
Bash and Git

Jake Lane
Monash University, Australia

StarterKit 2024
12-16 Feb 2024

1

Bash

2

Prerequisites checklist

3

 From the starterkit-lessons :
Pre-workshop checklist — LHCb
Starterkit Lessons documentation

1. Can you access:
https://lhcb-portal-dirac.cern.ch/DIR
AC

2. Can you access a terminal and type:
ssh -Y USERNAME@lxplus.cern.ch
with your cern username for USERNAME

3. Can you run
lhcb-proxy-init
on lxplus?

https://lhcb.github.io/starterkit-lessons/first-analysis-steps/prerequisites.html
https://lhcb.github.io/starterkit-lessons/first-analysis-steps/prerequisites.html
https://lhcb-portal-dirac.cern.ch/DIRAC/
https://lhcb-portal-dirac.cern.ch/DIRAC/
mailto:mylxplusname@lxplus.cern.ch

lxplus

1. LinuX Public Login User Service https://lxplusdoc.web.cern.ch/
2. Linux based machines (based on Red Hat/CentOS/AlmaLinux)
3. Different flavours available :

• lxplus7 - Centos7 (used to be default, now legacy)
• lxplus8 - AlmaLinux 8
• lxplus9 - AlmaLinux 9 - now the default
• lxplus-gpu - GPU node (has AlmaLinux9) equipped with Nvidia Tesla T4

Login via
• ssh USERNAME@lxplus<7,8,9,-gpu>.cern.ch
• You actually log in to lxplus9NNN - where NNN is a machine assigned depending on the

available resources
• If you have a process running on lxplus800.cern.ch and log out (e.g. with tmux) then you

have to log into lxplus800.cern.ch (not lxplus8.cern.ch!)

4

● Andrew filesystem (AFS) - distributed filesystem for
personal files for CERN users, all lxplus nodes look at

○ /afs/cern.ch/user/u/username (you get up to 10GB here)
○ /afs/cern.ch/work/u/username (LHCb users get 100GB here)
○ Increase your quota

https://resources.web.cern.ch/resources/Manage/AFS/

○ Files are backed up (up to 24 hours) in
/afs/cern.ch/ubackup/<initial>/<username>

● EOS - (Eos Open Storage) - CERN’s filesystem for larger
storage

○ /eos/user/<initial>/<username> (you get 1000GB here)
■ Also appears in CERNBOX - like Dropbox for CERN
■ https://cernbox.cern.ch/

○ /eos/lhcb/user/<inital>/<username> (LHCb users get
2000GB here)

○ CERNBOX also backs up in
● CVMFS - (CERN Virtual Machine file system) - contains

software used by lxplus
○ Most programs you run will look at CVMFS
○ Can configure your lxplus session with different versions of

common software (e.g. python versions)

lxplus Storage

5

https://resources.web.cern.ch/resources/Manage/AFS/

● Bourne Again SHell (bash) - GNU version of the Bourne Shell (sh), default in UNIX
systems (Linux, macOS etc.)

● “Shell program” - used to launch other programs
● On macOS/Linux, just launch any terminal app and you have a bash shell
● There are other options (zsh, csh, ksh,fish etc.) but bash is the most popular

bash

6

● Windows doesn’t come with bash by
default

○ Can install one on Windows 11 - install
Terminal, enable WSL, install Ubuntu, launch
terminal, set username/password, and you’re
done!

■ see Install WSL | Microsoft Learn
(basically open a command prompt as
admin, then type wsl --install then
restart)

○ OR install WSL manually (Windows 10 -
install Ubuntu and enable WSL, launch
Ubuntu and set username/password):

■ Manual installation steps for older
versions of WSL | Microsoft Learn

○ OR set up a virtual machine (e.g. with
VirtualBox) and install Linux there to get a
bash terminal

■ https://www.virtualbox.org/
○ OR use PUTTY to SSH into lxplus from

Windows directly
■ https://putty.org/

bash on Windows

7

https://learn.microsoft.com/en-us/windows/wsl/install
https://learn.microsoft.com/en-us/windows/wsl/install-manual
https://learn.microsoft.com/en-us/windows/wsl/install-manual
https://www.virtualbox.org/
https://putty.org/

● ls <directory> (show contents of a directory)
○ ls -l -h shows the contents in a list and in a human-readable format for sizes
○ ls -a shows all files
○ “.” is the current directory, “..” is the directory above

● pwd (print working directory)
○ pwd -P shows the full physical path (e.g. if you set up a symlink, pwd -P bypasses it) of where you are (the working

directory)
● ln (link)

○ symlinks one place in the filesystem with another (effectively a shortcut), e.g. “ln -s
/eos/lhcb/user/u/username/my_analysis/my_big_tuple.root .” puts “my_big_tuple.root” in your working directory

● touch <filename>
○ make an empty file called “filename”

● cp <target> <destination>
○ Copies a file from <target> to <destination>
○ “cp -pr” copies a folder and its contents
○ Or do “rsync -pr –progress” gives you a progress bar and lets you copy from ssh

● rm <target>
○ Removes a target file permanently
○ “rmdir” removes an empty directory
○ “rm -rf” removes everything from the target (be very careful if you use this)

Common bash commands

8

● echo <argument>
○ Prints out <argument>, expanding out all variables (e.g. “echo $USER$” should print out your username)
○ Good for testing bash scripts (e.g. echo <my_command> to make sure <my_command> does what you think it will)

● grep <pattern> <file>
○ Looks for a pattern in a file - very powerful also combined with pipes

● find <directory> -n<name>
○ Finds a file with <name> in <directory> (and subdirectories)

● sed “s/<find>/<replace>/g” <file>
○ Powerful find replace tool for any text file - excellent if you need to rename a variable in a big script
○ Do “sed -ie ‘s/<find>/<replace>/g’ <file>” to make a backup of the file before replacing
○ This is also built into “vim”

● Pipes
○ The “|” character “pipes” the output from one command to another
○ E.g. “ls . | grep <pattern>” shows all files/folders with <pattern> in them
○ Can be combined with sed
○ Frequently you’ll want to redirect the output to a file - do this with

■ <command> | tee <output>
■ <command> 1> <std_output> 2> <std_err>

● Loops
○ Very easy to make loops in bash
○ for i in {0..10}; do <insert code>; done
○ for i in {a,b,c}; do <insert code>; done
○ while [<condition>]; do <insert code>; done

● Conditions
○ if [<condition>]; then <commands>; else <commands> ; fi

● Newlines are specified by “;” and are very important for loops/if statements
● Spaces in the [] for conditions matter too!

More common bash commands

9

More bash tips

● . or $PWD
○ The current working directory
○ .. is the directory above the working directory

● Keyboard shortcuts
○ If you press the TAB key when you are typing a command, bash will try to autocomplete
○ If you press CTRL+R you can search for your previous bash commands
○ CTRL+C is an interrupt and will stop whatever program you are running,
○ CTRL + SHIFT + C and CTRL + SHIFT + V are the copy and paste commands
○ CTRL + Z suspends a process

● Monitoring
○ ps, top and htop all show the current running processes on your shell (and the corresponding

process id)
○ kill <pid> - kills a process with process id <pid>

■ There are different types of “kill” - default is SIGTERM (terminate the program)
■ SIGKILL (or “kill -9”) kills the process - last resort if you have files opened by that program (try

to avoid this command in general)
■ When you log out, programs are SIGTERM’ed

10

● Terminal based editors (good for
editing a single file)

○ nano (easiest)
○ vim
○ Emacs

● GUI text editors
○ Emacs has a GUI option as well
○ gvim - GUI version of vim
○ gedit - Linux text editor (basically

notepad)
○ Notepad

● IDE (Integrated Developer
Environment)

○ VS Code
○ Combines shell, file explorer and text

editor in one
○ Can also set up remote editing - very

useful for unstable connections

Editing files

11

● Plain text file - execute many bash
commands sequentially from a single
command

● The #! (“shebang”) tells the prompt
(bash) to use a specific program to
interpret the text (e.g. #!/bin/python3
executes python code)

○ Tip : do #!/usr/bin/env <program> if you
want the version of the program that
which program gets you (mainly for
python not bash)

● Make sure that your script is
“executable”

○ chmod +x my_script.sh
○ ./my_script.sh

Shell scripts

12

Shebang - specifies the program

Comments have a
“#” before them

Loops/if statements need
either a “;” or a new line - tabs
are optional

Maths operations are done
with (())

Assign the
output of a
command to a
variable with $

Safety options
for scripts

● -u : any undefined variables (e.g.
$MYANALYSISDIR) are treated as
errors and the script will stop
when encountered

● -e if any commands in the script
fail, the script immediately fails

● -o pipefail prevents the script
from running in pipes if it crashes

● You can also have set -eux which
will print out every command the
script executes (good for
debugging)

● Basic maths operations are done
with two brackets

● If statements are specified with
square brackets

13

Bash environment scripts

● In addition to being mini programs,
you can also program your bash script
to set up other programs

● For example you might want to set up
your grid proxy and python
environment (either through
LCGViews or conda) and set up some
functions

○ So when you log in you just do:
cd $HOME/work/my_analysis
source setup.sh

● You don’t need to have the !# or do
chmod +x for these scripts

● You can also “chain” these types of
scripts together

● All the loops/if statements work here
too

● When you login, bash will source
$HOME/.bashrc so if you want to
change default behaviour edit that file

14

.bashrc

● User modification to default bash
environment

● Typically used to set up useful aliases,
variables

● Can execute programs on launch

15

This writes the date + time + hostname (specific
lxplus machine) I logged into to $HOME/.lxnodes
every time I log into lxplus. Useful if I set up a tmux
session and need to find it.

Tmuxing

● Terminal multiplexers (like
tmux, screen) let you split the
session into windows

● And you can log out and still
have the system running

● So if you have a program that
will take a bit of time to run
you could use tmux to keep
the session running

● Bear in mind that the grid or
batch systems like HTCondor
are probably what you want to
use for big workloads

● Kerberos lets you keep such a
session through “keytabs”
https://hsf-training.github.io/an
alysis-essentials/shell-extras/p
ersistent-screen.html

● Lets you keep an eye on
CPU/memory usage too (very
useful for leaving things
running)

16

https://hsf-training.github.io/analysis-essentials/shell-extras/persistent-screen.html
https://hsf-training.github.io/analysis-essentials/shell-extras/persistent-screen.html
https://hsf-training.github.io/analysis-essentials/shell-extras/persistent-screen.html

Conda and LCGViews

● Conda Installing Miniconda — Anaconda documentation
○ Easy to install

■ wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
■ bash Miniconda3-latest-Linux-x86_64.sh
■ Input install location and say “no” to the prompt at the end
■ eval $(<install_location>/bin/conda shell.bash)
■ conda init
■ conda config --set auto_activate_base false

○ Create python environments in your lxplus directory
■ conda create -n <env_name> <list_of_packages>
■ conda activate <env_name>
■ conda install <package>

● Generally better to rely on already installed software
○ See https://cern.service-now.com/service-portal?id=kb_article&n=KB0003076
○ Can get most common software from LCGViews https://lcginfo.cern.ch/
○ source /cvmfs/sft.cern.ch/lcg/views/setupViews.sh <LCG_number> <platform>

■ Typically the latest number from https://lcginfo.cern.ch/ is fine(e.g. LCG_104) and for platform pick
● x86_64-el9-gcc12-opt for lxplus9 (gcc version number will vary)
● x86_64-centos7-gcc12-opt for lxplus7

■ Can also get LCG_104cuda for lxplus-gpu (has gpu supported programs like tensorflow)

17

https://docs.anaconda.com/free/miniconda/miniconda-install/
https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
https://cern.service-now.com/service-portal?id=kb_article&n=KB0003076
https://lcginfo.cern.ch/
https://lcginfo.cern.ch/

SSHing

● Passwordless login - do this with
kinit username@CERN.CH

● Then edit $HOME/.ssh/config
● Can also set user if your local

username is different than the one
for lxplus

● Then ssh cern should get you into
cern also things like rsync
cern:<path_to_file> . will work

● GSSAPI lets you passwordless login
and keep permissions on AFS

18

mailto:username@CERN.CH

Git

19

● Version control system (VCS) - used to track
changes in files for any project (usually computer
programs but you can use it for anything: papers,
theses etc.)

● Can work completely offline or with lots of people
over the internet

● Most systems (including lxplus) have git
pre-installed but usually it’s best to set it up with
your basic info:

○ git config --global user.name <your name>
○ git config --global user.email <your email>

● It will also be useful to set up an ssh keypair for
later

○ ssh-keygen
you can set a password but you don’t need to

○ Do this for your actual machine and lxplus (you only
need to do it once)

● Sometimes git commands don’t work if you are
using conda or LCGViews - but default lxplus should
be fine

Git

20

Start
Add

plotting
code

Add
fitting
code

My analysis

Fix a
bug in

plotting
code

My
changes
to fitting

code

Someone
else’s

changes
to fitting

code

Merged
fitting
code

● Start any git repository (this is what git calls projects) by making a new directory:
○ mkdir my_repo
○ cd my_repo

● Then initialise the repo
○ git init

● You’ll have a folder called “.git” (do “ls -a” to see it) which will contain all the
settings for the git repository

● You then write files as you would for any other project, e.g.
○ “my_script.py, my_tuple.root, my_other_script.sh” etc.

● Then you need to add them to your repository (this “stages” your changes to the
repo):

○ git add .
 if you want to add everything in the directory BUT try to avoid this

○ git add my_script.py my_other_script.sh
-usually you don’t want to add tuples to git repos (we have /eos/ for that!)

● Then you “commit” these changes, with a message saying what you did
○ git commit -m “Added two scripts”

 (you can also use a terminal text editor if you do “git commit”)

Git basic project

21

● Before you go ahead, make sure you have put
your PUBLIC ssh key in your gitlab/github
personal settings

● You copy this from $HOME/.ssh/id_rsa.pub
● Do this for every machine (lxplus and your

own separately) you want to write to gitlab
● Go to gitlab.cern.ch and make an empty

project there, then clone it to your machine
○ git clone

ssh://git@gitlab.cern.ch:7999/<username>/my_
repo.git .

● Then whenever you’ve added and committed
your code, you just “git push” to change the
files on the online repository

● Or from the terminal
○ git add origin

ssh://git@gitlab.cern.ch:7999/<username>/my_
repo.git

○ git push -u origin

Working with remotes

22

mailto:git@gitlab.cern.ch
mailto:git@gitlab.cern.ch

● On big projects, you can’t have everyone just
rewriting the entire project - so you usually
can’t edit the “master” branch of the project

● To make changes you typically clone the
repository

○ git clone
ssh://git@gitlab.cern.ch:7990/<username>/my
_repo.git

● Then you make a new branch
○ git branch my_new_feature
○ git checkout my_new_feature

● Then make your changes locally and “push”
using

○ git push origin my_new_feature
● Then you’ll need to make a “merge request”

to merge the contents of your new branch
with the “master” branch

○ This is done differently depending on how the
project is run/where it’s run - often with lots of
people asking questions and testing before
letting the changes through

Branches and merge
requests

23

mailto:git@gitlab.cern.ch

lxplus specific git

 From the StarterKit lessons: Using git to develop LHCb software — LHCb
Starterkit Lessons documentation

 Main workflow is (e.g. with DaVinci, but you can pick your favourite LHCb
software)
• lb-dev --name DaVinciDev DaVinci/v45r8
• cd DaVinciDev
• git lb-use DaVinci
• git checkout DaVinci/<myPackage>
• make

 You can then git add/commit/push but this time you’ll need to make a merge
request with the maintainers of the software you edit

 You can submit jobs to the grid with this custom version of DaVinci
 You can run the local version with ./run bash --norc which drops you into a

bash session with the custom software installed
• For DaVinci you would do :

• ./run bash --norc
• gaudirun.py my_tuple_options.py

24

https://lhcb.github.io/starterkit-lessons/second-analysis-steps/lb-git.html
https://lhcb.github.io/starterkit-lessons/second-analysis-steps/lb-git.html

● Rebasing - how “git pull” changes your local version
and an updated remote version

○ Set this with git config pull.rebase false/true
○ Setting to true will “rebase” your code - this is sometimes

useful to avoid lots of merges/failed pushes but can
overwrite your code

○ git merge merges two conflicting commits - similar to
rebasing

● git diff <commit_id> <path> shows the difference
between the file in <path> from your version and the
one in commit <commit_id>

● The .gitignore file is a special file that you put in the
root directory of your repo - you can exclude specific
files, files with a particular extension, etc.

● CI (continuous integration) - typically used with bigger
projects or web facing ones

○ After a “git push” a script is run on a virtual machine to test
any changes made before changing the code

○ Usually not needed in smaller projects
○ Depends on where the project is stored (GitLab v.s. GitHub

etc.)
○ Configured by .gitlab-ci.yml in GitLab’s case
○ Both Analysis Productions and Simulation requests do this

● git status can tell you if you have untracked changes
● git restore <commit_id> restores the branch to the

commit with id <commit_id>
● You can get commit ids from git history or using the

web GUI

Other git properties

25

Commit ids

