Bash and Git

Jake Lane
Monash University, Australia
StarterKit 2024
12-16 Feb 2024

Bash

Prerequisites checklist

From the starterkit-lessons :
Pre-workshop checklist — LHCb
Starterkit Lessons documentation
1. Can you access:
tht: s:/llhcb-portal-dirac.cern.ch/DIR
2. Can you access a terminal and type:
ssh -Y USERNAME@lxplus.cern.ch
with your cern username for USERN
3. Canyou run
lhcb-proxy-init
on 1xplus?

[jolane@lxplus917 AnalysisProductions]$ lhcb-proxy-init
Generating proxy ...

Enter Certificate g

Added VOMS attribute /lhcb/Role=user
Uploading proxy..

Proxy generated:

subject : /DC=ch/DC=cern/0U=0rganic Units/OU=Users/CN=jolane/CN=833925/CN=Jake Lane/CN=4360923703/CN=3753340571
issuer : /DC=ch/DC=cern/0U=0rganic Units/OU=Users/CN=jolane/CN=833925/CN=Jake Lane/CN=4360923703

identity : /DC=ch/DC=cern/0U=0Organic Units/OU=Users/CN=jolane/CN=833925/CN=Jake Lane

timeleft : 23:53:58

DIRAC group : lhcb_user

path : /tmp/x509up_ull8u65

username : jolane

properties : NormalUser, PrivatelLimitedDelegation

VOMS : True

VOMS fgan : ['/lhcb/Role=user']

Proxies uploaded:
DN | Group | Until (GMT)

/DC=ch/DC=cern/0U=0rganic Units/OU=Users/CN=jolane/CN=833925/CN=Jake Lane | | 2024/12/04 08:01

MBI O N WP ssh -Y lxplus.cern.ch

warning: No xauth data; using fake authentication data for X11 forwarding.

Welcome to lxplus9us.cern.ch, Red Hat Enterprise Linux release 9.3 (Plow)
Archive of news is available in /etc/motd-archive
Reminder: you have agreed to the CERN

computing rules, in particular 0C5. CERN implements

the measures necessary to ensure compliance.

https: //cern. ch/ConputingRules
Puppet environment: production, Roger state: production
Foreman hostgroup: lxplus/nodes/Llogin
Availability zone: cern-geneva-a
LXPLUS Public Login Service - http://Uxplusdoc.web.cern.ch/
Please read LXPLUS Privacy Notice in http://cern.ch/go/Tpv7
2024-06-27 - Uxplus7 CC7 termination https://cern.ch/otg0147045

A AR AR R R R R R R AR

e L bEAY ~— *

*

--- User_release_area is set to /afs/cern.ch/user/j/jolane/cmtuser
--- CMAKE_PREFIX_PATH is set to:
/evmEs/lhcb. cern.ch/lib/lhch
/evmfs/Lhcb.cern.ch/lib/lcg/releases
/evmes/lheb. cern.ch/lib/lcg/app/releases
/evmfs/lhcb. cern.ch/lib/leg/external
/evmfs/lhcb. cern.ch/lib/contrib
/evmfs/lheb. cern. ch/lib/var/1ib/LbEnv/3067/stable/linux-64/1ib/python3.9/site-packages/LbDevTools/data/cmake

[jolaneelxplusous ~1$ I

)

https://lhcb.github.io/starterkit-lessons/first-analysis-steps/prerequisites.html
https://lhcb.github.io/starterkit-lessons/first-analysis-steps/prerequisites.html
https://lhcb-portal-dirac.cern.ch/DIRAC/
https://lhcb-portal-dirac.cern.ch/DIRAC/
mailto:mylxplusname@lxplus.cern.ch

Ixplus

WN =

LinuX Public Login User Service https://Ixplusdoc.web.cern.ch/
Linux based machines (based on Red Hat/CentOS/AlmaLinux)
Different flavours available :

* 1xplus7 - Centos7 (used to be default, now legacy)

 1xplus8 -AlmaLinux 8

* 1xplus9 -AlmaLinux 9 - now the default

* 1xplus-gpu - GPU node (has AlmaLinux9) equipped with Nvidia Tesla T4

Login via
* ssh USERNAME@lxplus<7,8,9,-gpu>.cern.ch
* You actually log in to IxplusO9NNN - where NNN is a machine assigned depending on the
available resources
» If you have a process running on Ixplus800.cern.ch and log out (e.g. with tmux) then you
have to log into Ixplus800.cern.ch (not Ixplus8.cern.ch!)

IXxplus Storage

e Andrew filesystem (AFS) - distributed filesystem for
personal files for CERN users, all Ixplus nodes look at
o /afs/cern.ch/user/u/username (you get up to 10GB here)
o /afs/cern.ch/work/u/username (LHCb users get 100GB here)
o Increase your quota
https://resources.web.cern.ch/resources/Manage/AFS/

o Files are backed up (up to 24 hours) in
/afs/cern.ch/ubackup/<initial>/<username>
e EOS - (Eos Open Storage) - CERN's filesystem for larger
storage
o /eos/user/<initial>/<username> (you get 1000GB here)
[] Also appears in CERNBOX - like Dropbox for CERN
] https://cernbox.cern.ch/
o /eos/lhcb/user/<inital>/<username> (LHCb users get
2000GB here)
o CERNBOX also backs upin
e CVMFS - (CERN Virtual Machine file system) - contains
software used by Ixplus
o Most programs you run will look at CVMFS
o Can configure your Ixplus session with different versions of
common software (e.g. python versions)

CERN Resources Portal

Manage your CERN Resources, lifecycle, settings, etc

e T T I

AFS Workspaces
- AP il enices

[H
| s

Home folder path: afs/cem.ch

em.ch/user/j/jolane
Subscribe Home folder quota: Used 9.44 / 10.00 GB

Workspace path:

afs/cem.ch/work/j/jolane
Workspace quota: Used 93.27 / 100.00 GB

Related sites

CERN
\

https://resources.web.cern.ch/resources/Manage/AFS/

bash

e Bourne Again SHell (bash) - GNU version of the Bourne Shell (sh), default in UNIX
systems (Linux, macOS etc.)

e “Shell program” - used to launch other programs

On macOS/Linux, just launch any terminal app and you have a bash shell

e There are other options (zsh, csh, ksh,fish etc.) but bash is the most popular

bash on Windows

Windows doesn’t come with bash by
default

o Can install one on Windows 11 - install
Terminal, enable WSL, install Ubuntu, launch
terminal, set username/password, and you’re
done!

m see Install WSL | Microsoft Learn
(basically open a command prompt as
admin, then type ws1 --install then
restart)

o ORinstall WSL manually (Windows 10 -
install Ubuntu and enable WSL, launch
Ubuntu and set username/password):

m Manual installation steps for older

versions of WSL | Microsoft Learn
o OR set up a virtual machine (e.g. with

VirtualBox) and install Linux there to get
bash terminal

] https://www.virtualbox.org/

o ORuse PUTTY to SSH into

Windows directly

m https://putty.org/

us from

OssH

Load. save or delete a stored session
Saved Sessions

Defauk Settings

v on ex
OAways ONever © Only on clean exit

CERN
Z A

(O Sedal (OOther: Telnet

https://learn.microsoft.com/en-us/windows/wsl/install
https://learn.microsoft.com/en-us/windows/wsl/install-manual
https://learn.microsoft.com/en-us/windows/wsl/install-manual
https://www.virtualbox.org/
https://putty.org/

Common bash commands

1s <directory> (show contents of a directory)
o 1s -1 -h shows the contents in a list and in a human-readable format for sizes
o 1ls -ashows allfiles
o “isthe current directory, “..” is the directory above
pwd (print working directory)
o pwd -P shows the full physical path (e.g. if you set up a symlink, pwd -P bypasses it) of where you are (the working
directory)
1n (link)
o symlinks one place in the filesystem with another (effectively a shortcut), e.g. “ln -s
/eos/lhcb/user/u/username/my_analysis/my_big_tuple.root .” puts “my_big_tuple.root” in your working directory
touch <filename>
o make an empty file called “filename”
cp <target> <destination>
o Copies afile from <target> to <destination>
o “cp -pr”copies a folder and its contents
o Ordo “rsync -pr -progress” gives you a progress bar and lets you copy from ssh
rm <target>
o Removes a target file permanently
o “rmdir” removes an empty directory

“

o rm -rf” removes everything from the target (be very careful if you use this)

CERN
Z A

More common bash commands

echo <argument>
o Prints out <argument>, expanding out all variables (e.g. “echo $USER$” should print out your username)
o Good for testing bash scripts (e.g. echo <my_command> to make sure <my_command> does what you think it will)
grep <pattern> <file>
o Looks for a pattern in a file - very powerful also combined with pipes
find <directory> -n<name>
o Finds a file with <name> in <directory> (and subdirectories)
sed “s/<find>/<replace>/g” <file>
Powerful find replace tool for any text file - excellent if you need to rename a variable in a big script
Do “sed -ie ‘s/<find>/<replace>/g’ <file>" to make a backup of the file before replacing
This is also built into “vim”

The “|” character “pipes” the output from one command to another

E.g. “ls . | grep <pattern>” shows all files/folders with <pattern> in them
Can be combined with sed

Frequently you'll want to redirect the output to a file - do this with

T
-]

OOOO‘DOOO
(7]

n <command> | tee <output>
n <command> 1> <std_output> 2> <std_err>
Loops
o Very easy to make loops in bash
o for 1 in {0..10}; do <insert code>; done
o for 1 in {a,b,c}; do <insert code>; done
o while [<condition>]; do <insert code>; done
Conditions
o if [<condition> E); then <commands>; else <commands> ; fi
Newlines are specified by “;” and are very important for loops/if statements

Spaces in the [] for conditions matter too!

More bash tips

e . or SPWD

(@)
(@)

The current working directory
. is the directory above the working directory

° Keyb.oard shortcuts

(@)

O O O O

If you press the TAB key when you are typing a command, bash will try to autocomplete
If you press CTRL+R you can search for your previous bash commands

CTRL+C is an interrupt and will stop whatever program you are running,

CTRL + SHIFT + Cand CTRL + SHIFT + V are the copy and paste commands

CTRL + Z suspends a process

e Monitoring

(@)

(@)

ps, top and htop all show the current running processes on your shell (and the corresponding
process id)
kill <pid> - kills a process with process id <pid>
m There are different types of “kil1” - default is SIGTERM (terminate the program)
m SIGKILL (or “kill -9”) kills the process - last resort if you have files opened by that program (try
to avoid this command in general)
m When you log out, programs are SIGTERM’ed

SZA

10

Editing files

Terminal based editors (good for
editing a single file)
o nano (easiest)
o vim
o Emacs _
GUI text editors
o Emacs has a GUI option as well
o gvim - GUI version of vim
o gedit - Linux text editor (basically
notepad)
o Notepad
IDE (Integrated Developer
Environment)
o VS Code

o Combines shell, file explorer and text

editor in one

o Can also set up remote editing - very

useful for unstable connections

Jolane@lxpluse26 my_analysis]$

1"

SheII scripts

Plain text file - execute many bash
commands sequentially from a single
command
The #! (“shebang”). tells the prompt
(bash) touse a s eC| ic program to
interpret the text (# /bin/python3
executes python co e
o Tip:do#!/usr/bin/env <program> if you
want the version of the program that
which program gets you (mainly for
python not bash)
e Make sure that your script is
“executable”
o chmod +x my_script.sh
o ./my_script.sh

Loops/if statements need
either a“;” or anew line - tabs
are optlonal

Maths operations are done
with (())

Shebang - specifies the program

#!/&sr/bin/env bash
set —eu -o pipefail Comments have a

shopt -s expand_alia “#" before them
#This is a comment

j=20 .
for i in {0..10}; Assign the
8 output of a
bk 4 command to a
. variable with $
(C j+=1))

./my_script.sh

a=$((j + 2))
echo $j
echo $a

WO EWNH-HO

W W=
W=

12

Safety options
for scripts

-u : any undefined variables (e.g.
$MYANALYSISDIR) are treated as
errors and the script will stop
when encountered

-e if any commands in the script
fail, the script immediately fails

-0 pipefail prevents the script
from running in pipes if it crashes
You can also have set -eux which
will print out every command the
script executes (good for
debugging)

Basic maths operations are done
with two brackets

If statements are specified with
square brackets

#! /usr/bin/env bash
set —eux——e—pipef_a_il____________b
shopt -s expand_aliases

#This is a comment

j=20

for i in {0..10};
do

shopt -s éxpaﬁd_aliases
j=20

for i in {0..10}
(C j+=1))
for i in {0..10}
(C j+=1))
for i in {0..10}
(C j+=1))
for i in {0..10}
(C j+=1))
for i in {0..10}
(C j+=1))
for i in {0..10}
(C j+=1))
for i in {0..10}
(C j+=1))
for i in {0..10}
(C j+=1))
for i in {0..10}
(C j+=1))
for i in {0..10}
(C j+=1))
for i in {0..10}
(C j+=1))

(C jr=13)

done

a=$((j + 2))
echo $j
echo $a

if [—f $HOME/.bashrc];
then
echo Have

.bashrc
fi

O T T T TR T VT T T U SR S SR S MRS S SR St R S S S R R

if ((a=32))
then

echo $a = 32 + '[* —f /home/jlane/.bashrc ']’

+ echo Have .bashrc
Have .bashrc
+ ((a=32))
+ [[- /home/jlane/.bashrc 1]
then + echo Still have .bashrc
echo Still have .bashrc ~Still have .bashrc _
fi 13

fi

if [[—f $HOME/.bashrc 1]

./my_script.sh

Bash environment scripts

e In addition to being mini programs,
You can also program your bash script
o set up other programs

e For example you might want to set up
your grid proxy and python
environment (either through
LCGViews or conda) and set up some
functions

o So when you log in you just do:
cd SHOME/work/my_analysis
source setup.sh

e You don’t need to have the !# or do
chmod +x for these scripts

e You can also “chain” these types of
scripts together

° ::\II the loopsl/if statements work here
00

e When you login, bash will source
$HOME/.bashrc so if you want to _
change default behaviour edit that file

export ANALYSIS_DIRECTORY=$HOME/work/my_analysis
alias my_main_script="python3 main.py"
kinit jolane@CERN.CH
lhcb-proxy-init
source /cvmfs/sft.cern.ch/lcg/views/setupViews.sh LCG_104 x86_64-el9—-gccl2—-opt
function run_analysis(){
python3 do_fit.py
python3 calc_eff.py
python3 main_analysis.py
python3 plot_results.py

~

[jolane@lxplus925 my_analysis]$ source setup.sh
Password for jolane@CERN.CH:

Generating proxy ..

Enter Certificate passwor i kkkkkkkokdkokkk kR ke
Added VOMS attribute /lhcb/Role=user

Uploading proxy..

Proxy generated:

bject : /DC=ch/DC=cern/0OU=0rganic Units/OU=Users/CN=jolane/CN=833925/CN=Jake Lane/CN=7842928710/CN=3563520093
issuer : /DC=ch/DC=cern/0U=0rganic Units/OU=Users/CN=jolane/CN=833925/CN=Jake Lane/CN=7842928710
identity : /DC=ch/DC=cern/0OU=0Organic Units/OU=Users/CN=jolane/CN=833925/CN=Jake Lane
timeleft 1 23:53:59
DIRAC group : lhcb_user
path : /tmp/x509up_ull8465
username : jolane
properties : NormalUser, PrivatelLimitedDelegation
VOMS : True
VOMS fgan : ['/lhcb/Role=user']

Proxies uploaded:
DN | Group | Until (GMT)

/DC=ch/DC=cern/0U=0rganic Units/OU=Users/CN=jolane/CN=833925/CN=Jake Lane | | 2024/12/64 08:01

[jolane@lxplus925 my_analysis]$ run_analysis
Doing fit now

Calculating efficiency

Running main analysis

Plotting results

CERN
Z A

14

.bashrc

e User modification to default bash
environment

e Typically used to set up useful aliases,
variables

e Can execute programs on launch

.bash_profile
Get the aliases and functions
if [—=f ~/.bashrc 1; then
~/ .bashrc
1
User specific environment and startup programs

PATH=$PATH: $HOME/bin

export PATH

B .bashrc

Source global definitions

if [-f /etc/bashrc 1; then
/etc/bashre

i

User specific aliases and functions

source $HOME/.bashenv

alias la='ls -a -1 -h'
alias 11='1ls -1 -h'
alias 1=11
function med(){

mkdir $1; cd $1;
}

#

added by Miniconda3 installer
export CONDAPATH="/afs/cern.ch/user/j/jolane/work/miniconda3/bin"
alias setupConda="export PATH=$PATH:$CONDAPATH"
function snakemake() {
source "/cvmfs/sft.cern.ch/leg/views/LCG_93python3/${CHTCONFIG}/setup.sh” && \
PYTHON3_USER_BASE=$(python3 -m site --user-base) && \
PYTHON3_USER_SITE=$(python3 -m site --user-site) & \
export PATH="${PYTHON3_USER_BASE}/bin:${PATH}" && \
export PYTHONPATH="${PYTHON3_USER_SITE}: ${PYTHONPATH}" & \
"$(which snakemake)" "$o"
}

export JULIA_DEPOT_PATH=~/work/julia/.julia:~/work/sw/julia/usr/local/share/julia:~/work/su/julia/usr/share/julia
export PATH=$HOME/.local/bin:$PATH

ktmux(){
if [[-z "$1" 11; then #if no argument passed
ksreauth —F —i 36000 —p jolane@CERN.CH -k $HOME/jolane.keytab -- tmux new-session
else #ipass the argument as the tmux session name
ksreauth —f i 36000 —p jolane@CERN.CH -k $HOME/jolane.keytab -- tmux nen-session -s $1
i
}

#function ktmux(){
kSreauth —f -i 36000 -p jolane -- tmux
#}

function setupAFS(){
init;
aklog —d;
. /afs/cern.ch/user/j/jolane/.bashrc
Theb-proxy-init

function cleanupGanga(){
rm /afs/cern.ch/user/j/jolane/work/gangadir/repository/jolane/LocalXML/6.0/sessions/*

function setuplCG(){
source /cvmfs/sft.cern.ch/leg/views/setupViews.sh LCG_98python3 x86_6u-centos7-geclo-opt
}

This writes the date + time + hostname (specific
1xplus machine) | logged into to SHOME/ . 1xnodes

echo "$(date +[%F_%H:%M]) at $(hostname)” >> .lxnodes <«

export PATH="$HOME/.cargo/bin:$PATH"

every time | log into 1xplus. Useful if | set up a tmux
session and need to find it.

)

~7

15

Tmuxing

e Terminal multiplexers (like
tmux, screen) let you split the
session into windows]

e And you can log out and still
have the system running

e So if you have a program that
will take a bit of time to run
You could use tmux to keep

he session runnlnﬁ]

e Bear in mind that the grid or
batch systems like HTCondor
are probably what you wantto
use for big workloads

e Kerberos lets you keep such a
session through “keytabs”

https://hsf-training.github.io/an

alysis-essentials/shell-extras/p
ersistent-screen.htm

e Lets you keep an eye on
CPU/memory usage too (very
useful for leaving things
running)

) o

SZA

https://hsf-training.github.io/analysis-essentials/shell-extras/persistent-screen.html
https://hsf-training.github.io/analysis-essentials/shell-extras/persistent-screen.html
https://hsf-training.github.io/analysis-essentials/shell-extras/persistent-screen.html

Conda and LCGViews

e Conda Installing Miniconda — Anaconda documentation
o Easy to install

m wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86 64.sh

m bash Miniconda3-latest-Linux-x86_64.sh

m Inputinstall location and say “no” to the prompt at the end
m eval $(<install_location>/bin/conda shell.bash)
]
]

conda init
conda config --set auto_activate_base false
o Create python environments in your Ixplus directory
conda create -n <env_name> <list_of packages>
conda activate <env_name>
m conda install <package>
e Generally better to rely on already installed software
o See https://cern.service-now.com/service-portal?id=kb article&n=KB0003076
o Can get most common software from LCGViews https://lcginfo.cern.ch/
o source /cvmfs/sft.cern.ch/lcg/views/setupViews.sh <LCG_number> <platform>
m Typically the latest number from https://lcginfo.cern.ch/is fine(e.g. LCG_104) and for platform pick
® x86_64-el9-gccl2-opt for Ixplus9 (gcc version number will vary)
® x86_64-centos7-gccl2-optfor Ixplus7
m Canalsoget LCG_104cuda for 1xplus-gpu (has gpu supported programs like tensorflow)

https://docs.anaconda.com/free/miniconda/miniconda-install/
https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
https://cern.service-now.com/service-portal?id=kb_article&n=KB0003076
https://lcginfo.cern.ch/
https://lcginfo.cern.ch/

SSHing

Passwordless login - do this with
kinit username@CERN.CH

Then edit $SHOME/.ssh/config

Can also set user if your local
username is different than the one
for Ixplus

Then ssh cern should get you into
cern also things like rsync
cern:<path_to_file> . will work
GSSAPI lets you passwordless login
and keep permissions on AFS

HoST 1xplus*

GSSAPITrustDns@ES

GSSAPIAuthentication yes
GSSAPIDelegateCredentials yes
user jolane

HOST cern
yes
GSSAPIAuthentication yes
GSSAPIDelegateCredentials yes
hostname 1xplus8.cern.ch
user jolane

18

mailto:username@CERN.CH

Git

My analysis

Add

Start plotting
code
e Version control system (VCS) - used to track
changes in files for any project (usually computer
Programs but you can'use it for anything: papers,
heses etc.) . . Fixa
e Can work completely offline or with lots of people LU bug in
over the internet]] tofitting ity
e Most systems (including lxplus) have git] code code
pre-installed but usually it’s best to set it up with
your basic info: Merged
o git config --global user.name <your name> ﬁtzng
o git config --global user.email <your email> code
e It will also be useful to set up an ssh keypair for
|atel' Someone
o ssh-keygen else’s
you can set a password but you don’t need to ibiod
o Do this for your actual machine and Ixplus (you only code

need to do it once) .
e Sometimes git commands don’t work if you are
gmgg conda or LCGViews - but default 1xplus should
e fine

CERN
Z A

Git basic project

Start any git repository (this is what git calls projects) by making a new directory:
o mkdir my_repo
o cd ny_repo
Then initialise the repo
0 it init . .] .]
Youfﬁ have a folder called “.git” (do “Is -a” to see it) which will contain all the
settings for the git repository]
You then write files as you would for any other project, e.g.
o “my_script.py, my_tuple.root, my_other_script.sh” etc. _
Then) you need to add them to your repository (this “stages” your changes to the
repo):
o git add .
if you want to add everything in the directory BUT try to avoid this
o git add my_script.py my other_script.sh
-usually you don’t want to add tuples to git repos (we have /eos/ for that!% .
Then you “commit” these changes, with a message saying what you did
o git commit -m “Added two scripts”
(you can also use a terminal text editor if you do “git commit”)

21

Working with remotes

e Before you go ahead, make sure you have p
your PUBLIC ssh key in your gitlab/github
personal settings

e You copy this from $HOME/.ssh/id_rsa.pub

e Do this for every machine (1xplus and your
own separately) you want to write to gitlab

e Go to gitlab.cern.ch and make an empty
project there, then clone it to your machine

o git clone
ssh://git@gitlab.cern.ch:7999/<username>/my_
repo.git .

e Then whenever you’ve added and committed
your code, you just “git push” to change the
files on the online repository

e Or from the terminal

o git add origin
ssh://git@gitlab.cern.ch:7999/<username>/my_
repo.git

o git push -u origin

®

Create blank project

SZA

22

mailto:git@gitlab.cern.ch
mailto:git@gitlab.cern.ch

@ You pushed to my_new_feature just now

Branches and merge
requests

New merge request

On big projects, you can’t have everyone just

rewriting the entire project - so you usually
can’t edit the “master” branch of the project
To make changes you typically clone the
repository
o git clone
ssh://git@gitlab.cern.ch:7990/<username>/my
_repo.git
Then you make a new branch
o git branch my_new_feature
o git checkout my_new_feature
Then make your changes locally and “push”
using

e ===8 BeOD

sssssssss

o git push origin my_new_feature
Then you’ll need to make a “merge request”
to merge the contents of your new branch
with the “master” branch
o This is done differently depending on how the
project is run/where it’s run - often with lots of
people asking questions and testing before
letting the changes through

23

mailto:git@gitlab.cern.ch

xplus specific git

From the StarterKit lessons: Using git to develop LHCb software — LHCb
Starterkit Lessons documentation
Main workflow is (e.g. with DaVinci, but you can pick your favourite LHCb
software)
e 1b-dev --name DaVinciDev DaVinci/v45r8
e cd DaVinciDev
e git lb-use DaVinci
e git checkout DaVinci/<myPackage>
e make
You can then git add/commit/push but this time you’ll need to make a merge
request with the maintainers of the software you edit
You can submit jobs to the grid with this custom version of DaVinci
You can run the local version with ./run bash --norc which drops you into a
bash session with the custom software installed
« For DaVinci you would do :
e ./run bash --norc
e gaudirun.py my_tuple_options.py

24

https://lhcb.github.io/starterkit-lessons/second-analysis-steps/lb-git.html
https://lhcb.github.io/starterkit-lessons/second-analysis-steps/lb-git.html

Other git properties

Commitids

Rebasing - how “git pull” changes your local version
and an updated remote version
o Set this with git config pull.rebase false/true
o Setting to true will “rebase” your code - this is sometimes
useful to avoid lots of merges/failed pushes but can LI —
overwrite your code i S ot =
o git merge merges two conflicting commits - similar to
rebasing .
git diff <commit_id> <path> shows the difference
etween the file in <path> from your version and the
one in commit <commit_id> = .
The .gitignore file is a special file that you put in the
root directory of your repo - you can exclude specific
files, files with a particular extension, etc. .
Cl (continuous integration) - typically used with bigger
projects or web facing ones
o After a “git push” a script is run on a virtual machine to test
any changes made before changing the code
) Usually not needed in smaller projects
o Dep)ends on where the project is stored (GitLab v.s. GitHub
etc.
o Configured by .gitlab-ci.yml in GitLab’s case
o Both Analysis Productions and Simulation requests do this
git status can tell you if you have untracked changes
git restore <commit_id> restores the branch to the
commit with id <commit_id> .
Yo% %ﬁl}lget commit ids from git history or using the
we

master v | my_second_analysis Author v N

7e571888 | [t B3

b74db8f8 | [B3

abea2ff [| B9

CERN
Z A

25

