

Structural Composite Design, Simulation, and Testing of the HL-CMS Inner and Outer Tracker Support Tubes

Ben Denos, Andreas Jung, Sushrut Karmarkar, FNU Archie

29 May 2024

12th Forum on Tracking Detector Mechanics

CMSC Introduction We offer world-class research facilities for composites manufacturing, characterization and experimental validation

CMSC Introduction We partner with Dassault Systemes to enrich and offer world-class modeling and simulation tools for research and engineering

Empowering a manufacturing-informed design experience for composites connected across the supply chain

Outline

- CMS Barrel Timing Layer Tracker Support Tube (BTST) and inner tracker support tube (ITST) for the HL-LHC upgrade
- Challenges and lessons learned while
 - Prototyping
 - Re-designing for manufacturing in composites
 - Simulation
 - Testing

Outline - ITST

- Production of center and end sections
- Integration test of the TBPX and TFPX into the ITST center section prototype
- Track manufacturing for both center and ends
- Silicone seal between the inner and outer tracker volume
- Cyanate ester resin system considerations (including Airex foam interaction)

ITST Manufacturing Overview

- Prototype materials
 - AS4/ Proof Research 250P epoxy plain weave
 - [0/30/-30/0/30/-30/0/-30/30/0/-30/30/0]
 - 13 plies, 3mm thick
 - (final material IM7 / PMT-F6 plain weave)
 - Electrafil 1501 printed track block, then CNC
- Test and select threaded inserts and fasteners
- Test and select cylinder joint type
- Cure as half cylinder with scarf joints
- Use CNC'd I-beam to position tracks
- Bond half cylinders around tracks

ITST End Section

- Produce from scarf-jointed halves, like ITST center
- Shape compensation more challenging with flange

End Sections 4 & 6 - Dry Assembled with Interface Plate Attached -(mm) **Outside Surface - CAD Comparison** 1.300 1.100 Statistics 0.900 Model Max. Length: 1329.473175 mm 0,700 Avg. Error: 0.687788 mm 0.500 RMS Error: 1.219701 mm 0.300 0.100 Statistics -0.100 -0.300 Maximum Distance: positive: 7.982 mm -0.500 negative: -9.025 mm Average Distance: 0.024 mm -0.700 positive: 0.656 mm negative: -0.711 mm -0.900 Standard Deviation: 0.930 mm RMS Estimate: 0.930 mm -1.100 -1.300

ITST End Section Assembly I-Beam

Laser scanned

- Face-to-face target distance: 570mm
 - Measured min: 569.95mm
 - Measured max: 570.08mm
- Face flatness St. Dev. <0.02mm
- Precise starting point to attach tracks to for bonding

Justin Hicks (machining) and Jack Wheeler (metrology)

ITST 1m Prototype Bonded Surface CAD Fit

- Laser scan outside of 1m prototype
- Laser scan accessible end of inside
- Bonding helps to correct shape

- Deflection contours match well
- Simulation is validated

Justin Hicks (simulation) and Jack Wheeler (metrology)

PURDUE

- Deflection contours match well ٠
- Simulation is validated

٠

Justin Hicks (simulation) and Jack Wheeler (metrology)

PURDUE

Team for ITST-TBPX Test

Purdue University -1.

Sushrut Karmarkar, Ben Denos, Justin Hicks, Andy Jung, Archie UGs: Pau Simpson, Marco Herbsommer, Yuvraj Chauhan, Simon Snydersmith, Sam Langley-Hawthorne, Mathew Sanford, Lexing Xu, Xuli You, Xander Wells

Past team: Jack Wheeler, Langdon Feltner, Jack Gulley, Swapneel Kulkarni, Harry Lee, Garam Kim, Sebastian Elizondo

- 2. UC Davis – John Conway, David Louis Hemer
- **Cornell University** 3. Axel Filenius, Karl Smolenski
- INFN -4.

Daniele Benvenuti, Simone Garrafa, Andrea Basti, Roberto Dell'Orso, Silvia Coli

ITST Metrology Set Up

- Creaform Metrascan Black Elite + C-Track + HandyProbe
- Use upper and lower track to set reference frame
- Use UC Davis adjustable wheels to align service cylinder
- Use INFN barrel adjusters to set TBPX position

TFPX – TBPX bracket references used for Initial Alignment

- Starting alignment needs hard machined edges to find initial position
- Need more precise service cylinder for future tests
- Methods all feasible with minor changes

14

ITST Center Track Drawings

50.93

- Split into 3 segments
 - Align with step joint and joiner plates with pins
- Center section connected for greatest precision of innermost wheel stops
- Material nearest TBPX (barrel) removed
- Dry gas injection simplified near barrel

ITST End Section Drawings

- Prototype being machined now
- Machine final from solid CFRP (IM7 / PMT-F6) laminate

ITST End Section Track Machining

- Measure fixed on CNC
 - +/-0.30mm
- Measure free standing
 - [-3.30mm, +2.30mm]
- Measure on installation I-beam
 - +/-0.40mm

- Track attempt #2, measure free
 - Still warped, but 1.2mm less: [-2.40mm, +2.00mm]
- Pushed us toward solid CFRP for end track

ITST End Track (Solid CFRP) Manufacturing

- End holes drilled with CNC'd fixture with drill guides
- Tested M4 screws to 2.4N-m (22 in-lb) torque failure on M4 helical thread inserts

- 20mm thick laminate in progress
 - Test with prototype material
 - Goal: less warpage than printed version

ITST End Track Wheel Groove Straightness

- Each groove measured with 2mm ball probe while on machining fixture
 - Vertical deviations from "flat" (Y)
 - Horizontal deviations from "straight" (X)
- Conclusion: CNC machines a straight flat groove over ~1.2m length

Distance along track groove from right side of track as pictured

Horizontal deviations from best fit line

Distance along track groove from right side of track as pictured

Final Material Cure Cycle and Bagging IM7 woven CF with F6 Cyanate Ester

- Airex R82.80 foam appears to collapse near cyanate ester (PMT-F6) resin
 - Confirmed by manufacturer

Previous Plate: Core collapsed, "F" peel ply

- Seal ½ of core with polyurethan spray
 - Success! No/less collapse!

New Plate: Core held on side sealed with Polyurethane spray paint – 8 passes. "F" peel ply

Final Material Cure Cycle and Bagging IM7 woven CF with F6 Cyanate Ester

- Cyanate ester may need to vent significant moisture during cure – to prevent porosity
- Use polyester peel ply as extra breather on both sides

 excess edges to contact primary breather
- Use fluoropolymer release against laminate
 - Flip order or use perforated if more bleed and/or peel ply surface desired

	Default	Α	В	С	D
Vac. Bag	Х	х	Х	Х	х
Breather	х	х	х	х	х
Peel Ply	"F″	"G″	"G″	"G″	
Release WL5200	Non Perf. (NP)	NP	P25	P25	NP
Laminate	х	х	х	х	х
Release WL5200	Non Perf. (NP)	NP	P25		NP
Peel Ply	``F ″		"G″		
Tooltec PTFE	х	х	х	х	х
Alum. Tool	х	х	х	х	х

Silicone Seal for ITST Center-to-End Interface

- Cast with internal, resin printed "bones"
 - Stiffen profile
 - Provide bondable surface (not silicone)
 - Provide temporary tabs for bond alignment
- Must slide on and off of ITST center with minimal interaction at ~1.2m distance
- Quick lab tests show acceptable seal performance

Outline - BTST

- Function and geometry
- 1m long prototype validation
- FEA simulation predictions
- As-manufactured metrology
- Tracker rail placement and bonding
- Partial loading of the final structure (Plan)

Boundary Timing Layer Tracker Support Tube (BTST)

- Manufactured by Rock West Composites San Diego
- 5300mm long, 2442mm diameter
- Structure weight: 390kg
- Supported weight: ~6,000kg
- Manufacturing tolerance: +/-1.5mm target
- Loaded deflection tolerance: +/-1.5mm target
- Materials:
 - Sandwich skins HM63 / PMT-F6
 - Core Nomex honeycomb
 - Tracker rails K13916 / PMT-F6
 - Nitronic 60 steel M8 and M10 helicoil inserts
 - Titanium end ring inserts (M16)
 - Aluminum BTL inserts (M3)

(mm)

1.300

1.100

Validation Load Cases – Rack and Loads on Tracker Rails

Simulation

- Banana center bolts fixed in Y
- 147kg (1441 N), and 230kg (2260N)
- Add loading rack with hinged guide rod,
- Soften Rail to Validated Props (44% FVF)
- Add springs (245,000N/m) for frame BCs

All units (mm)

• Experiment

- Loads 147kg then 230kg
- Guide rod feet precision located

Materials Used in Simulations

- Finding and calculating properties is always difficult
- Validating properties with mechanical testing also difficult
- Balance effort vs benefit at each design step

Component	Fiber	Matrix	Density (g/cc)	Total Mass (kg)	E1 (Gpa)	E2 (Gpa)	E3 (Gpa)
Tube Face Sheets *High Mod. UD	HM63	F6	1.57	261	266	11	11
Tube Honeycomb Core	HRH-10-3	3.2-64	0.064	66	0.0009	0.0009	0.1
Tracker Rails – Quasi Iso Solid (44%fvf)	K63712	NB301	1.62	38	88	88	12
End Ring CFRP – Quasi Iso Solid	AS4	NB321	1.55	10	51	51	8
BTL I-beam	S-glass	Ероху	1.63	42	29	5	5
End Ring Threaded Inserts	Titanium		4.5	12	116	116	116
Banana Bracket	Aluminun	n 6061	2.70	15+?	69	69	69

All Loads, War Above 1.5mr Highlighted	Tm, Displacement.1 (mm) Max : 2.39 Min : 0.164 1.5 1.35 1.2	Waterials	s, iviax De	TIECTION		
	1.05 0.9 0.75 0.6 0.45 0.3 ► 0.15	Face Sheet Material Choices	Fiber/ Matrix	Max Deflection (warm)	Max Deflection (cold)	Change Deflection (mm) warm
	Deformation scale: 100	Standard Mod.	TR50s/F6	2.39	2.47	0
	Displacement.1 (mm) Max : 1.74	High Modulus	HM63/F6	1.74	1.62	-0.65
	Min : 0.122 1.5 1.35 1.2 1.05 0.9 0.75 0.6 0.45 0.3 0.15 0 Deformation scale; 100					

Matariala Max Deflection

BTST Load History "Complete", update TEDD and temps, HM63/F6

Case	End Ring BCs	Added Loads	Mass (kg) Item + Services (full tube)	"Added" Load Input Locations On BTST
1	- Small Ears	1 Tube Only	384.1	GRAVITY on full model
2	- Small Ears, Bananas*		9.4	
3	n n	BTL	1884.3,18,23.7	Tube inner surface (38 BTL rail lines, distributed)
4	n n	TB2S	520, 303.7 153.7	Tracker Rails @ Z= +/- 781.3mm, BTL rails (next)
5	n n	TBPS + ITST Center (empty)	175.8, 150	Tracker Rails @ Z= +/- 781.3mm, BTL rails (prev.)
6	N N	TEDD + Seals	<mark>535,501</mark> ,10.8, 235.6	Tracker Rails @ Z= +/- 1474, 2494, 2650, BTL rails
7	n n	Bulkhead Disk	327.2 (80%,20%)	Tracker Rail ends, 12 and 6 o'clock M16s (@2800)
8	N N	ITST Ends (empty)	57.4	Bulkhead (tracker rail ends)
9	Small Ears, Bananas*Nose Cone Brackets	Nose Cones	340	Nose cone corner brackets, offset mass to3500?
10	n n	Services moved to cones	1452.6	Cone brackets during lift/lower, offset to3500?
11	 Bananas* Big Ears Z- Eiffel+Nose Brackets Z+ 	Big ears* REMOVE SMALL EARS*	73.4* Z- only -31.2*	*if modeled explicitly Eiffel "reaches through" and supports Z+ nose cone
12	- Support Bracket	REMOVE NOSE CONES, EARS	120*,-1452.6, - 340	Banana support post, nose cone corner brackets
13	n n	Service Cylinder w/ TBPX	172, 67.9	Tracker Rails @ +/- 781.3mm, Bulkhead (rail ends)
14	n n	ТЕРХ	117.0	Bulkhead via rail ends
15 TCT	"" $HalfSymm 2022_02.$	Cool to -5°C, +10°C outside	56 V13016 E6ra	Outer face sheets (quarter, joint, end), end ring at +10°C

Small Ears + Tube Only + Bananas Installed

1		Small Ears	1 Tube Only	384.1		
2	-	Small Ears, Bananas*	n n	9.4	GRAVITY on full model	
Case		BCs	Additions	Masses of Additions	(kg) Lo	ocations of Masses

+ Cool to -5°C

- Move TEDD Services
- Outer face sheets and end ring at +10°C per Guillermo's models

BTST Unboxing Video

https://photos.app.goo.gl/AMXt6BNRZ4eQYrUNA

BTST Metrology and Loading Plan

Manufacturing Tolerances	Finish this week
 setup completion: volume extension, reference targets, adjust tube to nominal neutral 	done
 measure inner and outer surface, confirm cylindricity (2mm 3.9mm), best fit radius (+/1.5mm) 	done
 measure end ring bolt positions (0.2mm) NOT with "neutral" position sides 1mm off 	90%
- measure selected BTL insert positions across quarters and map (if time) initial shared	done
Position and Bond Tracker Rails (practice with prototype, report before bond)	June 5
- measure direct bolted to tube	done
- measure, shim locally, measure, shim locally, etc – Confirm acceptable position, bond rods, check	Proto 90%, full 50%
- drill and "spot" inject adhesive, measure – ADDED lap shear test for filled adhesive	Strength tests now
- remove bolts, insert shear pins, fill remaining adhesive, measure	
Loading Validation	June 14
- design/order cart and wheel hardware, ID water tanks, modify cart	10% done
- measure with loads 100kg, 250kg, 500kg, 1000kg – watch for frame deflections	
- create and compare to simulations	
- adjust with 4pt bending sandwich panel test data as justifiable	

BTST Metrology Setup

- Mounting Brackets and Bolts
 - M16, at 3 and 9 O'Clock
 - Connect to "new" mockup bananas
- Turnbuckle Bars (optional)
 - Adjust bolt-to-bolt distance
- Cradle / Scissor Jack
 - Contoured to tube
 - For support and level
- Reference Targets
 - Everywhere to define measurement space

- Best Fit Cylinder Inner Diameter 2381.2mm*
- Inner Cylindricity 3.89mm*
- Best Fit Cylinder
 Outer Diameter XXXmm*
- Outer Cylindricity XXXmm*

Inside

Х-

BTST Metrology

- Best Fit Cylinder Inner Diameter 2381.2mm*
- Inner Cylindricity 3.89mm*
- Best Fit Cylinder
 Outer Diameter XXXmm*
- Outer Cylindricity XXXmm*

Inside

Х-

© 2023 Composites Manufacturing & Simulation Center

BTST BTL M3 Inserts

- Can extract selected comparison points from full laser scan
 - Only "mouse click" precise selection
 - Deviation from CAD surface still helpful
- Numbered from X+ axis counterclockwise

BTST Metrology and Loading Plan

Manufacturing Tolerances	Finish this week
 setup completion: volume extension, reference targets, adjust tube to nominal neutral 	done
 measure inner and outer surface, confirm cylindricity (2mm 3.9mm), best fit radius (+/1.5mm) 	done
 measure end ring bolt positions (0.2mm) NOT with "neutral" position sides 1mm off 	90%
- measure selected BTL insert positions across quarters and map (if time) initial shared	done
Position and Bond Tracker Rails (practice with prototype, report before bond)	June 5
- measure direct bolted to tube	done
- measure, shim locally, measure, shim locally, etc – Confirm acceptable position, bond rods, check	Proto 90%, full 50%
 drill and "spot" inject adhesive, measure – ADDED lap shear test for filled adhesive 	Strength tests now
 remove bolts, insert shear pins, fill remaining adhesive, measure 	
Loading Validation	June 14
- design/order cart and wheel hardware, ID water tanks, modify cart	10% done
- measure with loads 100kg, 250kg, 500kg, 1000kg – watch for frame deflections	
- create and compare to simulations	
- adjust with 4pt bending sandwich panel test data as justifiable	

Tracker Rail Adhesive Testing

- Thicken Araldite 2011 to not drip/sag
 - 20% thixotropic silica (Cab-o-sil) to not sag in 3mm gap
 - 1/16" glass fiber for strength
 - 0.45mm max gap expected after shims
- Acrylic sheet injection hole and drip test

23

- Single lap shear test series, 20x20mm
 - 1.0mm bond cuts strength in half

Prototype Tracker Rail Shimming

- X+ rod straight [+ 0.25mm,-0.50mm]
- X- Rail at inward position limit
- Rail faces acceptable [-0.25mm,1.00mm]
- Drilled 3mm adhesive injection holes
- Spot bond, bond rod, finish bond with shear pins

BTST Rail Final Shimming Process

- Only use every third bolt (shear pin hole)
 - # as 6, 5, 4, 3, 2, 1, 0, -1, -2, -3, -4, -5, -6
- Tighten end bolts slightly
- Adjust ends up/down, probe Y, tighten
- Raise center of rail with toe clamps, probe Y
- Tighten remaining bolts with 2.8N-m (25in-lb) torque from center outward

- After adjustment:
 - Pre-bond measure
 - Bond in guide rods
 - Re-measure and small adjustments
 - Spot bond
 - Re-measure
 - Replace bolts with 10mm CFRP rods (bond in)
 - Final gap filling bond
 - Final measure

(mm)

BTST Rail Shimming Result

- Both rails shimmed and "dry assembled" to within
 - [-0.25mm, +0.67mm] X position
 - [-0.25mm, +0.13mm] Y position
- Adhesive bondline thickness
 - [+0.101mm, +0.450mm]
- Rail faces safely within envelope
- Next:
 - Confirm approval to bond
 - Remove rails, drill adhesive holes, bond shim plates
 - Mount, adjust, bond per procedure

Z Position (mm)

BTST Metrology and Loading Plan

Manufacturing Tolerances	Finish this week
 setup completion: volume extension, reference targets, adjust tube to nominal neutral 	done
 measure inner and outer surface, confirm cylindricity (2mm 3.9mm), best fit radius (+/1.5mm) 	done
 measure end ring bolt positions (0.2mm) NOT with "neutral" position sides 1mm off 	90%
- measure selected BTL insert positions across quarters and map (if time) initial shared	done
Position and Bond Tracker Rails (practice with prototype, report before bond)	June 5
- measure direct bolted to tube	done
- measure, shim locally, measure, shim locally, etc - Confirm acceptable position, bond rods, check	Proto 90%, full 50%
- drill and "spot" inject adhesive, measure – ADDED lap shear test for filled adhesive	Strength tests now
- remove bolts, insert shear pins, fill remaining adhesive, measure	
Loading Validation	June 14
- design/order cart and wheel hardware, ID water tanks, modify cart	10% done
- measure with loads 100kg, 250kg, 500kg, 1000kg – watch for frame deflections	
- create and compare to simulations	
- adjust simulation properties with 4pt bending sandwich panel test data as justifiable	

Loading Validation Test Plans

- Load to 1000kg (~2,200lb)
 - Equivalent to loading TB2S+services, TBPS+services, ITST center (empty)
 - Water tank on steel frame
 - Feet on tracker rail at ~ Z = +/- 781mm
- Gather deflection data with surface scan and some points data
- Compare to simulation later
 - Existing simulation, load case 5, no BTL

Final shipping info for CERN Carbon Fiber Tube (BTST)

- Crate exterior maximum dimensions
 - **554cm long, 285cm wide, 280cm high** (rounded up from 218x112.25x110inches measured)
- Carbon fiber tube mass: 400kg (round up from 385kg CAD estimate)
- Wood crate mass: 2.9m³ wood from CAD model, so 3m³*^{780kg}/m³ = 2340kg estimated
- Total Estimated Mass: 2740kg

- Air Freight: ORD to LUX
 - Mid-June
- Scarbrough has confirmation of fit from

Backup Slides

Simulation of BTST Integration Cases

The following slides contain loads and positions for each of the integration steps for BTST loading of inner and outer tracker components, including services

BTST Simulation Load History "Complete"

Case	End Ring BCs	Added Loads	Mass (kg) Item + Services (full tube)	"Added" Load Input Locations On BTST
1	- Small Ears	1 Tube Only	384.1	GRAVITY on full model
2	- Small Ears, Bananas*	N N	9.4	
3	n n	BTL	1884.3,18,23.7	Tube inner surface (38 BTL rail lines, distributed)
4	n n	TB2S	520, 303.7 153.7	Tracker Rails @ Z= +/- 781.3mm, BTL rails (next)
5	n n	TBPS + ITST Center (empty)	175.8, 150	Tracker Rails @ Z= +/- 781.3mm, BTL rails (prev.)
6	n n	TEDD + Seals	<mark>535,501</mark> ,10.8, 235.6	Tracker Rails @ Z= +/- 1474, 2494, 2650, BTL rails
7	n n	Bulkhead Disk	327.2 (80%,20%)	Tracker Rail ends, 12 and 6 o'clock M16s (@2800)
8	n n	ITST Ends (empty)	57.4	Bulkhead (tracker rail ends)
9	Small Ears, Bananas*Nose Cone Brackets	Nose Cones	340	Nose cone corner brackets, offset mass to3500?
10	n n	Services moved to cones	1452.6	Cone brackets during lift/lower, offset to3500?
11	 Bananas* Big Ears Z- Eiffel+Nose Brackets Z+ 	Big ears* REMOVE SMALL EARS*	73.4* Z- only -31.2*	*if modeled explicitly Eiffel "reaches through" and supports Z+ nose cone
12	- Support Bracket	REMOVE NOSE CONES, EARS	120*,-1452.6, - 340	Banana support post, nose cone corner brackets
13	N N	Service Cylinder w/ TBPX	172, 67.9	Tracker Rails @ +/- 781.3mm, Bulkhead (rail ends)
14	n n	ТЕРХ	117.0	Bulkhead via rail ends
15 TST	"" $HalfSymm_2022_02$	Cool to -5°C, +10°C outside	6 K12016 E6ra	Outer face sheets (quarter, joint, end), end ring at +10°C

Small Ears + Tube Only + Bananas Installed

BTST_HalfSymm_2023-03-03_highMod_HM63_F6_K13916_F6rail.inp

BTST_HalfSymm_2023-02-23_highMod_HM63_F6_K13916_F6rail

1 -	Small Ears	1 Tube Only	384.1		
2 -	Small Ears, Bananas*	N N	9.4	GRAVITY on full mode	
Case	BCs	Additions	Masses of Additions	(kg)	Locations of Masses

+ BTL rails, trays, services

3		BTL	1884.3,18,23.7	Tube inner surface (38 BTL rail lines, distributed)
Case	BCs	Additions	Masses of Additions (kg) Locations of Masses

+ TB2S, services

Case

+ TBPS, services, ITST center

+ TEDD, periphery seals

• Move TEDD Services to rail

C

1.8 1.6 1.4 1.2

0.8 0.6 0.4 0.2

6		TEDD + Seals	400,400,10.8,235.6	Tracker Rails @ Z= +/- 1474, 2494, 2650, BTL rails	
ase	BCs	Additions N	lasses of Additions (k	kg) Locations of Masses	

+ Bulkhead disk

Move TEDD Services

7		Bulkhead Disk	327.2 (80%,20%)	Tracker Rail ends, 12 and 6 o'clock M16s (@2800)	
ase	BCs	Additions N	Masses of Additions (I	kg) Locations of Masses	

+ ITST Ends

Move TEDD Services

8		ITST Ends (empty)	57.4	Bulkhead (tracker ra	nil ends)
Case	BCs	Additions	Masses of Additions	(kg)	Locations of Masses

+ Nose Cones

• Move TEDD Services

9	 Small Ears, Bananas* Nose Cone Brackets 	Nose Cones	340	Nose cone corner brackets, offset mass to3500?	
Case	BCs	Additions	Masses of Additions	(kg) Locations of Masses	

+ Move Services to Nose Cones

Move TEDD Services

10		Services moved to cones	1452.6	Cone brackets during lift to3500?	t/lower, offset
Case	BCs	Additions	Masses of Additions (kg) Loca	ations of Masses

+ Switch support from small ears to big ears

Move TEDD Services

11	- Bananas*	Big ears*	73.4* Z+ only	*if modeled explicitly	
	- Big Ears Z+	REMOVE SMALL EARS*	-31.2*	Eiffel "reaches through" and supports Z- nos	
	 Eiffel+Nose Brckts Z- 			cone	
lase	BCs	Additions	Masses of Additions (kg) l	_ocations of Masses

© 2023 Composites Manufacturing & Simulation Center

+ Brackets, Remove Nose Cones, Remove Big Ears

Move TEDD Services

12	- Support Bracket	REMOVE NOSE CONES, EARS	120*,-1452.6, - 340	Banana support post, nose cone corner brackets
Case	BCs	Additions	Masses of Additions (kg) Locations of Masses

+ Service Cylinders

Move TEDD Services

13		Service Cylinder w/ TBPX	172, 67.9	Tracker Rails @ +/ ends)	- 781.3mm, Bulkhead (rail
Case	BCs	Additions	Masses of Additions (kg)	Locations of Masses

+ TEPX

• Move TEDD Services

+ Cool to -20°C -5°C

- Move TEDD Services
- Outer face sheets and end ring at +10°C per Guillermo's models on next slide

