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Before I start…

A huge thanks to the organizers! and to my old/new ISOTDAQ friends!
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… from the previous lesson

What is an Field Programmable Gate Array (FPGA)?
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… from the previous lesson

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by

a customer or a designer after manufacturing – hence "field-programmable".

https://en.wikipedia.org/wiki/Field-programmable_gate_array

https://en.wikipedia.org/wiki/Field-programmable_gate_array

FPGA - Wikipedia

FPGA - Wikipedia

What is an Field Programmable Gate Array (FPGA)?
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… from the previous lesson
• FPGA fabric (matrix like structure) made of:

• Logic cells

• Interconnect network between logic resources

• I/O-cells to communicate with outside world

o Look-Up-Table (LUT) to implement combinatorial logic

o Flip-Flops (D) to implement sequential logic

• Clock tree to distribute the clock signals
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… from the previous lesson
• But it also features Hard Blocks: Example of FPGA architecture

Example of FPGA architecture
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Key concepts about FPGA design

FPGA gateware design is NOT programming
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Key concepts about FPGA design

FPGA gateware design is NOT programming

• Programming

• Code is written and translated into instructions

• Instructions are executed sequentially by the CPU(s)

Sequential
Processing

Parallel
Processing

• Parallelism is achieved by running instructions on multiple threads/cores

• Processing structures and instructions sets are fixed by the architecture of the system

• FPGA gateware design

• No fixed architecture, the system is built according to the task

• Building is done by describing/defining system  elements and their relations

vs.

• Intrinsically parallel, sequential behaviour is achieved by registers and Finite-State-Machines (FSMs)

• Defined through a hardware description language (HDL), High Level Synthesis (HLS) or schematics
13



HDL are used for describing HARDWARE

Key concepts about FPGA design
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HDL are used for describing HARDWARE

• Example of a WAIT statement (Programming Language VS. HDL)

Key concepts about FPGA design
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HDL are used for describing HARDWARE

• Example of a WAIT statement (Programming Language VS. HDL)

• In programming language (e.g. C) (Unix, #include <unistd.h>)

sleep(5); // sleep 5 seconds

Key concepts about FPGA design
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HDL are used for describing HARDWARE

• Example of a WAIT statement (Programming Language VS. HDL)

• In programming language (e.g. C) (Unix, #include <unistd.h>)

• In HDL (e.g. VHDL):

o Not synthesizable (only for simulation test benches)

sleep(5); // sleep 5 seconds

Key concepts about FPGA design
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HDL are used for describing HARDWARE

• Example of a WAIT statement (Programming Language VS. HDL)

• In programming language (e.g. C) (Unix, #include <unistd.h>)

• In HDL (e.g. VHDL):

o Not synthesizable (only for simulation test benches)

o Synthesizable (for simulation and/or FPGA implementation)

sleep(5); // sleep 5 seconds

Key concepts about FPGA design
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A design abstraction which models a synchronous digital circuit in terms of 

the flow of digital signals (data) between registers and logical operations 

performed on those signals

http://en.wikipedia.org/wiki/Register-transfer_level

http://en.wikipedia.org/wiki/Register-transfer_level

Register Transfer Level (RTL)

Register Transfer Level (RTL)

HDL are used for describing HARDWARE

• Example of a WAIT statement (Programming Language VS. HDL)

• In programming language (e.g. C) (Unix, #include <unistd.h>)

• In HDL (e.g. VHDL):

o Not synthesizable (only for simulation test benches)

o Synthesizable (for simulation and/or FPGA implementation)

sleep(5); // sleep 5 seconds

HDL to RTL

Key concepts about FPGA design
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• Example of a WAIT statement (Programming Language VS. HDL)

• In programming language (e.g. C) (Unix, #include <unistd.h>)

• In HDL (e.g. VHDL):

o Not synthesizable (only for simulation test benches)

o Synthesizable (for simulation and/or FPGA implementation)

sleep(5); // sleep 5 seconds

HDL to RTL
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A design abstraction which models a synchronous digital circuit in terms of 

the flow of digital signals (data) between registers and logical operations 

performed on those signals

http://en.wikipedia.org/wiki/Register-transfer_level

http://en.wikipedia.org/wiki/Register-transfer_level

Register Transfer Level (RTL)

Register Transfer Level (RTL)

HDL are used for describing HARDWARE

• Example of a WAIT statement (Programming Language VS. HDL)

• In programming language (e.g. C) (Unix, #include <unistd.h>)

• In HDL (e.g. VHDL):

o Not synthesizable (only for simulation test benches)

o Synthesizable (for simulation and/or FPGA implementation)

sleep(5); // sleep 5 seconds

HDL to RTL

Key concepts about FPGA design
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A design abstraction which models a synchronous digital circuit in terms of 

the flow of digital signals (data) between registers and logical operations 

performed on those signals

http://en.wikipedia.org/wiki/Register-transfer_level

http://en.wikipedia.org/wiki/Register-transfer_level

Register Transfer Level (RTL)

Register Transfer Level (RTL)

HDL are used for describing HARDWARE

• Example of a WAIT statement (Programming Language VS. HDL)

• In programming language (e.g. C) (Unix, #include <unistd.h>)

• In HDL (e.g. VHDL):

o Not synthesizable (only for simulation test benches)

o Synthesizable (for simulation and/or FPGA implementation)

sleep(5); // sleep 5 seconds

HDL to RTL

Key concepts about FPGA design
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Timing in FPGA gateware design is critical

Key concepts about FPGA design
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Timing in FPGA gateware design is critical

• Data propagates in the form of electrical signals through the FPGA 

x

Key concepts about FPGA design
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Timing in FPGA gateware design is critical

• Data propagates in the form of electrical signals through the FPGA 

x
Synthesized RTL (Netlist) is implemented into FPGA 

Key concepts about FPGA design
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Timing in FPGA gateware design is critical

• Data propagates in the form of electrical signals through the FPGA 

x

• If these signals do not arrive to their destination on time…

The consequences may be catastrophic!!!

Synthesized RTL (Netlist) is implemented into FPGA 

Key concepts about FPGA design
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When designing FPGA gateware you have to think 

HARD… 

Key concepts about FPGA design
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When designing FPGA gateware you have to think 

HARD… WARE

Key concepts about FPGA design
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Outline:
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Key concepts about FPGA design

• FPGA gateware design workflow

Summary
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ImplementationConstraints

(Physical 

& Timing)

`
In-System

Debugging

Project

Specification

Design Entry

Synthesis

Static Timing Analysis

Bitstream Generation

& FPGA Programming

Behavioural Simulation

Functional Simulations

(Post-Synthesis

 or 

Post-Implementation)

Timing Simulation

FPGA gateware design workflow
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Project Specification

This is the most critical step…

The rest of the design process is based on it!!!

FPGA gateware design workflow
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This is the most critical step…

The rest of the design process is based on it!!!

Project Specification

FPGA gateware design workflow
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This is the most critical step…

The rest of the design process is based on it!!!

Project Specification

FPGA gateware design workflow
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And firmwares are like cats

If they get too big, they won’t fit 



This is the most critical step…

The rest of the design process is based on it!!!• Gather requirements from the users

Project Specification

FPGA gateware design workflow
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This is the most critical step…

The rest of the design process is based on it!!!

Example of General Purpose Gateware

• Specify:

• Gather requirements from the users

• Target application (General purpose or Specific)

Project Specification

FPGA gateware design workflow
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This is the most critical step…

The rest of the design process is based on it!!!

Example of Application Specific Gateware

GLIB

FPGA

GBT Serializer

GBT Deserializer

4.8Gbps

AMC

Processor
DMAPCIe

PLL

MGT RXGBT RX

Readout
Logic

TTC FMC

AM
C 

C
on

ne
ct

or

/4

160Mbps

TTC 
source

GBTx

MGT TXGBT TX
TTC

Decoder

CDR

Optical 

transceiver

SFP+

Transceiver

Recovered

CLK

uTCA shelf
LEGEND

CLK 40MHz

CLK 160MHz

Downstream

Upstream

• Gather requirements from the users

• Specify:

Project Specification

• Target application (General purpose or Specific)

FPGA gateware design workflow
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This is the most critical step…

The rest of the design process is based on it!!!

Example of FPGA Architecture

Example of FPGA Architecture

• Gather requirements from the users

• Specify:

Project Specification

• Main features (e.g. System bus, SoC, Multi-gigabit transceivers, etc.)

• Target application (General purpose or Specific)

FPGA gateware design workflow
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This is the most critical step…

The rest of the design process is based on it!!!

Small FPGA vendors may target specific markets (e.g. 

Microsemi offers highly reliable radiation hard FPGAs, etc..)

• Gather requirements from the users

• FPGA vendor (e.g. AMD Xilinx, Intel (Altera), Microchip (Microsemi), etc.)

• Main features (e.g. System bus, SoC, Multi-gigabit transceivers, etc.)

• Specify:

Project Specification

• Target application (General purpose or Specific)

Lattice
5%Microchip

5%

Other
3%

Xilinx
52%

Intel
52%

TOTAL FPGA SHARES OF REVENUE 2019

FPGA gateware design workflow
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This is the most critical step…

The rest of the design process is based on it!!!

Example of COTS board (Xilinx Devkit)

Example of Custom Board

• Gather requirements from the users

• Specify:

(*) Commercial Off-The-Shelf (COTS)

• Electronic board (Custom or COTS (*))

Project Specification

• Main features (e.g. System bus, SoC, Multi-gigabit transceivers, etc.)

• Target application (General purpose or Specific)

• FPGA vendor (e.g. AMD Xilinx, Intel (Altera), Microchip (Microsemi), etc.)

FPGA gateware design workflow

39



This is the most critical step…

The rest of the design process is based on it!!!

Example of FPGA Vendor Tools

Example of Commercial Tools

• Gather requirements from the users

• Development tools (FPGA vendor or Commercial)

• Specify:

• Electronic board (Custom or COTS (*))

Project Specification

(*) Commercial Off-The-Shelf (COTS)

• Main features (e.g. System bus, SoC, Multi-gigabit transceivers, etc.)

• Target application (General purpose or Specific)

• FPGA vendor (e.g. AMD Xilinx, Intel (Altera), Microchip (Microsemi), etc.)

FPGA gateware design workflow
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This is the most critical step…

The rest of the design process is based on it!!!• Gather requirements from the users

• Optimization (Speed, Area, Power or default)

• Development tools (FPGA vendor or Commercial)

• Specify:

• Electronic board (Custom or COTS (*))

Project Specification

• Main features (e.g. System bus, SoC, Multi-gigabit transceivers, etc.)

• Target application (General purpose or Specific)

• FPGA vendor (e.g. AMD Xilinx, Intel (Altera), Microchip (Microsemi), etc.)

(*) Commercial Off-The-Shelf (COTS)

FPGA gateware design workflow
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This is the most critical step…

The rest of the design process is based on it!!!• Gather requirements from the users

• Optimization (Speed, Area, Power or default)

• Development tools (FPGA vendor or Commercial)

• Specify:

• Electronic board (Custom or COTS (*))

Project Specification

• Main features (e.g. System bus, SoC, Multi-gigabit transceivers, etc.)

• Target application (General purpose or Specific)

• FPGA vendor (e.g. AMD Xilinx, Intel (Altera), Microchip (Microsemi), etc.)

(*) Commercial Off-The-Shelf (COTS)

FPGA gateware design workflow
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This is the most critical step…

The rest of the design process is based on it!!!• Gather requirements from the users

• Optimization (Speed, Area, Power or default)

• Development tools (FPGA vendor or Commercial)

• Specify:

• Electronic board (Custom or COTS (*))

Project Specification

(*) Commercial Off-The-Shelf (COTS)

• Main features (e.g. System bus, SoC, Multi-gigabit transceivers, etc.)

• Target application (General purpose or Specific)

• FPGA vendor (e.g. AMD Xilinx, Intel (Altera), Microchip (Microsemi), etc.)

FPGA gateware design workflow
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This is the most critical step…

The rest of the design process is based on it!!!• Gather requirements from the users

• Optimization (Speed, Area, Power or default)

• Development tools (FPGA vendor or Commercial)

• Specify:

• Electronic board (Custom or COTS (*))

Project Specification

• Main features (e.g. System bus, SoC, Multi-gigabit transceivers, etc.)

• Target application (General purpose or Specific)

• FPGA vendor (e.g. AMD Xilinx, Intel (Altera), Microchip (Microsemi), etc.)

(*) Commercial Off-The-Shelf (COTS)

FPGA gateware design workflow
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This is the most critical step…

The rest of the design process is based on it!!!

HDL are the most popular for RTL design

but…

 Schematics or HLS

may be better in some cases

(e.g. SoC bus interconnect, etc..)

• Gather requirements from the users

• Optimization (Speed, Area, Power or default)

• Development tools (FPGA vendor or Commercial)

• Design language (HDL, Schematics or HLS)

• Specify:
Examples of Design Languages

• Electronic board (Custom or COTS (*))

Project Specification

(*) Commercial Off-The-Shelf (COTS)

• Main features (e.g. System bus, SoC, Multi-gigabit transceivers, etc.)

• Target application (General purpose or Specific)

• FPGA vendor (e.g. AMD Xilinx, Intel (Altera), Microchip (Microsemi), etc.)

FPGA gateware design workflow

45



This is the most critical step…

The rest of the design process is based on it!!!

Example of Coding Convention 

Your code 

should be 

readable

• Gather requirements from the users

• Optimization (Speed, Area, Power or default)

• Development tools (FPGA vendor or Commercial)

• Coding convention

• Specify:

• Electronic board (Custom or COTS (*))

Project Specification

(*) Commercial Off-The-Shelf (COTS)

• Main features (e.g. System bus, SoC, Multi-gigabit transceivers, etc.)

• Target application (General purpose or Specific)

• FPGA vendor (e.g. AMD Xilinx, Intel (Altera), Microchip (Microsemi), etc.)

• Design language (HDL, Schematics or HLS)

FPGA gateware design workflow
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This is the most critical step…

The rest of the design process is based on it!!!• Gather requirements from the users

• Optimization (Speed, Area, Power or default)

• Development tools (FPGA vendor or Commercial)

• Software interface (GUI, Scripts or both)

Example of GUIs

Example of TCL script

• Coding convention

Xilinx ISE TCL console

• Specify:

• Electronic board (Custom or COTS (*))

Project Specification

• Main features (e.g. System bus, SoC, Multi-gigabit transceivers, etc.)

• Target application (General purpose or Specific)

• Design language (HDL, Schematics or HLS)

• FPGA vendor (e.g. AMD Xilinx, Intel (Altera), Microchip (Microsemi), etc.)

FPGA gateware design workflow
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This is the most critical step…

The rest of the design process is based on it!!!• Gather requirements from the users

• Optimization (Speed, Area, Power or default)

• Development tools (FPGA vendor or Commercial)

• Software interface (GUI, Scripts or both)

Example of GUIs

Example of TCL script

• Coding convention

Xilinx ISE TCL console

• Specify:

• Electronic board (Custom or COTS (*))

Project Specification

• Main features (e.g. System bus, SoC, Multi-gigabit transceivers, etc.)

• Target application (General purpose or Specific)

• Design language (HDL, Schematics or HLS)

• FPGA vendor (e.g. AMD Xilinx, Intel (Altera), Microchip (Microsemi), etc.)

FPGA gateware design workflow

Automate as much as you 
can, specially for big 

projects!

• Compilation
• Simulation
• Hardware tests
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This is the most critical step…

The rest of the design process is based on it!!!

• Use of files repository (SVN, GIT, etc.. or none)

• Gather requirements from the users

• Optimization (Speed, Area, Power or default)

• Development tools (FPGA vendor or Commercial)

• Software interface (GUI, Scripts or both)

• Coding convention

• Specify:

• Electronic board (Custom or COTS (*))

Project Specification

(*) Commercial Off-The-Shelf (COTS)

• Main features (e.g. System bus, SoC, Multi-gigabit transceivers, etc.)

• Target application (General purpose or Specific)

• FPGA vendor (e.g. AMD Xilinx, Intel (Altera), Microchip (Microsemi), etc.)

• Design language (HDL, Schematics or HLS)

FPGA gateware design workflow

49



This is the most critical step…

The rest of the design process is based on it!!!• Block diagram of the system

GLIB

FPGA

GBT Deserializaer

SFP+

Transceiver

CLK 40MHz

4 x 

5Gbps

4.8Gbps

AMC
Processor DMAPCIe

PLL

MGT RXGBT RXReadout

Logic

Recovered

CLK

A
M

C
 C

o
n
n

e
c

to
r

MTCA Crate

Example of system block diagram

• Include the FPGA logic…

• May combine different abstraction levels

• … but also the on-board devices and related devices

Project Specification

FPGA gateware design workflow
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This is the most critical step…

The rest of the design process is based on it!!!• Block diagram of the system
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Example of system block diagram

• Include the FPGA logic…

• May combine different abstraction levels

• … but also the on-board devices and related devices

Project Specification

FPGA gateware design workflow

Check manufacturer’s 
recommendations for your 

design’s features!

• Pins for clocks?
• Jitter specs?
• External PLLs?

51



• Pin planning

This is the most critical step…

The rest of the design process is based on it!!!

Critical for 

Custom Boards!!!

Pin assignments are one type 

of Location Constraints

Example of Pin Planner GUI

Project Specification

FPGA gateware design workflow
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Design Entry

FPGA gateware design workflow

53



Design Entry: Modularity & Reusability

• Your system should be Modular

• Your code should be Reusable

• Well defined clocks and resets schemes

• Separated Data & Control paths

• Multiple instantiations

• Use parameters in your code (e.g. generics in VHDL, parameters in Verilog, etc.)

• Use configurable modules interfaces when possible (e.g. parametrised vectors, records in VHDL, etc.) 

• Avoid vendor specific IP Cores when possible

• Centralise parameters in external files (e.g. packages in VHDL, headers in Verilog, etc.)

• Use standard features (e.g. I2C, Wishbone, etc.)

• Use standard IP Cores (e.g. from www.OpenCores.org, etc.)

• Talk with your colleagues and see what other FPGA designers are doing

Pattern 

Generator

8-bit Counter

RAM

256x16-bit

Increment

Data

Data Valid Flag

Address

Write Enable

Data

Reset

ResetReset

Reset

Clock

16-bit

8-bit

Good example of Modular System
• Design at RTL level (think hard…ware)

• Add primitives (and modules) to the system by inference when possible

FPGA gateware design workflow
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Design Entry: Modularity & Reusability

• Your system should be Modular

• Your code should be Reusable

• Well defined clocks and resets schemes

• Separated Data & Control paths

• Multiple instantiations

• Use parameters in your code (e.g. generics in VHDL, parameters in Verilog, etc.)

• Use configurable modules interfaces when possible (e.g. parametrised vectors, records in VHDL, etc.) 

• Avoid vendor specific IP Cores when possible

• Centralise parameters in external files (e.g. packages in VHDL, headers in Verilog, etc.)

• Use standard features (e.g. I2C, Wishbone, etc.)

• Use standard IP Cores (e.g. from www.OpenCores.org, etc.)

• Talk with your colleagues and see what other FPGA designers are doing

Pattern 

Generator

8-bit Counter

RAM

256x16-bit

Increment

Data

Data Valid Flag

Address

Write Enable

Data

Reset

ResetReset

Reset

Clock

16-bit

8-bit

Good example of Modular System
• Design at RTL level (think hard…ware)

• Add primitives (and modules) to the system by inference when possible

FPGA gateware design workflow

Seriously, talk to your 
colleagues before wasting 

your time on code!

• They might have done 
what you need already!

55
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Design Entry: Coding for Synthesis

• Use non-synthesizable HLD  statements only in simulation test benches

A fundamental guiding principle when coding for synthesis is to minimize, if not eliminate, all structures 

and directives that could potentially create a mismatch between simulation and synthesis.

From book “Advanced FPGA Design” by Steve Kilts (Copyright © 2007 John Wiley & Sons, Inc.)

Synthesizable code is intended for 

FPGA implementation 

• The RTL synthesis tool is expecting a synchronous design…

FPGA gateware design workflow
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Design Entry: Coding for Synthesis

• Use non-synthesizable HLD  statements only in simulation test benches

A fundamental guiding principle when coding for synthesis is to minimize, if not eliminate, all structures 

and directives that could potentially create a mismatch between simulation and synthesis.

From book “Advanced FPGA Design” by Steve Kilts (Copyright © 2007 John Wiley & Sons, Inc.)

Synthesizable code is intended for 

FPGA implementation 

But what is a synchronous design???

• The RTL synthesis tool is expecting a synchronous design…

FPGA gateware design workflow
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Design Entry: Coding for Synthesis

• Use non-synthesizable HLD  statements only in simulation test benches

A fundamental guiding principle when coding for synthesis is to minimize, if not eliminate, all structures 

and directives that could potentially create a mismatch between simulation and synthesis.

From book “Advanced FPGA Design” by Steve Kilts (Copyright © 2007 John Wiley & Sons, Inc.)

Synthesizable code is intended for 

FPGA implementation 

Synchronous design is the one compose by combinatorial logic (e.g. logic gates, multiplexors, etc..) and 

sequential logic (registers that are triggered on the edge of a single clock),
Combinatorial Logic

Combinatorial Logic
Sequential Logic

Sequential Logic

Synchronous design

Synchronous design

+ =
R R

Rst

Combinatorial Logic

Rst

• The RTL synthesis tool is expecting a synchronous design…

FPGA gateware design workflow
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Design Entry: Coding for Synthesis
• Combinatorial logic coding rules

• Sensitivity list must include ALL input signals

• ALL output signals must be assigned under ALL possible input conditions

• No feedback from output to input signals

Not respecting this may lead to unknown output states (metastability) & undesired latches

Not respecting this may lead to undesired latches (asynchronous storage element)

Not respecting this may lead to non responsive outputs under changes of input signals

Bad combinatorial coding for synthesis

Bad combinatorial coding for synthesis

Good combinatorial coding for synthesis

Good combinatorial coding for synthesis
Asynchronous Latch

Asynchronous Latch

FPGA gateware design workflow
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Design Entry: Coding for Synthesis
• Sequential logic coding rules

• Only clock signal (and asynchronous set/reset signals when used) in sensitivity list

• All registers of the sequence must be triggered by the same clock edge (either Rising or Falling)

Not respecting this may produce undesired combinatorial logic 

Not respecting this may lead to metastability at the output of the registers

• Include all registers of the sequence in the same reset branch

Not respecting this may lead to undesired register values after reset

Good sequential coding for synthesis

Good sequential coding for synthesis

Bad sequential coding for synthesis

Bad sequential coding for synthesis

FPGA gateware design workflow
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Design Entry: Coding for Synthesis
• Synchronous design coding rules:

• Register ALL output signals (input signals also recommended)

Not respecting this may lead to uncontrolled length of combinatorial paths

Not respecting this may lead to undesired register values after reset

• FULLY synchronous design

Not respecting this may lead to incorrect analysis from the FPGA design tool

o No combinatorial feedback

o No asynchronous latches

• Properly design of reset scheme (mentioned later)

Not respecting this may lead to metastability at the output of the registers & Misuse of resources

• Properly design of clocking scheme (mentioned later)

Not respecting this may lead to metastability at the output of the registers 

• Properly handle Clock Domain Crossings (CDC) (mentioned later)

Combinatorial Logic

Rst

FPGA gateware design workflow
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• Finite State Machines (FSMs):

Design Entry: Coding for Synthesis

• Two variants of FSM

o Moore: Outputs depends only on the current state of the FSM

• Digital logic circuit with a finite number of internal states

• Widely used for system control

o Mealy:  Outputs depends only on the current state of the FSM as well as the current values of the inputs

• Modelled by State Transition Diagrams

• Many different FSM coding styles (But not all of them are good!!)

• FSM coding considerations:

o Synchronize inputs & outputs

o Be careful with unreachable/illegal states
o Outputs may be assigned during states or state transitions

o You can add counters to FSMs

FPGA gateware design workflow
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o No Reset Scheme

Pros; Easier Routing, Less resources, Easiest timing closure

Cons: Only reset at power up (in some devices not even that…) 

Design Entry: Reset Scheme

• It has a direct impact on:

• Different approaches:

<- In fact, reset is not always needed

• Performance

• Logic utilization

• Reliability

o Asynchronous

• Used to initialize the output of the registers to a know state

o Synchronous

o Hybrid: Usually in big designs (Avoid when possible!!!)  

Pros: No free running clock required, easier timing closure

Cons: skew, glitches, simulation mismatch, difficult to debug, extra constraints, etc.

Pros: No Skew, No Glitches, No simulation mismatch, Easier to debug, No extra constraints, etc..

Cons: Free-running clock required, More difficult timing closure

A bad reset scheme may get you crazy!!!

FPGA gateware design workflow
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Design Entry: Reset Scheme

• It has a direct impact on:

• Performance

• Logic utilization

• Reliability

• Used to initialize the output of the registers to a know state

My advise is…

You should use 

SYNCHRONOUS RESET

 by default

A bad reset scheme may get you crazy!!!

o No Reset Scheme

Pros; Easier Routing, Less resources, Easiest timing closure

Cons: Only reset at power up (in some devices not even that…) 

• Different approaches:

<- In fact, reset is not always needed

o Asynchronous

o Synchronous

o Hybrid: Usually in big designs (Avoid when possible!!!)  

Pros: No free running clock required, easier timing closure

Cons: skew, glitches, simulation mismatch, difficult to debug, extra constraints, etc.

Pros: No Skew, No Glitches, No simulation mismatch, Easier to debug, No extra constraints, etc..

Cons: Free-running clock required, More difficult timing closure

FPGA gateware design workflow
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• Other FPGA clocking resources

• Bad practices when designing your clocking scheme

Design Entry: Clocks Scheme

Gated clocks Derived clocks

• Clock regions

Clocking resources are very precious!!!

• Clock capable pins

• Clock buffers

• PLLs & DCM

Do not use these clocks 

in your system!!!

• Clock Multiplexors
Global clock tree

Local clock tree

Clock Regions

FF

FF

Comb

CLK

• Clock trees (Global & Local)

FPGA gateware design workflow
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Design Entry: Timing

• Sampling

Tsu: Set Up Time

Th:   Hold Time

DATA[0] DATA[1]

Clock

Tsu Th

Sampling

Point

No Stable Data

(Metastable Area)

FPGA gateware design workflow
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Design Entry: Timing

• Clock Domain Crossing (CDC)

FPGA gateware design workflow
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Design Entry: Timing

• Clock Domain Crossing (CDC)

FPGA gateware design workflow
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Design Entry: Timing

• Clock Domain Crossing (CDC): The problem…

Signal violates the setup-time of FlipFlop B clocked by Clk B

Bout becomes metastable and then settles at either at ‘1’ or ‘0’

• Clock Domain Crossing (CDC) : passing a signal from one clock domain to another (A to B)

• If clocks are unrelated to each other (asynchronous) timing analysis may not be reliable

• Setup and Hold times of FlipFlop B are likely to be violated -> Metastability!!!

Avoid creating unnecessary clock domains

FPGA gateware design workflow
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Design Entry: Timing

• Clock Domain Crossing: The workaround…

Handshaking DPRAM
Din

Wr Addr Rd Addr

Wr Clk Rd Clk

Wr En Rr En

Dout

‘1’ ‘1’

[0...0][0...0]

Synchronizers

Asynchronous

FIFO

Din

Wr Clk Rd Clk

Wr En Rr En

Dout

Full Empty

Be aware of FIFO overflow/underflow!!!

Phase alignment

FPGA gateware design workflow
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Design Entry: Timing

• Clock Domain Crossing: The workaround…

Handshaking DPRAM
Din

Wr Addr Rd Addr

Wr Clk Rd Clk

Wr En Rr En

Dout

‘1’ ‘1’

[0...0][0...0]

Synchronizers

Asynchronous

FIFO

Din

Wr Clk Rd Clk

Wr En Rr En

Dout

Full Empty

Be aware of FIFO overflow/underflow!!!

Phase alignment

FPGA gateware design workflow

Timing will be your worst 
nightmare!

Every second you spend 
understanding it will pay 

off in the future…
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Design Entry: Primitives & IP Cores

• Hard IP Cores: Complex hardware blocks embedded into the FPGA

• Fixed I/O location

• Soft IP Cores: Complex (or simple) modules ready to be implemented

• Vendor (and device) specific

• They may be vendor specific or agnostic:

o Vendor Specific: Encrypted Code or Requires Hard IP Core 

o Vendor Agnostic: Commercial or Open Source (www.OpenCores.org)

• Primitives: Basic components of the FPGA

• Examples: Buffers (I/O & Clock), Registers, BRAMs, DSP blocks, Logic Gates (programed LUTs)

• Vendor (and device) specific

• In many cases they may be set through GUI (Wizards)

• Examples: : PLLs, Multi-gigabit Transceivers, Ethernet MAC, Microprocessors, etc..

• Examples: : All kind of modules

• In many cases they may be set through GUI (Wizards)

• Two ways of adding Primitives & IP Cores to your system:

Instantiated FlipFlop

(for Microsemi ProAsic3)

Inferred FlipFlop (Verilog)

• Inference: The module is IMPLICITLY added to the system 

• Instantiation: The module is EXPLICITLY added to the system 

FPGA gateware design workflow
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• Hard IP Cores: Complex hardware blocks embedded into the FPGA

• Fixed I/O location

• Soft IP Cores: Complex (or simple) modules ready to be implemented

• Vendor (and device) specific

• They may be vendor specific or agnostic:

o Vendor Specific: Encrypted Code or Requires Hard IP Core 

o Vendor Agnostic: Commercial or Open Source (www.OpenCores.org)

• Primitives: Basic components of the FPGA

• Examples: Buffers (I/O & Clock), Registers, BRAMs, DSP blocks, Logic Gates (programed LUTs)

• Vendor (and device) specific

• In many cases they may be set through GUI (Wizards)

• Examples: : PLLs, Multi-gigabit Transceivers, Ethernet MAC, Microprocessors, etc..

• Examples: : All kind of modules

• In many cases they may be set through GUI (Wizards)

• Two ways of adding Primitives & IP Cores to your system:

Instantiated FlipFlop

(for Microsemi ProAsic3)

Inferred FlipFlop (Verilog)

• Inference: The module is IMPLICITLY added to the system 

• Instantiation: The module is EXPLICITLY added to the system 
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Synthesis

• The FPGA design tool optimizes the design during synthesis

• What does it do?

• Defines the connection of these elementary functions

• Translates the schematic or HDL code into elementary logic functions

• Uses Boolean Algebra and Karnaugh maps to optimize logic functions

It may do undesired changes to the system (e.g. remove modules, change signal names, etc.)!!!

• Always check the synthesis report

• And also check the RTL/Technology viewers

• Warnings & Errors

• Optimizations

• Estimated resource utilization

• And more…

Example of RTL Schematic

Example of Synthesis Report

FPGA gateware design workflow
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• For a reliable system, the timing requirements for all paths must be provided to the FPGA design tool.

• To efficiently specify these constraints:

• The most common types of path categories include:

• Input paths

• Output paths

• Register-to-register paths (combinatorial paths)

• Path specific exceptions (e.g. false path, multi-cycle paths, etc.) 

1) Begin with global constraints (in many cases with this is enough)

2) Add path specific exceptions as needed

• Over constraining will difficult the routing

Constraints: Timing

Example of timing constraint (Xilinx .ucf)

• Provided through constraint files (e.g. Xilinx .XDC, etc..) or GUI (that creates/writes constraint files).

FPGA gateware design workflow
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Constraints: Physical

• Pin planning

• Floorplanning

As previously mentioned…

You should do Pin Planning 

during Specification Stage

Floorplanning may improve routing times and allow 

faster system speeds…

• Try to avoid routing across the chip

• Place the Hard IP cores, the related logic will follow

• Try to place logic close to their related I/O pins

• You can separate the logic by areas (e.g. Xilinx Pblocks)

but too much will difficult the routing!!!

FPGA gateware design workflow
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• The FPGA design tool:

1) Translates the Timing and Physical constraints in order to guide the implementation

Implementation

• The FPGA design tool may be set for different optimizations (Speed, Area, Power or default)

• Physical Placement & Timing change after re-implementing (use constraints to minimize these changes)

2) Maps the synthesized netlist:

3) Places and Routes (P&R) the mapped netlist: 

o Logic elements to FPGA logic cells

o Hard IP Cores to FPGA hard blocks

o Verifies that the design can fit the target device

o Physical placement of the FPGA logic cells

o Routing of the signals through the interconnect network & clock tree

o Physical placement of the FPGA hard blocks

• You should always check the different reports generated during implementation

FPGA gateware design workflow
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• The FPGA design tool:

1) Translates the Timing and Physical constraints in order to guide the implementation

Implementation

• The FPGA design tool may be set for different optimizations (Speed, Area, Power or default)

• Physical Placement & Timing change after re-implementing (use constraints to minimize these changes)

2) Maps the synthesized netlist:

3) Places and Routes (P&R) the mapped netlist: 

o Logic elements to FPGA logic cells

o Hard IP Cores to FPGA hard blocks

o Verifies that the design can fit the target device

o Physical placement of the FPGA logic cells

o Routing of the signals through the interconnect network & clock tree

o Physical placement of the FPGA hard blocks

• You should always check the different reports generated during implementation

FPGA gateware design workflow

The behavior might differ 
among compilations!

• Place & Route is “random”
• Logic usage varies
• Implementation might vary
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Static Timing Analysis
• The FPGA design tool analyses the signals propagation delays and clock relationships after P&R

• A timing report is generated, including the paths that did not meet the timing requirements

• The timing closure flow:

• Setup violations: Too long combinatorial paths

• Rule of thumb for timing violations:

• Hold violations: Issue with CDC and/or Path specific exceptions

FPGA gateware design workflow
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Static Timing Analysis
• The FPGA design tool analyses the signals propagation delays and clock relationships after P&R

• A timing report is generated, including the paths that did not meet the timing requirements

• The timing closure flow:

• Setup violations: Too long combinatorial paths

• Rule of thumb for timing violations:

• Hold violations: Issue with CDC and/or Path specific exceptions

FPGA gateware design workflow
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Bitstream Generation & FPGA Programming

• Binary file containing the FPGA configuration data 

• Bitstream is loaded into the FPGA through JTAG

• Configuration data may be stored in on-board FLASH and loaded by the FPGA at power up

• Bitstream:

• FPGA programming:

• Each FPGA vendor has its own bitstream file extension (e.g. .bit (Xilinx), .sof (Altera) )

• Multiboot/Safe FPGA configuration

• Remote programming (e.g. through Ethernet)

FPGA gateware design workflow
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Bitstream Generation & FPGA Programming

• Binary file containing the FPGA configuration data 

• Bitstream is loaded into the FPGA through JTAG

• Configuration data may be stored in on-board FLASH and loaded by the FPGA at power up

• Bitstream:

• FPGA programming:

• Each FPGA vendor has its own bitstream file extension (e.g. .bit (Xilinx), .sof (Altera) )

User image

(bitstream 2)

CORRUPTED 

or

INCORRECT

Power up

Golden image

(bitstream 1)

Fallback (CORRUPTED)

Power cycle (INCORRECT)

Auto

Manual Trigger (ICAP)

Multiboot/Safe FPGA configuration diagrams

• Multiboot/Safe FPGA configuration

• Remote programming (e.g. through Ethernet)

FPGA gateware design workflow
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Simulation / Verification

FPGA gateware design workflow
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Simulation / Verification

FPGA gateware design workflow
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(and if they’re alive, they’ll bite you)



Simulation / Verification
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Simulation / Verification

• HDL simulators:

• Most popular: Modelsim/Questa

• Other simulators: Vivado Simulator (Xilinx), Icarus Verilog (Open-source), etc. 

• Different levels of simulation

• Event-based simulation to recreate the parallel nature of digital designs

• Verification of HDL modules and/or full systems

• Behavioural: simulates only the behaviour of the design

• Functional: uses realistic functional models for the target technology

• Timing : most accurate. Uses Implemented design after timing analysis 

Slow

Fast

Very Slow

Example of simulator wave window

FPGA gateware design workflow

• Advanced simulation suites available (e.g. Universal Verification Methodology (UVM))
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Simulation / Verification

• HDL simulators:

• Most popular: Modelsim/Questa

• Other simulators: Vivado Simulator (Xilinx), Icarus Verilog (Open-source), etc. 

• Different levels of simulation

• Event-based simulation to recreate the parallel nature of digital designs

• Verification of HDL modules and/or full systems

• Behavioural: simulates only the behaviour of the design

• Functional: uses realistic functional models for the target technology

• Timing : most accurate. Uses Implemented design after timing analysis 

Slow

Fast

Very Slow

Example of simulator wave window

FPGA gateware design workflow

• Advanced simulation suites available (e.g. Universal Verification Methodology (UVM))

Don’t neglect verification!
Don’t neglect verification!
Don’t neglect verification!

• OSVVM
• UVVM
• Formal Verification
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In-System Analysers & Virtual I/Os
• Your design is up… and also running?

• Can be embedded into the design and controlled by JTAG

• Most FPGA vendors provide in-system analyzers & virtual I/Os

• Allow monitoring but also control of the FPGA signals

• Minimize interfering with your system by:

• It is  useful to spy inside the FPGA… but the issue may come from the rest of the board!!!

• Remember… it is HARDWARE

Placing extra registers between the monitored signals and the In-System Analyser 

Example of In-System Analyser (Altera SignalTap II)

Example of Virtual I/Os (Xilinx VIO)

FPGA gateware design workflow
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Debugging Techniques

FPGA gateware design workflow
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Debugging Techniques

OMG!!!

FPGA gateware design workflow
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Divide & Conquer

Debugging Techniques

FPGA gateware design workflow
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Divide & Conquer

Pattern 

Generator

8-bit Counter

RAM

256x16-bit

Increment

Data

Data Valid Flag

Address

Write Enable

Data

Reset

ResetReset

Reset

Clock

16-bit

8-bit

Debugging Techniques

FPGA gateware design workflow
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Divide & Conquer

Follow the chain

Pattern 

Generator

8-bit Counter

RAM

256x16-bit

Increment

Data

Data Valid Flag

Address

Write Enable

Data

Reset

ResetReset

Reset

Clock

16-bit

8-bit

1

Debugging Techniques
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RAM
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Address
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Data

Reset

ResetReset

Reset

Clock

16-bit

8-bit

1 2
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RAM

256x16-bit

Increment

Data
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Write Enable
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Reset

ResetReset

Reset

Clock

16-bit

8-bit

1 2

3
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Divide & Conquer

Follow the chain

Pattern 

Generator

8-bit Counter

RAM

256x16-bit

Increment

Data

Data Valid Flag

Address

Write Enable

Data

Reset

ResetReset

Reset

Clock

16-bit

8-bit

1 2

3
4

Debugging Techniques

Open the box
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Divide & Conquer

Follow the chain

Pattern 

Generator

8-bit Counter

RAM

256x16-bit

Increment

Data

Data Valid Flag

Address

Write Enable

Data

Reset

ResetReset

Reset

Clock

16-bit

8-bit

1 2

3
4

Debugging Techniques

Open the box

We are debugging HARDWARE!!!

FPGA gateware design workflow
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After debugging…

FPGA gateware design workflow
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After debugging…
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After debugging…
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After debugging…
• Documentation

FPGA gateware design workflow

108



After debugging…

• Maintenance

• Documentation

FPGA gateware design workflow
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After debugging…

• Maintenance

• … and maybe User Support

• Documentation

FPGA gateware design workflow
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Outline:

…from the previous lesson

Key concepts about FPGA design

FPGA gateware design workflow

•Summary

Advanced FPGA design 

SY-BI-BP

ISOTDAQ 2024 @ Hefei (China)

24/06/2024
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Summary

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by

a customer or a designer after manufacturing – hence "field-programmable".

• FPGA - Wikipedia
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Summary

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by

a customer or a designer after manufacturing – hence "field-programmable".

• Key concepts about FPGA design

• FPGA gateware design is NOT programming

• HDL are used for describing HARDWARE

• Timing in FPGA gateware design is critical

• FPGA - Wikipedia
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Summary

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by

a customer or a designer after manufacturing – hence "field-programmable".

• FPGA gateware design flow

• Key concepts about FPGA design

• FPGA - Wikipedia

• FPGA gateware design is NOT programming

• HDL are used for describing HARDWARE

• Timing in FPGA gateware design is critical
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Summary

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by

a customer or a designer after manufacturing – hence "field-programmable".

• FPGA gateware design flow

• Key concepts about FPGA design

• FPGA - Wikipedia

• A running system is not the end of the road… (Documentation, Maintenance. User Support)

But it works ☺

• FPGA gateware design is NOT programming

• HDL are used for describing HARDWARE

• Timing in FPGA gateware design is critical
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Summary

There are nice papers & books but…

FPGA vendors provide very good documentation 

about all topics mentioned in this lecture

Where do I find more info about this??
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