

What we want to do and why?

Janina Nicolini 16.02.2024

- Single-arm forward spectrometer
- LHCb acceptance $2 < \eta < 5$
- Essentially the same spectrometer detector
 - → needs fast readout, high granularity, fast timing, extreme radiation hardness

Original Run 1+2

- Single-arm forward spectrometer
- LHCb acceptance $2 < \eta < 5$
- Essentially the same spectrometer detector

-> needs fast readout, high granularity, fast timing, extreme radiation hardness

Original Run 1+2

Fast readout + higher granularity +improved radiation hardness

Upgrade I Run 3+4

- Single-arm forward spectrometer
- LHCb acceptance $2 < \eta < 5$
- Essentially the same spectrometer detector

-> needs fast readout, high granularity, fast timing, extreme radiation hardness

Original Run 1+2

ECAL HCAL SPD/PS SciFi Tracke upgrade 10m

Upgrade I Run 3+4

Upgrade II Run 5+6

All of the above

- Single-arm forward spectrometer
- LHCb acceptance $2 < \eta < 5$
- Essentially the same spectrometer detector

Original Run 1+2

-> needs fast readout, high granularity, fast timing, extreme radiation hardness Currently limited by the experiment, not LHC

What does that mean?

Upgrade II Run 5+6

All of the above

REMINDER: *bb* pairs @ LHC

Gluon-gluon fusion

REMINDER: *bb* **PAIRS @ LHC**

Gluon-gluon fusion

• LHCb Detector

 $2 < \eta < 5$

27% b or \overline{b} and 24% of $b\overline{b}$ pairs *

• General Purpose Detector (GPD)

 $|\eta| < 2.5$

49% *b* or \overline{b} and 41% of $b\overline{b}$ pairs *

*in acceptance

REMINDER: *bb* **PAIRS @ LHC**

So GPD catches more? Gluon Yes and no, with a mirrored second LHCb we would have a better acceptance LHCb acceptance

 $2 < \eta < 5$

27% b or \overline{b} and 24% of $b\overline{b}$ pairs *

• General Purpose Detector (GPD)

 $|\eta| < 2.5$

49% b or \overline{b} and 41% of $b\overline{b}$ pairs *

Our detector is optimised for b physics, we still do better.

REMINDER LUMINOSITY LEVELLING

Luminosity levelling: lead beams collide with offset and reduce it till head-on collision

 \rightarrow stable luminosity = stable readout rates

REMINDER LUMINOSITY LEVELLING

Luminosity levelling: lead beams collide with offset and reduce it till head-on collision

 \rightarrow stable luminosity = stable readout rates

NEED FOR UPGRADES

 $p_{\rm T}$ and $E_{\rm T}$ cuts saturate for hadronic channel • Pile-up significantly increases → higher track/PV multiplicity Not processable in online farm • Limit of radiation hardness will be hit

• Hardware trigger limited at frontend to 1.1MHz rate

- With lumi increase from 1 to $2 4 \cdot 10^{32}$ cm⁻²s⁻¹:

LUMINOSITY TARGETS

• Upgrade I till end if Run 4: 50 fb^{-1}

• Upgrade II accumulate maximum possible integrated luminosity but at least: 50 fb⁻¹/y

Enabling high precision flavour physics + BSM (see Vincenzos talk on Monday)

OVERVIEW UPGRADE I

- Tracking detector exchanged due to radiation damage
 - Upgrade to finer granularity
 - Pixel VELO getting as close as 5mm to beam
 - New silicon based Upstream detector (UT)
 - SciFi tracker 11.000km of scintillating fibre
- New RICH mechanics, optics and photodetectors
 - \rightarrow better granularity
- New electronics for all systems

Basically brand new detector Upgraded LHCb Detector tector Channel

OVERVIEW UPGRADE I

- Tracking detector exchanged due to radiation damage
 - Upgrade to finer granularity
 - Pixel VELO getting as close as 5mm to beam
 - New silicon based Unstream detector (UT)
 - SciFi tracker 11.0
- New RICH mechanics, optics and photodetectors
 - \rightarrow better granularity
- New electronics for all systems

MILESTONE 1 - RTA

• Fast readout: Upgrade of computing resources to GPU + FPGAs for readout electronics

• Fast readout: Upgrade of computing resources to GPU + FPGAs for readout electronics

UPGRADE SCHEDULE

- Let's have a look at VELO
- Run 3: pile-up ~6
- Upgrade II: pile-up ~42
- Closer look at PV region

- Let's have a look at VELO
- Run 3: pile-up ~6
- Upgrade II: pile-up ~42
- Closer look at PV region

- Let's have a look at VELO
- Run 3: pile-up ~6
- Upgrade II: pile-up ~42
- Closer look at PV region

- Let's have a look at VELO
- Run 3: pile-up ~6
- Upgrade II: pile-up ~42
- Closer look at Calorimeter

 \rightarrow overlapping CALO cluster due to pile-up

Precision timing in CALO \rightarrow significant reducing of BKG

UPGRADE Ib

- Motivation: opportunity to test Upgrade II technology under real conditions
- Reuse of designs and part of Upgrade II budget, but independent of approval
- Some exchange needed due to radiation damage

UPGRADE Ib

- Motivation: opportunity to test Upgrade II technology under real conditions
- Reuse of designs and part of Upgrade II budget, but independent of approval
- Some exchange needed due to radiation damage

ECAL exchange inner region with new SpaCal technology

	0.10
-	0.14
	0.12
-	0.1
_	0.08
-	0.06
_	0.04
_	0.02
	0

UPGRADE Ib - TECHNOLOGY

- Same overlap problem for Cherenkov rings
 - \rightarrow fastRICH ASCI ~25ps resolution
 - → apply time window gate

with timing

UPGRADE Ib - TECHNOLOGY

- Same overlap problem for Cherenkov rings
 - \rightarrow fastRICH ASCI ~25ps resolution
 - \rightarrow apply time window gate
- Run for downstream cluster & track reconstruction on FPGA
 - \rightarrow done for Run3 VELO clusters
 - \rightarrow downstream tracking at 30MHz
 - \rightarrow frees resources

Downstream tracking with RETINA

v-coordinates hi LHCb Simulation. Unofficial LHCb Simulation Unofficia

UPGRADE Ib - TECHNOLOGY

- Same overlap problem for Cherenkov rings
 - \rightarrow fastRICH ASCI ~25ps resolution
 - \rightarrow apply time window gate
- Run for downstream cluster & track reconstruction on FPGA
 - \rightarrow done for Run3 VELO clusters
 - \rightarrow downstream tracking at 30MHz
 - \rightarrow frees resources
- Monolithic Active Pixel sensors (MAPS)
 - \rightarrow needed radiation hardness and granularity
 - \rightarrow include 2 first layers with 1m² surface

ATLASPix3 \rightarrow MightyPix1

Great resolution 2.37 ± -0.00

UPGRADE Ib - MAGNET STATIONS

- Soft particles bend out of acceptance
- Magnet stations as solution

• Example soft π^- from $\Lambda_b^0 \to J/\psi \Lambda(\to p\pi^-)$

UPGRADE Ib - MAGNET STATIONS

- Soft particles bend out of acceptance
- Magnet stations as solution

- Scintillators inside magnet (4layers each)
- Photomultiplier outside
- Horizontal $\sim O(1 \text{ mm})$ vertical $\sim O(10 \text{ cm})$

• Example soft π^- from $\Lambda_b^0 \to J/\psi \Lambda(\to p\pi^-)$

С	iFi		
-			
		Z	

UPGRADE Ib - MAGNET STATIONS

- Soft particles bend out of acceptance
- Magnet stations as solution

- Scintillators inside magnet (4layers each)
- Photomultiplier outside
- Horizontal ~O(1mm) vertical ~O(10cm)

• Example soft π^- from $\Lambda_b^0 \to J/\psi \Lambda(\to p\pi^-)$

С	iFi		
-			
		Z	

VELO

• VELO based on pixel for high granularity : 3D sensor with 28nm thickness

- New RF foil
- Add timing

After irradiation with $2.5 \times 10^{16} n_{eq} cm^{-2}$

VELO

After irradiation with $2.5 \times 10^{16} n_{eq} cm^{-2}$

Entries 158.2 / 199 140 3.711 ± 0.058 120 8.51 ± 0.00 100 0.6768 ± 0.0452 80 60 $\sigma_{eff} = 10.3 \text{ ps} @. 150 \text{V}$ 40 20 8.46 8.48 8.5 8.52 8.54 8.56 8.58 8.6 8.62 8.64 t_{si} - <t_{MCP}> [ns]

• VELO based on pixel for high granularity : 3D sensor with 28nm thickness

- New RF foil
- Add timing

• Timepix4 ASIC most advanced Planned to be used in Timepix Telescope for new lumimeter

VELO

• VELO based on pixel for high granularity : 3D sensor with 28nm thickness

- New RF foil
- Add timing

PicoPix ASIC alternative with ~factor 4

improvement in timing

PicoPix ASIC de	esign advancing
------------------------	-----------------

	freq	Phases	Phase mismatch [max-min]	LSB	Area	power
Timepix4 VCO	640 MHz	8	~25%	195ps	~350µm²	~500µW
PicoPix DCO	2-3 GHz	10	< 5%	50-33ps	~38µm²	~150µW

Layout below is the oscillator-core of in-pixel TDC, with comparison to previous generation (Timepix4), massive size reduction in 28nm \rightarrow pixel size feasible

UT + MIGHTYTRACKER

- Pixel for UT using MAPS ($50x150\mu m^2$)
 - Low-cost commercial production + low material budget
 - Radiation requirement $3 \times 10^{15} n_{eq} cm^{-2}$

UT + MIGHTYTRACKER

- Radiation requirement $3 \times 10^{15} n_{eq} cm^{-2}$

• MightyTracker: MAPS pixel inner, scintillating fibres outer

- Radiation hard fibres, cryogenic cooling
- Photo detection efficiency enhancement with micro-lenses for SiPMs

• Pixel for UT using MAPS ($50x150\mu m^2$)

• Low-cost commercial production + low material budget

UT + MIGHTYTRACKER

• Pixel for UT using MAPS ($50x150\mu m^2$)

 MightyTracker: MAPS pix Largely improved momentum resolution Radiation hard fibres, Photo detection efficiency enhancement with

• Low-cost commercial production + low material budget

• Radiation requirement $3 \times 10^{15} n_{eq} cm^{-2}$

\rightarrow especially for downstream tracks (no VELO info)

PID - RICH & TORCH

• RICH1 and RICH2: reduced pixel size and adding timing fastRICH ASIC • SiPM and microchannel plates (MCP) limit timing to $\sigma \sim 150$ ps

PID - RICH & TORCH

• RICH1 and RICH2: reduced pixel size and adding timing fastRICH ASIC • SiPM and microchannel plates (MCP) limit timing to $\sigma \sim 150$ ps

• TORCH: Timing Of internally Reflected CHerenkov photons \rightarrow new detector with Time-of-flight quartz Photon readout with SiPM + MCP

• Enables hadron separation inaccessible by RICH

PID - RICH & TORCH

• RICH1 and RICH2: reduced pixel size and adding timing fastRICH ASIC • SiPM and microchannel plates (MCP) limit timing to $\sigma \sim 150$ ps

• TORCH: Timing Of internally Reflected CHerenkov photons

→ new detector with Time-of-flight quartz

- Photon readout with SiPM + MCP
- Enables hadron separation inaccessible by RICH

Studies of PID for p and K from $\Lambda_h^0 \to pK^-J/\psi$ significant PID improvement

ECAL

- ECAL combination of old Shashlik ECAL and SpaCal
 - \rightarrow 5D reconstruction: Space + Time + longitudinal separation
- Goal : same energy resolution and reconstruction efficiency as Run 1+2
 - \rightarrow suffer from pile-up and radiation up to 1MGy
- Need granularity and precision timing

Prototyping, now towards production

MUON CHAMBERS

- Novel micro-pattern gas detectors µRWELL
- Used in innermost region
- Reuse multi-wire chambers otherwise

- HCAL replaced with iron-concrete shielding
 - → shielding against neutrons
- Shielding in front of ECAL also remains for RICH

 Top Copper (5 μm)
 Cathode PCB
 70 μm

 Polyimide
 Pitch 140 μm
 50 μm

 DLC layer (<0.1 μm)</td>
 p-10+100 MΩ/□
 90

 Pre-preg
 PCB electrode
 PCB

- Framework TDR published in February 2022
- This year finish scoping document

 \rightarrow evaluating different technology and cost options

- With approval final TDR will follow
- Various stages of testing and already production
- Full production planned for LS3 to ensure installation in LS4
- More details on physics next week in Upgrade II Session of LHCb week

Check Twiki on Upgrade 2

