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Introduction

* BACKGROUND AND IMPORTANCE
 MOTIVATION
* THESIS STATEMENT
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Particle Physics

* The study of fundamental
constituents of matter and their
interactions.

* Rooted in centuries of scientific
inquiry, culminating in the
Standard Model.

* However, still many unresolved
guestions...

https://www.home.cern/science/accelerators/large-hadron-collider
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The Standard Model of Particle Physics

Standard Model of Elementary Particles

* Two types of particles:
* Fermions — matter particles oY e () saerres

* Bosons —force carrying ped h"m { zgfon zhi';s

particles Gz | === | === i

* Describes three of the four | sown || scrange || votom || ghoton

fundamental interactions:
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Dark Matter

* Evidence o
 Galaxy rotation curves 150~ -
e Galaxy clusters . i
e Gravitational lensing
e Cosmic microwave background
e Structure formation

* Theories
» Weakly interacting massive particles (WIMPs)
e Sterile neutrinos

* Axions i}
0.-'1 1 1 1 l 1 L i 1 I 1 1 | |
* .. 0 10 20 30

Radius (kpc)

Galactic rotation curve for NGC 6503 showing disk and gas
contribution plus the dark matter halo contribution needed to
match the data. https://arxiv.org/pdf/1701.01840.pdf
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Particle Detectors and Their Role

EM Calorimeter

Inner Tracker
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Hadronic Calorimeter

Muon Trackers

Muon
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Hadronic
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Electromagnetic
Calorimeter
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Transition
Radiation
Trockmg Tracker

X
Pixel/SCT detector
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Trigger System

* Event rate is too high to store everything
* Must decide which events to keep, which to oo
throw out (“trigger system”) =
e Usually, a two-tier system "
* Level 1 trigger (L1) — ~us latency Gf o

* High-level trigger (HLT) — ~100 ms latency

Front end pipelines

Readout buffers

CMS: 2 physical levels

https://cds.cern.ch/record/2232067 /files/arXiv:0810.4133.pdf
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Challenges in Event Reconstruction

To discover new physics, need higher luminosity & energy...

...which leads to more complex events, increasing computing
demand and decreasing performance

Run 3 (u=55) Run 4 (1=88-140) Run 5 (u=165-200)
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Deep Learning

* An evolving subfield of machine
learning (ML) and artificial
intelligence (Al), with applications |
in particle physics.

— car
gX E E v
— van
- |:.] l:] — bicycle

classification

https://cerncourier.com/a/the-rise-of-deep-learning/

* Physics-relevant techniques
include classification, tagging, “1.

noise reduction, event
reconstruction, event simulation,
¥ ..\°

anomaly detection...

{ 2= 7\‘

Output

RelU

https://theaisummer.com/Graph_Neural_Networks/
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Study 1: Performance of a
Geometric Deep Learning

Pipeline for HL-LHC Particle
Tracking

* FUNDAMENTALS
* METHODOLOGY
* RESULTS




Particle Tracking

Massive volume of straw
tubes

<4— ° Gives1D

measurements with
drift time
information +

r R =1082mm
transition radiation

£ v Four layers of silicon
w R . i - strip sensors
[T e Provide 1D

e NS < measurements
e Two-sided modules
combine to give 2D
LR = 554mm measurements
f R=514mm
R =443mm

scT¢
R=371mm

\\‘\ Four layers of

<= ~T%*" pixel sensors

= >~_ e Provide 2D
ST measurements

\ R =299mm

R =122.5mm
Pixels { R =88.5mm
R = 50.5mm
R =33.25mm

R =0mm

Image: https://atlassoftwaredocs.web.cern.ch/trackingTutorial/idoverview/
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Particle Tracking Challenge

331.3 ms

https://cds.cern.ch/record/2792313/files/DP2021_013.pdf

December 7, 2023

80 CMS Simuiation preliminary 13 TeV
= - 2016
o 70f 2017
o - 22017 (CA) /
E 60 g
o 505_ __________ tt events ///
k= - tracking time of /7
S - ..2016 no PU =1 /
8 40 -
S /

20" /

1 Df /

0

FINAL EXAM (ALEX SCHUY)

10 20 30 40 50 60 70
Average pileup




Graph Neural Networks

* Graphs excel at representing S
relationships. ®
¢ G N N S a re ta i |0 re d fo r g ra p h - https://en.wikipedia.org/wiki/Vertex_(graph_theory)

structured data.
* GNNs use message-passing
to update graph information. @ @

MNec

NELE

DEC

Edge update

[

Example of a message passing GNN.
Left: a single message passing update.
Right: illustration of receptive field after n passes.

https://deepmind.google/discover/blog/towards-understanding-glasses-with-graph-neural-networks/
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Graphs for Tracking

a Input tracker event

b GNN tracking pipeline

Graph construction
Edges drawn between hits
o .
el
’ . d OI ? "?‘.}"
rs - S S N . Edge labels
¥ ” .»" =P M True 4
: ? ': M False |
-
[} |
|
. GNN inference <
. Edges pruned from the graph
. Note: there are misclassifications

h

M Tracker layers '
M Calorimeter layers Postprocessing o—o—o—o—2 Track]
il Particles Tracks are connected components o—e—g o

@ Tracker hits |
o Track 3 etc.

https://www.nature.com/articles/s42254-023-00569-0
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Exa.TrkX Pipeline
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Down-beampipe Spacepoint Distribution
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Performance and Results
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Noise Study
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Timing Study

CPU GPU
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Conclusion

> Showed that a deep learning approach to tracking can achieve
linear scaling.

o Latency reduced by 100x using GPU, but still too slow for now.
> Robust to detector noise and pile-up.

> Need further studies:
> Detector-specific (verify performance)

o Algorithmic / hardware (reduce latency)
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Study 2: DeepCalo

* FUNDAMENTALS
 METHODOLOGY
* RESULTS
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Particle Energy Reconstruction

Comes at the end of a
complicated chain

> Tracking (previous study)
> Calorimeter clustering (see next SR
study) N
. Stlicon -
o Particle flow Trachar 8
Electromagnetic
Calorimeter
) ) ) ) Hadron ~/,
Objective: estimate energy of particle vy SR .. I
with muen chambers

given lower-level information

Electron

Muon

Charged hadron (e.g. pion)

- ==-Neutral hadron (e.g. neutron) «---. Photon
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Data

/Z — ee decays in the forward region
In| > 3.1 are used.

0.0675

Layer O Layer 1

100

Many inputs:
o ECAL images (energy, time, noise, gain) ~0.0675
> Scalar variables 3 -0.1350
> Tracks

Layer 2 Layer 3
0.1350

[A®9] G0°0 + AbBisu3

0.0675

0.0000 Lo

—0.0675

—0.1350
—0.0875 0.0000 0.0875 —0.0875 0.0000 0.0875
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DeepCalo

ECAL CNN (image-only model)

Block 6 Block 7 QOutput
Targets
e Dense
256

4 Block 5
M Max pooling
3@ Dens
6 3 :Aﬁ
28 128 256 256

Block 1
ECAL U

Deep learning model built to
improve electron/photon
energy regression

16 32 64 128 128

FiLM

TWO mOdEIS: Track-Net Scalar-Net Genera_tor_ |
* Full model (shown on right) N v:;:'.::sH>< :

* Image-only (CNN only)

eeeee
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Field Programmable Gate Arrays (FPGAS)

Digital integrated circuits that are configurable after
manufacture.

Consist of:
> Basic configurable logic blocks (CLBs)
° Programmable interconnects
° RAM
> DSP blocks

More flexible than GPUs, allowing for higher efficiency
and lower latency.

Designed using HLSAML, which is a high-level tool to
implement ML on FPGAs.
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Quantization

FLOATING POINT

Can represent wide range of magnitudes and
precisions.

Common in CPUs and GPUs.

Exponent

A
(1.100011), x 23 = 12.375
( J
|
Significand

December 7, 2023
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FIXED POINT

Less flexible, but generally simplifies design,
leading to higher efficiency and reduced cost.

Common in embedded systems (e.g., FPGAs).

\11003\0110;= 12.375

Y Y
Integer Fractional

bits bits

27




Quantization

How should we convert a floating-point model to a fixed-point
model with lower precision?
* Post-training quantization (PTQ): approximate each
weight/bias with closest fixed-point equivalent.
* Quantization-aware training (QAT): simulate quantization
during the training process.
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Tuning Precision

To optimize the precision for PTQ and QAT, we used the
following two-step approach:
1. Scan bit widths from 32 to 2 bits, with integer bits varying for
PTQ.

2. Scan the same bit widths, but with fixed integer/fractional bit
ratio based on (1.) for QAT.




PTQ vs QAT

Image-Only Model MAE Full Model MAE
—— MAE_PTQ —— MAE_PTQ
—«— MAE_QAT —+— MAE_QAT
16 120
hils 4 ml
14 100
(W] Ll
< <
= 10 = 60
8 40
6 20
—— . his 4 ml
S EEEEE————— ol , , , , , ‘ ‘
&7 07 A7 A7 767 o7 & &7 AT AT &7 &7 &7 7 v ol a7 &7 A7 &7 &7 N a7 Y ~7
Y Y Y LY Y YO DAL 0,9 XD A0V BT AN \ . \ : R R . .
VA AR L N AT YT Y NN N N NN L L © D Vv o > © o Vv
!:’J !:!r ;’b ﬂr l:l’ !:L.a'r L7 L Jr L7 L lela'j L7 L ‘."\/ ‘."\/ i} i> L L L L
Fixed-point precision Fixed-point precision
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Full Model vs Image-only Model

MAE comparison of two models

—+— Image_Only_MAE_QAT
—+— Full_Model_MAE_QAT

8.51

8.0

7.5

5.01

el B his 4 ml

-:16;,8:- <14,7> <12,6> <1d,5> <8,'4>
Fixed-point precision
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Latency

Coprocessor CPU GPU FPGA
Type Ryzen 7 3700X Ryzen 5 5600H AMD EPYC 7262 | RTX 2070 Super Tesla V100 RTX 2080 Ti | single-stream  mixed-type
Batch=1
Latency 7.52ms 8.75ms 5.865ms 8.47ms 4.8ms 8.2ms 1.106ms 0.898ms
Speedup 1.164 x 1x 1.492 % 1.033x 1.823x 1.067x 7.911x 9.744 x
Power 53.73W 29.13W 42.65W 49.7TW 60.11W 64.54W 19.76W 20.75W
Energy 404.05mJ 254.888mJ 250.142mJ 421.552mJ 288.528mJ  529.228mJ 21.855mJ 18.634mJ
Batch=5
Latency 11.5ms 13.45ms 10.545ms 9.75ms 5.1ms 7ms 2.695ms 1.485ms
Speedup 1.17x 1x 1.275x 1.379x 2.637x 1.921x 4.991 x 9.057x
Power 62.44W 37.6TW 48.94W 51.83W 61.73W 84.18W 21W 23.7T75W
Energy 718.06mJ 506.66m.J 516.07mJ 505.345m.J 314.825mJ 589.26m.J 56.595mJ 35.305mJ
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Conclusion

Deploying deep learning models to FPGAs can further
reduce latency while preserving accuracy through
appropriate optimization and design (including use of QAT).
> Image-only: 14.1x (9.7x) speedup compared to CPU (GPU)

> Full model: 7.9x (5.3x) speedup




Study 3: SPVCNN for
Hadronic Calorimetry
Clustering

* FUNDAMENTALS

 METHODOLOGY
* RESULTS
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Image: https://www.ericmetodiev.com/post/jetformation/
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s ATLAS simulation 2010
= i e = T
2f ATLAS £ [Pyhabazs T T
E | @ | dijet event . :
© | X o " H s N
@ = - R H P
%0.8 5 E 0.05 __'_.',:' _____ ‘:, ________ " _‘ ______ _@ EXPERIMENT
e | - i N R 5 Run: 350013
0.6 - : : : o Event: 1556168518
L B i 2018-05-11 01:39:26 CEST
04l 0 o S
I i i :
. =5= i
02} :EE P
I 20,05 et DXL
0 e | 1
2 A A B, o = R R . i R
0 100 200 300 400 500 600 .05 ) 0.05

Time [ns] [tan 6] x cos 6

Digitization H Clusters H Particles / Jets

Images (left, middle): https://arxiv.org/pdf/1603.02934.pdf Image (right): https://atlas.cern/updates/briefing/double-Higgs-to-bottoms
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s ATLAS simulation 2010
2f ATLAS £ [Pyhabazs T T
E | @ | dijet event . :
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Images (left, middle): https://arxiv.org/pdf/1603.02934.pdf Image (right): https://atlas.cern/updates/briefing/double-Higgs-to-bottoms
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Clustering Methodology With SPVCNN

* Hadronic Showers: incident particles shower Hapronic SHowers VoxeLizaTion

3
upon interaction with passive material, possibly ' ‘ ‘ ‘ oT A=At A -
[ 1o ;‘3‘r‘§
/ _L =

+ O

producing several hits in 3D space. — b

* Voxelization: Hits are mapped to a regular grid , P .V
for convolutional processing. o

e Clustering: NN maps hits to a 5+1D embedded
space. A bounded nearest-neighbor method
clusters the hits.

* Reconstructed Showers: Clustering assignments
reconstruct incident particle showers. This
information is passed to downstream algorithms
which perform energy regression, jet clustering,
etc.

ol N o
<

EMBEDDING IN
LATENT SPAcE

CONDENSATION
POINT

RECONSTRUCTED SHOWERS CLUSTERING

December 7, 2023 FINAL EXAM (ALEX SCHUY) 38




SPVCNN Motivation

Achieved first place on SemanticKITTI
leaderboard

Designed for 3D tasks that require: T oV N
* Low latency e MRS

i I e e S ORT AT P ’:.tt
> High computational efficiency A T IS— /'

> High accuracy
Original motivating problem was driverless cars.

Reconstruction in particle physics shares many of the same requirements.

Image: http://lidar-panoptic.cs.uni-freiburg.de/
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Point-Voxel Convolution (PVConv)

(a) Voxel-Based Feature Aggregation (Coarse-Grained)

[ ] ]
] ¢ Voxelize . Convolve Devoxelize ® “
° _— 5 > ®
[ ]

I Normalize l Fuse
B ¢ b b s e s s e e s e e e e e e eSS e e B e S e e e e K e e e e RS e e S E e e S B R eSS R e R e »0
[ ] ® i L ] L
- ST ... Multi-Layer Perceptron (MLP) ««vovovvviiiiiiiniiinnn. >® -
e o °
e >0

(b) Point-Based Feature Transformation (Fine-Grained)

December 7, 2023 FINAL EXAM (ALEX SCHUY) 40




Sparse Point-Voxel Convolution
(SPVConv)

(a) Voxel-Based Feature Aggregation (Coarse-Grained)

[ ]
o ¢ Voxelize .
° _

Convolve Devoxelize °
_ >
[ ]
I Normalize l Fuse

B ¢ b b s e s s e e s e e e e e e eSS e e B e S e e e e K e e e e RS e e S E e e S B R eSS R e R e »0

Y b ° ®
- ST ... Multi-Layer Perceptron (MLP) ««coovvviiniiiiiiiniiiinn.. >® -

[ ] [ ] [ ]

e >0

(b) Point-Based Feature Transformation (Fine-Grained)

e Simply replaces upper branch with sparse convolution.
* Some details with normalization/voxelization and devoxelization/fusion:
* Hashing, trilinear interpolation
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Sparse Point-Voxel Convolution
(SPVConv)

(a) Voxel-Bas

o Voxelize .
—_—

Feature Aggregation (Coarse-Grained)

Convolve Devoxelize °
_ >
lize l Fuse

B ¢ b b s e s s e e s e e e e e e eSS e e B e S e e e e K e e e e RS e e S E e e S B R eSS R e R e »0

Y b ° ®
- ST ... Multi-Layer Perceptron (MLP) ««coovvviiniiiiiiiniiiinn.. >® -

[ ] [ ] [ ]

e >0

(b) Point-Based Feature Transformation (Fine-Grained)

e Simply replaces upper branch with sparse convolution.
* Some details with normalization/voxelization and devoxelization/fusion:
* Hashing, trilinear interpolation
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Voxelization

December 7, 2023 FINAL EXAM (ALEX SCHUY)



Sparse Point-Voxel Convolution
(SPVConv)

(a) Voxel-Ba

eature Aggregation rse-Grained)

° ¢ Voxelize Convolve Devoxelize “
o —_— —_— >
@ ® [ X ] [ ]
[ ]
I Normalize l Fuse
L >0
Y b ) ° ®
- ST ... Multi-Layer Perceptron (MLP) ««coovvviiniiiiiiiniiiinn.. >® -
[ ] ® [ ]
) 0000000 o e - > ®

(b) Point-Based Feature Transformation (Fine-Grained)

e Simply replaces upper branch with sparse convolution.
* Some details with normalization/voxelization and devoxelization/fusion:
* Hashing, trilinear interpolation
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Generalized Sparse Convolution

» Sparse convolutions operate directly on sparse tensors.

* Avoids wasted computation and allows for higher
resolution.

* Naive implementations (top) would quickly reduce sparsity.

 Modern implementations (bottom) allow for arbitrary input
(cin) and output (c,,+) coordinates. The example shown is a

‘submanifold sparse convolution’, which sets ¢;;, = ¢,y¢, thus

preserving sparsity. This is (almost) used in SPVCNN.
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Devoxelization

(a) Voxel-Based Feature Aggregation (Cpd7se-Grained)

[ ]
o ¢ Voxelize .
° _

Convolve Devoxelize
_ >
[ ]
I Normalize
B ¢ b b s e s s e e s e e e e e e eSS e e B e S e e e e K e e e e RS e e S E e e S B R eSS R e R e »0
Y b ° ®
- ST ... Multi-Layer Perceptron (MLP) ««coovvviiniiiiiiiniiiinn.. >® -
[ ] [ ] [ ]
e >0

(b) Point-Based Feature Transformation (Fine-Grained)
e Simply replaces upper branch with sparse convolution.

* Some details with normalization/voxelization and devoxelization/fusion:
* Hashing, trilinear interpolation
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CMS High-Granularity
Calorimeter (HGCAL)

Major upgrade for HL-LHC: 6.5M
channels, 50 layers.

Finer granularity, timing resolution
—> greater benefit from 3D deep
learning.

Despite increased data volume,
cannot sacrifice latency.

........

aHs
[ e
4\ el
’

.
. »‘;'.A...~..,.......,..,.
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HGCAL Results

-
el
-
- .
.
-
-
-
-
-

-

SPVCNN++ (Ours) Groundtruth

Left — predicted clusters from SPVCNN.
Right — event display from HGCAL.

Each point represents an energy deposit in the calorimeter. Each color corresponds to a cluster.

Wednesday, May 31, 2023 GENERAL EXAM (ALEX SCHUY) 48




HGCAL Results

GravNet 0.93 0.89 0.74 0.69

GravNet 0.93 0.90 0.83 0.76
(optimized)

SPVCNN 0.98 0.92 0.85 0.80

loU — measure of overlap between predicted and true classes (signal and noise).
SQ — average overlap between predicted and true clusters for each semantic class.
RQ — fraction of clusters for each semantic class that were matched.

PQ — product of SQ and RQ.
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HGCAL Results

Right: ratio of predicted to true

energy for each predicted o s
cluster, split into four types: s
. Electromagnetic (EM) 8 1

particles
- Hadronic (HAD) particles - :
- Minimume-ionizing particles .

(MIP) Il
. A mixture of the above (MIX) . .E_l ﬂ

°"o6  o0s 10 15 20 25 30

o, sruth
E:rs /Ems
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HCA
RestL
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Jet response @
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Latency / Throughput
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Future Implications

Modern convolutional approaches that exploit tricks for efficient
computation are competitive with current clustering methods and
other proposed ML methods for the HL-LHC.

Latency at the level needed for the HLT (~“ms) is achievable with
GPU accelerators. Beyond this level, further innovations are
probably required, e.g., exploiting FPGAs and ASICs.
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Conclusion
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Wrap-up

Advancements in particle detector technology (e.g., the HL-LHC) have the
potential to address outstanding problems in particle physics.

Deep learning methods on GPUs or FPGAs can overcome challenges in
performance at higher energies and luminosities predicted with
conventional approaches.

This thesis showcased several such examples in tracking, calorimetry
clustering, and energy regression, which are crucial steps in event
reconstruction.

Further development along these lines will likely significantly enhance the
effectiveness of the HL-LHC and future detectors.
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Previous
Approaches

Fall into two categories:
> Point cloud models

o Voxel models
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Limitations of Previous Approaches

128x128x128 resolution
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7% information loss
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HGCAL Samples

Zero pileup, double-tau dataset.

_ - Truth

CMS detector simulation with GEANT4. ¥ :

100 PU-O = X /
Simulation-level energy deposits are mapped T
onto reconstructed energy deposits to form the 5
truth definition. !
Inseparable showers (due to overlap) are p ) ;’ﬂ' e
merged. 2 o Pf _
Each event has ~20K hits. & < A
See CR2022 033.pdf (cern.ch) for detailed o 0 o
description of samples. T & 5 :

-
*(cm) &

° S0o
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https://cds.cern.ch/record/2803236/files/CR2022_033.pdf

HCAL Samples

. Zero pileup, ttbar dataset.
- CMS detector simulation with GEANT4.

- Simulation-level energy deposits are mapped onto reconstructed energy deposits to
form the truth definition.

- The details of truth matching are a bit different than for HGCAL — won’t go into it
here.

December 7, 2023 FINAL EXAM (ALEX SCHUY)



	Slide 1: Deep Learning Applications for Particle Physics in Tracking and Calorimetry
	Slide 2: Introduction
	Slide 3: Particle Physics
	Slide 4: The Standard Model of Particle Physics
	Slide 5: Dark Matter
	Slide 6
	Slide 7: Particle Detectors and Their Role
	Slide 8: Trigger System
	Slide 9: Challenges in Event Reconstruction
	Slide 10: Deep Learning 
	Slide 11: Study 1: Performance of a Geometric Deep Learning Pipeline for HL-LHC Particle Tracking
	Slide 12: Particle Tracking
	Slide 13: Particle Tracking Challenge
	Slide 14: Graph Neural Networks
	Slide 15: Graphs for Tracking
	Slide 16: Exa.TrkX Pipeline
	Slide 17: Data
	Slide 18: Performance and Results
	Slide 19: Noise Study
	Slide 20: Timing Study
	Slide 21: Conclusion
	Slide 22: Study 2: DeepCalo
	Slide 23: Particle Energy Reconstruction
	Slide 24: Data
	Slide 25: DeepCalo
	Slide 26: Field Programmable Gate Arrays (FPGAs)
	Slide 27: Quantization
	Slide 28: Quantization
	Slide 29: Tuning Precision
	Slide 30: PTQ vs QAT
	Slide 31: Full Model vs Image-only Model
	Slide 32: Latency
	Slide 33: Conclusion
	Slide 34: Study 3: SPVCNN for Hadronic Calorimetry Clustering
	Slide 35
	Slide 36
	Slide 37
	Slide 38: Clustering Methodology With SPVCNN
	Slide 39: SPVCNN Motivation
	Slide 40: Point-Voxel Convolution (PVConv)
	Slide 41: Sparse Point-Voxel Convolution (SPVConv)
	Slide 42: Sparse Point-Voxel Convolution (SPVConv)
	Slide 43: Voxelization
	Slide 44: Sparse Point-Voxel Convolution (SPVConv)
	Slide 45: Generalized Sparse Convolution
	Slide 46: Devoxelization
	Slide 47: CMS High-Granularity Calorimeter (HGCAL)
	Slide 48: HGCAL Results
	Slide 49: HGCAL Results
	Slide 50: HGCAL Results
	Slide 51: HCAL Results
	Slide 52: Latency / Throughput
	Slide 53: Future Implications
	Slide 54: Conclusion
	Slide 55: Wrap-up
	Slide 56: Work
	Slide 57: Acknowledgements
	Slide 58: Backup
	Slide 59: Previous Approaches
	Slide 60: Limitations of Previous Approaches
	Slide 61: HGCAL Samples
	Slide 62: HCAL Samples

