
LHCb Starterkit 2024 - Practice Session

February 16, 2024

1 Part 1 - Producing your nTuple

1.1 Goals of the session

Starting from a DST files with simulated events that passed HLT2 selections,
we want to tuple the information using DaVinci.

• Decay of interest : D0 → K−π+

• Simulation sample used:
/MC/Upgrade/Beam7000GeV-Upgrade-MagDown-Nu7.6-25ns-Pythia8/Sim10aU1/27163003/XDIGI

• You can find the dst files (2 files with different statistics) and the tck.json
files in this directory:
/afs/cern.ch/work/f/femiguel/public/Starterkit24/

• Please copy the files to your working area.

1.2 Setting the configuration

Working from lxplus.

1. Create a file python tupling.py, that will contain the algorithm used to
config DaVinci.

2. Create a function that will be called when executing DaVinci (typically
alg config()), taking options as argument.

3. This function return make config(options, algs). (This function needs to
be imported from DaVinci).

4. To make things easier here are the list of imports we will be using.
from PyConf.components import force location

from DaVinci.algorithms import add filter

from DaVinci import make config

from FunTuple import FunTuple Particles as Funtuple

from FunTuple import FunctorCollection

import Functors as F

1



from FunTuple.functorcollections import (

MCHierarchy,

Kinematics,

SelectionInfo,

MCVertexInfo,

MCKinematics,

EventInfo,

)

from Functors.math import log

from DaVinci.truth matching import (

configured MCTruthAndBkgCatAlg,

)

from DaVinci.reco objects import make pvs v2

from DaVinci.algorithms import add filter, get odin, get decreports

5. This is the HLT2 line: Hlt2Charm D0ToKmPip XSec Line

6. Hint: add filter in this DaVinci version is the equivalent of the create line filter

we saw in the DaVinci Run 3 lesson this year. This is due to these DST
files being created with a previous DV version.

1.3 Setting the options

Create the yaml file and fill with the following (ignore the unintended indenta-
tion):

input files: ... # the dst file

annsvc config: PATH/hlt2.tck.json

input type: ...

input raw format: ...

data type: Upgrade

simulation: true

dddb tag: ...

conddb tag: ...

ntuple file: ...

process: ...

1.4 Execution

To run the tupling:
lb-run DaVinci/v62r0p1 lbexec CONFIG OPTION

2



2 Part 2 - Analysing your data

2.1 Goals of the session

We will now put to use some of the knowledge learned in this workshop. You
(should) have the data you’re interested in, in some ROOT ntuples. What can
you do with it?

We will go through some basic steps that you would take to study a Monte
Carlo sample of your signal channel of interest. This includes applying some
rudimentary cuts to it, and fitting the resulting mass distribution.

2.2 Setup of the Session

You should have worked this morning on producing a ntuple for the decay
D0 → K−π+, with a simple DaVinci script. As running DaVinci can take a
long time to get a reasonabe amount of signal events in your ntuple, for this
second part of the Session you are provided with a ROOT file that contains the
TTree with the kinematic, PID, and MC-truth variables, but with much higher
statistics. This file can be copied on lxplus from

/afs/cern.ch/work/f/femiguel/public/SK NewDV/DV MC files.root

We can now do some fits to the data in our ROOT file. To do that, you have
many options at your disposal. You can use RooFit or minuit like we saw in
the statistics lesson. You can also use zfit, in which case you will need to set
up an environment. You can do so by cloning the git repository from the 2022
edition: here, you should be able to set up the evironment by just running on
your command line:

./lbConda Starterkit Create.sh starterkitEnv source

starterkitEnv/run bash

to open a bash shell in the correct environment.
You can write a python script or a jupyter notebook if you want to add

comments and explanation for the steps that you’ll take throughout the session.
We will not mark you, so this is just for your own future reference!

Use the lessons and materials provided during the week as you go along!
This Session is not meant to be test of your knowledge, but just to make you
more familiar with the tools we’ve seen. Helpers will be around to assist with
issues you may encounter.

3 Exploring the data

First, you can use uproot to read and load in the data contained in the ntuple.
Sort through the ROOT file to find the location of your TTree. Once you’re
able to laod it, you can start by loading in the D0 mass branch, which is called

3

https://gitlab.cern.ch/rmwillia/starterkit-2022-python-and-bash-tutorial/-/tree/master/


D0 M. Try and plot it and see what it looks like! You should see a peak over a
continuous background.

Later, you can start loading in more branches. Here’s a list of the ones that
will be useful for today:

D0 M, D0 TRUEID, Kminus PIDK, Kminus PIDmu, Kminus TRUEID, piplus PIDK,
piplus PIDmu, piplus TRUEID

You can have a look at them by plotting them and seeing what their distri-
butions look like. We can note a few things about these branches:

• The ntuple contains both D0 →K−π+ and the charge-conjugate process
D0 →K+π−. The names of the branches of the children K− and π+ are
only meant to reflect what the process is, but it doesn’t mean that those
branches only contains kaons and pions of a given charge.

• The TRUEID variables return an identification number assigned at MC level
to any particle candidate in the ntuple. This is useful because simulated
data that passes through the nominal LHCb reconstruction may produce
candidates which do not correspond to the original signal generated by
Gauss (as reconstruction is not 100% efficient). The TRUEID for D0, K−

and π+ are 421, -321, 211, respectively. More information on the conven-
tions for this numbering scheme can be found here.

• The PID variables can be interpreted as a likelihood that a particle candi-
date is of a given species. For example, Kminus PIDK returns the likelihood
that the K− candidate is actually a kaon; Kminus PIDmu returns the like-
lihood that the K− candidate is actually a muon; and so on. Note that
the number returned is not a probability, i.e. a number from 0 to 1, but as
a rule of thumb the chance of a particle being of a given species is higher
the higher the value of the corresponding PID.

We can use these to apply cuts on our data! For example, when using
simulation, a common selection is what is known as truth-matching. This means
requiring that the TRUEID of the candidates match what we expect. Because we
have both D0 and D0 decay candidates, we have to require that the absolute
value of the TRUEID matches the known values.

Apply the truth-matching cut on your data and look at how the shape of the
distribution changes. You should see that most of the background gets removed,
and only the peak remains.

Alternatively, you can play with the PID variables and apply different cuts
to see how the distribution is affected.

3.1 Fitting your data

We’re ready now to start doing some fits! We want to fit the mass distribution
of the D0 candidates. First, start by setting up your observable which will be
the proxy for the variable D0 M.

4

https://pdg.lbl.gov/2007/reviews/montecarlorpp.pdf


As you have seen by plotting the data, we can start by modelling the peak
as a simple gaussian. Set up the parameters for the mean and width, as well as
a yield parameter. Try doing an extended unbinned fit with the gaussian to the
non-truth matched data, and print out the result. Is it a good fit?

Next, you can plot the data and the fitted model together to see how well the
gaussian models the data. You can also try to plot the 1D likelihood function
for the mean of the gaussian.

Advanced: you can also try to plot what are known as pulls. You can think
of pulls as a very naive measure of the goodness-of-fit. If you plot your data as
a histogram, then the pull relative to one of its bins is defined as such:

pull =
Nbin − ybin√

Nbin

ybin =

∫
bin

pdf(m)dm

This is the difference between the number of entries in a given bin Nbin with
the integral of the extended pdf over that bin, normalised by the poissonian
error

√
Nbin. Generally, in a good fit, the distribution of pulls for all bin should

be centered in zero and be symmetric. They should be randomly scattered and
no systematic trend should be visible.

3.2 Improving the model

Since we’re not modelling the background at the moment, we shouldn’t expect
to see a good fit when plotting it against our data. So, we can add to our model
a second pdf, which represents the background. This can be modelled by an
exponential function. Remember to set up the yield for this as well and sum
the resulting extended pdf with the one that we made for the gaussian peak.

Try to fit this updated model to the data, and plot it. Does it look better?

Advanced: Plot the pulls for this as well.

4 Advanced: Storing the result

Now comes the part for you to reflect and be creative. We want ideally to store
the information of the fit somewhere, how can we do that?

Hint: Would dictionaries be useful in this case?

5


	Part 1 - Producing your nTuple
	Goals of the session
	Setting the configuration
	Setting the options
	Execution

	Part 2 - Analysing your data
	Goals of the session
	Setup of the Session

	Exploring the data
	Fitting your data
	Improving the model

	Advanced: Storing the result

