the sensor
- Microchannel cooling manufacturing via thermocompression (CPPM)
 - Main motivation to reduce the manufacturing cost
 - Very promising results "hyperbar" chamber (resistance to high pressure)
 - Techniques developed can be also explored for integration (chips and connecturization)
- Ceramics
 - It has also the potential to include electronic features
 - Fully validated initial prototypes in the coming years to high pressure, leak tightness and cooling performance in the following years
 - LHCb VELO Upgrade 2 as benchmark requirements (High pressure, CO₂ evaporative cooling)
- Metal 3D printing
 - X-ray tomography indicates issue with the fill factor
 - Distortion observed created a choke point
 - Next run: focus on improving distortion and fill factor and investigation of electropolishing (material reduction/easier integration?)

Contacts

- Microchannel cooling and active interconnection developments (CNM, DESY, IFIC)
 - Miguel Ullan (miguel.ullan at imb-cnm.csic.es)
- Microchannel cooling manufacturing via thermocompression (CPPM)
 - Julien Cogan (cogan at cppm.in2p3.fr)
- Ceramics and Metal 3D printing
 - Oscar Augusto de Aguiar Francisco (oscar.augusto at manchester.ac.uk)

DRD7: AN R&D COLLABORATION ON ELECTRONICS AND ON-DETECTOR PROCESSING

Backup slides

Future facilities

5 D&D Thomas in algotranias

DRDT		< 2030								4
71		2000		2030-20	35	2035- 2040	2040-2	045	> 2045	
7.1 7.1	•			*			•	•		•
7.2 7.2 7.2		•	•	•*		••		•		Ŏ
7.3 7.3 7.3	•	•			••				•	000
7.4 7.4 7.4	•		•					•		Ŏ
7.4						• •	• •			
7.5 7.5 7.5 7.5				*	• •			•		
	7.1 7.1 7.2 7.2 7.2 7.3 7.3 7.3 7.3 7.3 7.4 7.4 7.4 7.4 7.4 7.4 7.4 7.5 7.5 7.5 7.5 7.5	7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.2 7.3 7.3 7.3 7.3 7.4 7.4 7.4 7.5 7.5 7.5 7.5 7.5 7.5 7.5	7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.4 7.4 7.4 7.4 7.5 7	7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.4 7.4 7.4 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5	7.1 •	7.1 * 7.1 * 7.2 * 7.2 * 7.2 * 7.2 * 7.2 * 7.2 * 7.2 * 7.2 * 7.3 * 7.3 * 7.3 * 7.3 * 7.3 * 7.3 * 7.4 * 7.4 * 7.4 * 7.5 * 7.5 * 7.5 * 7.5 * 7.5 * 7.5 * 7.5 * 7.5 * 7.5 * 7.5 * * * * * * * * * * * * * * * * * <	7.1 7.1 7.1 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.3 7.3 7.3 7.3 7.3 7.3 7.3 7.4 7.4 7.4 7.4 7.5 7	7.1 *	7.1 * 7.2 * 7.2 * 7.2 * 7.2 * 7.3 * 7.3 * 7.3 * 7.3 * 7.3 * 7.3 * 7.3 * 7.3 * 7.3 * 7.4 * 7.4 * 7.4 * 7.5 * 7.5 * 7.5 * 7.5 *	7.1 *

* LHCb Velo

