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Introduction
• BACKGROUND AND IMPORTANCE

• MOTIVATION

• THESIS  STATEMENT
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Particle Physics
• The study of fundamental 

constituents of matter and their 
interactions.

• Rooted in centuries of scientific 
inquiry, culminating in the 
Standard Model.

•However, still many unresolved 
questions…
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https://www.home.cern/science/accelerators/large-hadron-collider



The Standard Model of Particle Physics
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• Two types of particles:
• Fermions – matter particles
• Bosons – force carrying 

particles
• Describes three of the four 

fundamental interactions:
• Electromagnetism
• Weak force
• Strong force



Dark Matter

Galactic rotation curve for NGC 6503 showing disk and gas 
contribution plus the dark matter halo contribution needed to 
match the data. https://arxiv.org/pdf/1701.01840.pdf

• Evidence
• Galaxy rotation curves
• Galaxy clusters
• Gravitational lensing
• Cosmic microwave background
• Structure formation
• …

• Theories
• Weakly interacting massive particles (WIMPs)
• Sterile neutrinos
• Axions
• …
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Particle Detectors and Their Role
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Trigger System
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https://cds.cern.ch/record/2232067/files/arXiv:0810.4133.pdf

• Event rate is too high to store everything
• Must decide which events to keep, which to 

throw out (“trigger system”)
• Usually, a two-tier system

• Level 1 trigger (L1) – ~𝜇s latency
• High-level trigger (HLT) – ~100 ms latency



Challenges in Event Reconstruction
To discover new physics, need higher luminosity & energy…

…which leads to more complex events, increasing computing 
demand and decreasing performance
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Deep Learning 
•An evolving subfield of machine 

learning (ML) and artificial 
intelligence (AI), with applications 
in particle physics.

• Physics-relevant techniques 
include classification, tagging, 
noise reduction, event 
reconstruction, event simulation, 
anomaly detection…
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https://theaisummer.com/Graph_Neural_Networks/

https://cerncourier.com/a/the-rise-of-deep-learning/



Study 1: Performance of a 
Geometric Deep Learning 
Pipeline for HL-LHC Particle 
Tracking
• FUNDAMENTALS

• METHODOLOGY

• RESULTS
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Particle Tracking
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Image: https://atlassoftwaredocs.web.cern.ch/trackingTutorial/idoverview/



Particle Tracking Challenge
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https://cds.cern.ch/record/2792313/files/DP2021_013.pdf



Graph Neural Networks
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https://en.wikipedia.org/wiki/Vertex_(graph_theory)

Example of a message passing GNN. 
Left: a single message passing update.
Right: illustration of receptive field after n passes.

https://deepmind.google/discover/blog/towards-understanding-glasses-with-graph-neural-networks/

• Graphs excel at representing 
relationships.

• GNNs are tailored for graph-
structured data.

• GNNs use message-passing 
to update graph information.



Graphs for Tracking
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https://www.nature.com/articles/s42254-023-00569-0



Exa.TrkX Pipeline
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Data
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Performance and Results
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𝜖tech =
𝑁𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 selected, reconstructable,matched

𝑁𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠(selected, reconstructable)

Purity =
𝑁𝑡𝑟𝑎𝑐𝑘𝑠 selected,matched

𝑁𝑡𝑟𝑎𝑐𝑘𝑠(selected)

𝜖phys =
𝑁𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠 selected,matched

𝑁𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠(selected)



Noise Study

Noise (%) 𝝐𝐭𝐞𝐜𝐡 Purity

0 91.5 59.3

4 91.5 59.3

8 91.1 58.0

12 90.9 56.8

16 92.2 54.8

20 89.9 53.9
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Timing Study
CPU GPU
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Conclusion
◦ Showed that a deep learning approach to tracking can achieve 

linear scaling.

◦ Latency reduced by 100x using GPU, but still too slow for now.

◦ Robust to detector noise and pile-up.

◦ Need further studies:
◦ Detector-specific (verify performance)

◦ Algorithmic / hardware (reduce latency)
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Study 2: DeepCalo
• FUNDAMENTALS

• METHODOLOGY

• RESULTS
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Particle Energy Reconstruction
Comes at the end of a 
complicated chain
◦ Tracking (previous study)

◦ Calorimeter clustering (see next 
study)

◦ Particle flow

Objective: estimate energy of particle 
given lower-level information
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Data
𝑍 → 𝑒𝑒 decays in the forward region 
𝜂 > 3.1 are used.

Many inputs:
◦ ECAL images (energy, time, noise, gain)

◦ Scalar variables

◦ Tracks
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DeepCalo
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Deep learning model built to 
improve electron/photon 
energy regression

Two models:
• Full model (shown on right)
• Image-only (CNN only)



Field Programmable Gate Arrays (FPGAs)
Digital integrated circuits that are configurable after 
manufacture.

Consist of:
◦ Basic configurable logic blocks (CLBs)

◦ Programmable interconnects

◦ RAM

◦ DSP blocks 

More flexible than GPUs, allowing for higher efficiency 
and lower latency.

Designed using HLS4ML, which is a high-level tool to 
implement ML on FPGAs. 
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Quantization
FLOATING POINT

Can represent wide range of magnitudes and 
precisions. 

Common in CPUs and GPUs.

FIXED POINT

Less flexible, but generally simplifies design, 
leading to higher efficiency and reduced cost.

Common in embedded systems (e.g., FPGAs).
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1.100011 2 × 23 = 12.375

Significand

Exponent
1100.0110 = 12.375

Integer 
bits

Fractional 
bits



Quantization
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How should we convert a floating-point model to a fixed-point 
model with lower precision?

• Post-training quantization (PTQ): approximate each 
weight/bias with closest fixed-point equivalent.

• Quantization-aware training (QAT): simulate quantization 
during the training process.



Tuning Precision
To optimize the precision for PTQ and QAT, we used the 
following two-step approach:
1. Scan bit widths from 32 to 2 bits, with integer bits varying for 

PTQ.

2. Scan the same bit widths, but with fixed integer/fractional bit 
ratio based on (1.) for QAT.
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PTQ vs QAT

December 7, 2023 FINAL EXAM (ALEX SCHUY) 30



Full Model vs Image-only Model
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Latency
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Conclusion
Deploying deep learning models to FPGAs can further 
reduce latency while preserving accuracy through 
appropriate optimization and design (including use of QAT).
◦ Image-only: 14.1x (9.7x) speedup compared to CPU (GPU)

◦ Full model: 7.9x (5.3x) speedup
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Study 3: SPVCNN for 
Hadronic Calorimetry 
Clustering
• FUNDAMENTALS

• METHODOLOGY

• RESULTS
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Jets

Image: https://www.ericmetodiev.com/post/jetformation/
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Digitization Clusters Particles / Jets

Images (left, middle): https://arxiv.org/pdf/1603.02934.pdf Image (right): https://atlas.cern/updates/briefing/double-Higgs-to-bottoms
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Digitization Clusters Particles / Jets

Images (left, middle): https://arxiv.org/pdf/1603.02934.pdf Image (right): https://atlas.cern/updates/briefing/double-Higgs-to-bottoms



Clustering Methodology With SPVCNN
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• Hadronic Showers: incident particles shower 
upon interaction with passive material, possibly 
producing several hits in 3D space.

• Voxelization: Hits are mapped to a regular grid 
for convolutional processing. 

• Clustering: NN maps hits to a 5+1D embedded 
space. A bounded nearest-neighbor method 
clusters the hits. 

• Reconstructed Showers: Clustering assignments 
reconstruct incident particle showers. This 
information is passed to downstream algorithms 
which perform energy regression, jet clustering, 
etc. 



SPVCNN Motivation

Achieved first place on SemanticKITTI 
leaderboard

Designed for 3D tasks that require:
◦ Low latency

◦ High computational efficiency

◦ High accuracy

Original motivating problem was driverless cars.

Reconstruction in particle physics shares many of the same requirements.
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Image: http://lidar-panoptic.cs.uni-freiburg.de/



Point-Voxel Convolution (PVConv)
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Sparse Point-Voxel Convolution 
(SPVConv)

• Simply replaces upper branch with sparse convolution.
• Some details with normalization/voxelization and devoxelization/fusion:

• Hashing, trilinear interpolation
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Sparse Point-Voxel Convolution 
(SPVConv)

• Simply replaces upper branch with sparse convolution.
• Some details with normalization/voxelization and devoxelization/fusion:

• Hashing, trilinear interpolation
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Voxelization
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Sparse Point-Voxel Convolution 
(SPVConv)

• Simply replaces upper branch with sparse convolution.
• Some details with normalization/voxelization and devoxelization/fusion:

• Hashing, trilinear interpolation

December 7, 2023 44FINAL EXAM (ALEX SCHUY)



Generalized Sparse Convolution

• Sparse convolutions operate directly on sparse tensors.

• Avoids wasted computation and allows for higher 
resolution.

• Naïve implementations (top) would quickly reduce sparsity.

• Modern implementations (bottom) allow for arbitrary input 
(𝑐𝑖𝑛) and output (𝑐𝑜𝑢𝑡) coordinates. The example shown is a 
‘submanifold sparse convolution’, which sets 𝑐𝑖𝑛 = 𝑐𝑜𝑢𝑡, thus 
preserving sparsity. This is (almost) used in SPVCNN.
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Devoxelization

• Simply replaces upper branch with sparse convolution.
• Some details with normalization/voxelization and devoxelization/fusion:

• Hashing, trilinear interpolation
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CMS High-Granularity 
Calorimeter (HGCAL)

Major upgrade for HL-LHC: 6.5M 
channels, 50 layers.

Finer granularity, timing resolution 
→ greater benefit from 3D deep 
learning.

Despite increased data volume, 
cannot sacrifice latency.
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HGCAL Results
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Left – predicted clusters from SPVCNN.
Right – event display from HGCAL.

Each point represents an energy deposit in the calorimeter. Each color corresponds to a cluster.



HGCAL Results
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IoU – measure of overlap between predicted and true classes (signal and noise).
SQ – average overlap between predicted and true clusters for each semantic class.
RQ – fraction of clusters for each semantic class that were matched.
PQ – product of SQ and RQ.

mIoU SQ RQ PQ

GravNet 0.93 0.89 0.74 0.69

GravNet 
(optimized)

0.93 0.90 0.83 0.76

SPVCNN 0.98 0.92 0.85 0.80



HGCAL Results
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Right: ratio of predicted to true 
energy for each predicted 
cluster, split into four types:
o Electromagnetic (EM) 

particles
o Hadronic (HAD) particles
o Minimum-ionizing particles 

(MIP)
o A mixture of the above (MIX)
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HCAL 
Results



Latency / Throughput
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Future Implications
Modern convolutional approaches that exploit tricks for efficient 
computation are competitive with current clustering methods and 
other proposed ML methods for the HL-LHC.

Latency at the level needed for the HLT (~ms) is achievable with 
GPU accelerators. Beyond this level, further innovations are 
probably required, e.g., exploiting FPGAs and ASICs.
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Conclusion
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Wrap-up
Advancements in particle detector technology (e.g., the HL-LHC) have the 
potential to address outstanding problems in particle physics.

Deep learning methods on GPUs or FPGAs can overcome challenges in 
performance at higher energies and luminosities predicted with 
conventional approaches. 

This thesis showcased several such examples in tracking, calorimetry 
clustering, and energy regression, which are crucial steps in event 
reconstruction. 

Further development along these lines will likely significantly enhance the 
effectiveness of the HL-LHC and future detectors.
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Backup
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Previous 
Approaches

Fall into two categories:
◦ Point cloud models

◦ Voxel models
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Limitations of Previous Approaches
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HGCAL Samples
Zero pileup, double-tau dataset.

CMS detector simulation with GEANT4.

Simulation-level energy deposits are mapped 
onto reconstructed energy deposits to form the 
truth definition.

Inseparable showers (due to overlap) are 
merged. 

Each event has ~20K hits.

See CR2022_033.pdf (cern.ch) for detailed 
description of samples.
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https://cds.cern.ch/record/2803236/files/CR2022_033.pdf


HCAL Samples
o Zero pileup, ttbar dataset.

o CMS detector simulation with GEANT4.

o Simulation-level energy deposits are mapped onto reconstructed energy deposits to 
form the truth definition.

o The details of truth matching are a bit different than for HGCAL – won’t go into it 
here.
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