Advanced FPGA design

ISOTDAR 2024 @ Hefei (China)
24/06/2024

Prepared by
Manoel Barros Marin

Presented by
Mauricio Féo

ISOTDAQ

nal Schoo Ingg

Q

SY-BI-BP

Advanced FPBA (vores ke this one

ISOTDAQ 2024 @ Hefei (Chinf V©"® 290€0 Y
24/06/2024 Mauricio

Prepared by R
Manoel Barros Marin

Presented by

Mauricio Féo

70\ ISOTDAQ
5]

I and Data Acquisition

Before | start...

Advanced FPGA design

ISOTDAQ 2024 @ Hefei (China)
24/06/2024

Outline:

- .. from the previous lesson

- Key concents abhout FPGA design
- FPGA gateware design workflow
- SUmmary

oM
¢

ISOTDAQ Mauricio Féo

]

SY-BI-BP

Advanced FPGA design

ISOTDAQ 2024 @ Hefei (China)
24/06/2024

Dutline:

. ... from the previous lesson
Ji{eViconecentsiahougERGAlIEsIgn
JERGAyatewatelieSignivokkilow:

SSummany

M

o @]
ISOTIDAQ Mauricio Féo sv-ﬁp

What is an Field Programmable Gate Array (FPGA)?

What is an Field Programmable Gate Array (FPGA)?

FPGA - Wikipedia
https://en.wikipedia.org/wiki/Field-programmable_gate_array

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by
a customer or a designer after manufacturing - hence "field-programmable”.

https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Field-programmable_gate_array

What is an Field Programmable Gate Array (FPGA)?

FPGA - Wikipedia
https://en.wikipedia.org/wiki/Field-programmable_gate_array

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by
a customer or a designer after manufacturing - hence "field-programmable”.

...for Geeks

https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Field-programmable_gate_array

 FPGA fabric (matrix like structure) made of: OE OE EE EE o vecson

e |/0-cells to communicate with outside warld

 logiccells L .
o Look-Up-Table (LUT) to implement combinatorial logic "< ' |

o Flip-Flops (D) to implement sequential logic

* 1 Interconnect

* |nterconnect network between logic resources

o C[lock tree to distribute the clock signals

LuT LuT

. - - 1 ——
D . LUT E . LuT ﬂ . E

FRGA, O-cel \ ><: / G-l FRGE,
fain pir

LuT

LuT

 But it also features Hard Blocks:

Example of FPGA architecture

https://en.wikipedia.org/wiki/Field-programmable_gate_array

Advanced FPGA design

ISOTDAQ 2023 @ Istanbul (Turkey)
17/06/2023

Dutline:
JsjHoithelnreviousjiesson

- Key concepts ahout FPGA design
JERGAgatewarkellesiunwokKilow

IS UINIManLy
@ @]
ISOTDAQ Mauricio Féo

SY-BI-BP

Key concepts ahout FPGA design
FPGA gateware design is NOT programming

Key concepts ahout FPGA design
FPGA gateware design is NOT programming

N (30 > » e"é\(&
Sequential & e ¥ & o’ 5 Parallel
q R\ (,0* Oy (& Q¢ 0?' .
Processing \ch @ & \.&\(P \K\&QO\ & Processing
o, &'
(_}Q% c,\o \\QQI > @QQ.&\(Q
& §

Programming
 [odeis written and translated into instructions
* Instructions are executed sequentially by the GPU(s)
* Parallelism is achieved by running instructions on multiple threads/cores
 Processing structures and instructions sets are fixed by the architecture of the system

VS.
FPGA gateware design

* No fixed architecture, the system is built according to the task

e Building is done by describing/defining system elements and their relations

* Intrinsically parallel, sequential behaviour is achieved by registers and Finite-State-Machines (FSMs)
o Defined through a hardware description language (HDL), High Level Synthesis (HLS) or schematics

13

Key concepts ahout FPGA design
HDL are used for describing HARDWARE

HDL are used for describing HARDWARE

Key concepts ahout FPGA design &

 Example of a WAIT statement (Programming Language VS. HDL)

15

HDL are used for describing HARDWARE

Key concepts ahout FPGA design &

 Example of a WAIT statement (Programming Language VS. HDL)

* |n programming language (e.g. C) (Unix, #include <unistd.h>)
sleep(5); // sleep 5 seconds

16

st e st /)

 Example of a WAIT statement (Programming Language VS. HDL)

* |n programming language (e.g. C) (Unix, #include <unistd.h>)
sleep(5); // sleep 5 seconds

 InHDL (e.g. VHDL):
. o \e SYStemV :
o Not synthesizable (only for simulation test benches) w %

wait for 5 sec; -- handy for TB clocks

17

Key concepts ahout FPGA design
HDL are used for describing HARDWARE

 Example of a WAIT statement (Programming Language VS. HDL)

* |n programming language (e.g. C) (Unix, #include <unistd.h>)
sleep(5); // sleep 5 seconds

 |nHDL (e.g. VHDL): ,
. . . \ SyStemV -
o Not synthesizable (only for simulation test benches) \ %

wait for 5 sec; -- handy for TB clocks

o Synthesizable (for simulation and/or FPGA implementation)

simple_delay_counter : process (delay_rst, delay clk, delay _ena)
begin -- process
if delay rst = '1" then
s_count <= delay_ld_wvalue;
s _delay done == '0°";
elsif rising_edge(delay_clk) then
if delay ena = '1" then
if delay 1d = '1' then
s_count <= delay_ld value;
else
5 _count == s count - 1;
end if;
end if;
if s_count = @ then
s_delay done == '1°
else
s_delay done == '8"';
end if;
end if;
end process;

18

Key concepts ahout FPGA design
HDL are used for describing HARDWARE

 Example of a WAIT statement (Programming Language VS. HDL)

* |n programming language (e.g. C) (Unix, #include <unistd.h>)
sleep(5); // sleep 5 seconds

* InHDL (e.g. VHDL):

\ \ Systemh
. o br
o Nu’F synthesizable (only for simulation test benches) \—ﬂog
wait for 5 sec; -- handy for TB clocks

o Synthesizable (for simulation and/or FPGA implementation)

simple_delay_counter : process (delay_rst, delay clk, delay _ena)
begin -- process
if delay rst = '1" then
s_count <= delay_ld_wvalue;
s _delay done == '0°";
elsif rising_edge(delay_clk) then
if delay ena = '1" then
if delay 1d = '1' then
s_count <= delay_ld value;
else
5 _count == s count - 1;
end if;
end if;
if s_count = @ then

s_delay done <= '1'; Register Transfer Level (RTL)

else

s_delay_done <= '0°; http://en.wikipedia.org/wiki/Register-transfer_|evel

end if;
end if;

end process; A design abstraction which models a synchronous digital circuit in terms of

‘ HOL to RTL the flow of digital signals (data) between registers and logical operations

performed on those signals +

https://en.wikipedia.org/wiki/Field-programmable_gate_array
http://en.wikipedia.org/wiki/Register-transfer_level

Key concepts ahout FPGA design
HDL are used for describing HARDWARE

 Example of a WAIT statement (Programming Language VS. HDL)

* |n programming language (e.g. C) (Unix, #include <unistd.h>)
sleep(5); // sleep 5 seconds

 |nHDL (e.g. VHDL): ,
. . . \ SyStemV -
o Not synthesizable (only for simulation test benches) \ %

wait for 5 sec; -- handy for TB clocks

o Synthesizable (for simulation and/or FPGA implementation)

simple_delay_counter : process (delay_rst, delay clk, delay _ena)

begin -- process
if delay rst = '1" then
s_count <= delay_ld_wvalue; i
s_delay done <= E'T - I Project Summary X #IRTL Schematic x & Delayvhd x Elaborated (RTL} Design
elsif rising edge(delay clk) then 3) LsCels 13)OPorts G4Net
if delay ena = '1' then + T minsOp.i
if delay 1d = '1' then - .
s_count <= delay_ld value; Q¢ T Sun
else Qg delay_1d >
s_count == s _count - 1; Q)
end if; K
end if; .
if 5 count = 8 then delay_rst [eqOp_i s_delay_done_reg
- el (n} 1007:0) iR
s _delay done == "1°; = delay. k> o)l = 9 [delay done
else - s_count_reg[7:0] 1 RTL_EQ ’7_
5_delay_done <= '8'; = - T REG_ASYNC
end if; B delay._enaBH
. delay_|d_value| 7:0] T 3
end _'I.'F; L s_countl | i
end process; | S et —t ; RTL_REG_ASYNC
X RTL_INV —
CELLUTIN m
counter control counter Flip-Flops registered output 20

https://en.wikipedia.org/wiki/Field-programmable_gate_array
http://en.wikipedia.org/wiki/Register-transfer_level

Key concepts ahout FPGA design
HDL are used for describing HARDWARE

 Example of a WAIT statement (Programming Language VS. HDL)

* |n programming language (e.g. C) (Unix, #include <unistd.h>)
sleep(5); // sleep 5 seconds

* InHDL (e.g. VHDL):

o Not synthesizable (only for simulation test benches)
-- handy for TB clocks

walt for 5 sec;

o Synthesizable (for simulation and/or FPGA implementation)

simple_delay counter :

begin - process

if delay rst = '1

s_count <= d
s delay done ==
elsif rising edge
if delay ena =

if delay 1ld =
s_count ==
else
5_count ==
end if;
end if;
if s_count = 0@
s _delay done
else
s_delay done
end if;
end if;

end process;

(HOL to RTL

process (delay rst, delay_clk, delay_ena)

then
elay_1d_wvalue;
8
(delay clk) then
'1' then
'1' then
delay ld_wvalue;

s _count - 1;

then

<= "1";

<= '0";

jsimple_delay/delay_rst

3

1
-

&
o

X 7 | L

o=
<

H E

L

£ % 5 &7

L Project Summary X I RTL Schematic x @

Jsimple_delay/delay clk
Jsimple_delay/delay_ena
Jsimple_delay/delay_|d

15Cels 131/0Ports 64 Net Jsimple_delay/delay_|d_value
T mins0p.i B Jsimple delay/s count
= a [] “ Jsimple_delay/s_delay_d
{J‘_T:COGI?.O] fsimple_delay/s_delay_done
RTL SUB
delay_1d >
Cursor 1 |5 sec
|
---ngﬁﬁﬁ .
delay_rst > eqOp_i s_delay_done_reg
10{7:0] TR
delay_clk > 1700, = ¢ O > delay_done
5_count_reg| 7:0] 1 RTL_EQ ’7_
= HTL_REG_ASYNC
delay_ena >
delay_|d_value| 7:0) I s counto_i_0
0{7:0] o[7.0 RTL REG ASYNC
RTL_INV
counter control counter Flip-Flops registered output 21

https://en.wikipedia.org/wiki/Field-programmable_gate_array
http://en.wikipedia.org/wiki/Register-transfer_level

Key concepts ahout FPGA design
HDL are used for describing HARDWARE

 Example of a WAIT statement (Programming Language VS. HDL)
* |n programming language (e.g. C) (Unix, #include <unistd.h>)

sleep(5); // sleep 5 seconds

* InHDL (e.g. VHDL):

o Not synthesizable (only for simulation test benches)

wait for 5 sec; - handy for TB clocks

o Synthesizable (for simulation and/or FPGA implementation)

simple_delay_counter : process (delay_rst, delay_clk, delay_ena)

begin -- process
if delay rst = '1" then
s_count <= delay_ld_wvalue;
s _delay done == '0°";

elsif rising_edge(delay_clk) then

if delay ena = '1" then
if delay 1d = '1' then

s_count <= delay_ld value;

else
5 _count == s count - 1;
end if;
end if;
if s_count = @ then
s_delay done == '1°
else
s_delay done == '8"';
end if;
end if;
end process;

(HOL to RTL

L Project Summary X
il 15Cells 131/0 Ports 64 Net

1
-

Q;
5

® W E S =R

2 X &

| RTL Schematic x [}

£ jsimple_delay/de’

L w:;@sl?.m

minus0p_i

B jsimple delay/s ¢

RTL 5UB

4 fsimple_delay/delay_rst
£ jsimple delay/delay clk
4 jsimple_delay/delay_ena
£ fsimple_delay/delay_Id

4 /simple_delay/de]

“_ [simple_delay/s ¢ %

delay_ld_value| 7:0) [C>—4

s_countl i
=~)|

RTL_INV

counter control

https://en.wikipedia.org/wiki/Field-programmable_gate_array
http://en.wikipedia.org/wiki/Register-transfer_level

Key concepts ahout FPGA design
Timing in FPGA gateware design is critical

Key concepts about FPGA design
Timing in FPGA gateware design is critical &

« Data propagates in the form of electrical signals through the FPGA

FPGA DEVICE
Board e
Device . =
- R D B ey ’)
f{l : Delay ;({

24

Timing in FPGA gateware design is critical

« Data propagates in the form of electrical signals through the FPGA

Key concepts ahout FPGA design A\

FPGA DEVICE

Board
Device

Board
Device

........
"aa,

Delay ;{L

Synthesized RTL (Netlist) is implemented into FPGA

25

Timing in FPGA gateware design is critical

« Data propagates in the form of electrical signals through the FPGA

Key concepts ahout FPGA design A\

FPGA DEVICE

Board
Device

Board
Device

........
"aa,

Delay ;{L

Synthesized RTL (Netlist) is implemented into FPGA

« [f these signals do not arrive to their destination on time...

The consequences may be catastrophic!!! 26

When designing FPGA gateware you have to think
HARD...

When designing FPGA gateware you have to think
HARDWARE

28

Advanced FPGA design

ISOTDAQ 2024 @ Hefei (China)
24/06/2024

Dutline:
JsjHoithelnreviousjiesson
JieyiconcentsiahoiyERGATIESIgn
- FPGA yateware design workflow
IS UINIManLy

oM
¢

ISOTDAQ Mauricio Féo

Project
Specification

v

Constraints
(Physical
o Timing)

Design Entry

}

Synthesis

}

Implementation

}

Static Timing Analysis

}

Bitstream Generation
& FPGA Programming

l

BAY

l

Behavioural Simulation

Functional Simulations
(Post-Synthesis
or
Post-lmplementation)

Timing Simulation

In-System
Debugging

Project Specification

This [s the mest critical Step.-

The rest of the design process is based on it!!!

31

Project Specification
This [is the most critical step.-.

The rest of the design process is based on it!!!

32

Project Specification
This [is the most critical step.-.

The rest of the design process is based on it!!!

And firmwares are like cats
It they get too big, they won't fit

Project Specification
This [is the most critical step.-.

+ Gather requirements from thewsers | N rest of the design process is based on it!!!

34

Project Specification
This [is the most critical step.-.

+ Gather requirements from thewsers | N rest of the design process is based on it!!!
« Specify:

* Target application (beneral purpose or Specific)
Example of General Purpose Gateware

ol o
. =y
IC |

cq

SYSTEM CORE | USER LOGIC

35

Project Specification
This [is the most critical step.-.

+ Gather requirements from thewsers | N rest of the design process is based on it!!!
« Specify:

* Target application (beneral purpose or Specific)

Example of Application Specific bateware

LEGEND

CLK 40MH:z

CLK 160MHz

Upstream
GBT Serializer moemmes
Optical ¢ TIC '
(]
L]
BBT Deseriglizer B 1 | = A ceeeeee.
ESEerializer @ k : :
SFP+ -) ;
Transceiver |4 GBTx
Recovered 48Bkps 0T

CLK

Project Specification
This [is the most critical step.-.

+ Gather requirements from thewsers | N rest of the design process is based on it!!!
« Specify:

o Target application (beneral purpose or Specific)
 Main features (e.q. System bus, SoC, Multi-gigabit transceivers, etc.)

Example of FPGA Architecture

37

https://en.wikipedia.org/wiki/Field-programmable_gate_array

Project Specification
This i the mest critical step-

+ Gather requirements from thewsers | N rest of the design process is based on it!!!
« Specify:
* Target application (beneral purpose or Specific)

 Main features (e.q. System bus, SoC, Multi-gigabit transceivers, etc.)
 FPGA vendor (e.q. AMD Xilinx, Intel (Altera), Microchip (Microsemi), etc.)

TOTAL FPGA SHARES OF REVENUE 2019

. . lattice Other
Microchip g0, 3%
5%

AMD ¢

XILINX

N

MICROCHIP
= LATTICE g QuickLogic

Xilinx
» 52%
Intel

NanoXplore 52%

small FPGA vendors may target specific markets (e.q.
Microsemi offers highly reliable radiation hard FPGAS, etc..)

Source: The Information Network (www.theinformationnet.com) 3 8

Project Specification
This [is the most critical step.-.

+ Gather requirements from thewsers | N rest of the design process is based on it!!!

« Specify:
peciry Example ot GOTS board (Kilinx Devkit)

* Target application (beneral purpose or Specific) —
 Main features (e.q. System bus, SoC, Multi-gigabit transceivers, etc.)

 FPGA vendor (e.q. AMD Xilinx, Intel (Altera), Microchip (Microsemi), etc.)
o Electronic board (Custom or COTS (*))

Example of Custom Board

39
(*) Commercial Off-The-Shelf (COTS)

Project Specification

This [s the mest critical Step.-

+ Gather requirements from thewsers | N rest of the design process is based on it!!!
« Specify:
* Target application (beneral purpose or Specific) Efaple of Commercial Tools
 Main features (e.q. System bus, SoC, Multi-gigabit transceivers, etc.)

« FPBA vendor (e.g. AMD Xilinx, Intel (Altera), Microchip (Microsemi), etc.)
e Electronic board (Custom or COTS (%))

* Development tools (FPGA vendor or Commercial)

e wrre——y
PROSEAGS - 0% & DPOTn 2=

S R

e e it rureca

40
(*) Commercial Off-The-Shelf (COTS)

Project Specification
This [is the most critical step.-.

+ Gather requirements from thewsers | N rest of the design process is based on it!!!
« Specify:

* Target application (beneral purpose or Specific)

 Main features (e.q. System bus, SoC, Multi-gigabit transceivers, etc.)

 FPGA vendor (e.q. AMD Xilinx, Intel (Altera), Microchip (Microsemi), etc.)
o Electronic board (Custom or COTS (*))

* Development tools (FPGA vendor or Commercial)
o [ptimization (Speed, Area, Power or default)

41
(*) Commercial Off-The-Shelf (COTS)

Project Specification
This [is the most critical step.-.

+ Gather requirements from thewsers | N rest of the design process is based on it!!!
« Specify:

* Target application (beneral purpose or Specific)

 Main features (e.q. System bus, SoC, Multi-gigabit transceivers, etc.)

 FPGA vendor (e.q. AMD Xilinx, Intel (Altera), Microchip (Microsemi), etc.)
o Electronic board (Custom or COTS (*))

* Development tools (FPGA vendor or Commercial)
Optimization (Speed, Area, Power or default)

42
(*) Commercial Off-The-Shelf (COTS)

Project Specification
This [is the most critical step.-.

+ Gather requirements from thewsers | N rest of the design process is based on it!!!
 Specify:
* Target application (beneral purpose or Specific)
Main features (e.g. System bus, Sal, Multi-gigabit transceivers, etc.)
 FPGA vendor (e.q. AMD Xilinx, Intel (Altera), Microchip (Microsemi), etc.)
* Electronic board (Custom or COTS (%))
* Development tools (FPGA vendor or Commercial)
Optimization (Speed, Area, Power or default)

43
(*) Commercial Off-The-Shelf (COTS)

Project Specification
This [is the most critical step.-.

+ Gather requirements from thewsers | N rest of the design process is based on it!!!
 Specify: J—
* Target application (beneral purpose or Specific)
Main features (e.g. System bus, Sal, Multi-gigabit transceivers, etc.)
 FPGA vendor (e.q. AMD Xilinx, Intel (Altera), Microchip (Microsemi), etc.)
* Electronic board (Custom or COTS (%))
* Development tools (FPGA vendor or Commercial)
Optimization (Speed, Area, Power or default)

44
(*) Commercial Off-The-Shelf (COTS)

Project Specification
This [is the most critical step.-.

+ Gather requirements from thewsers | N rest of the design process is based on it!!!

« Specify: Examples of Design Languages

* Target application (beneral purpose or Specific) —
 Main features (e.q. System bus, SoC, Multi-gigabit transceivers, etc.) 34 ”?P
« FPGA vendor (e.g. AMD Xilinx, Intel (Altera), Micrachip (Microsemi), ete.) |:: =
* Electronic board (Custom or COTS) 40 = o som
« [evelopment tools (FPGA vendor or Commercial) e _______

o [ptimization (Speed, Area, Power or default)
e Design language (HDL, Schematics or HLS)

HDL are the most popular for RTL design
but...
sSchematics or HLS
may he better in some cases
[e.g. SoC hus interconnect, etc.)

45
(*) Commercial Off-The-Shelf (COTS)

Project Specification
This [is the most critical step.-.

+ Gather requirements from thewsers | N rest of the design process is based on it!!!

« Specify:

* Target application (beneral purpose or Specific)

 Main features (e.q. System bus, SoC, Multi-gigabit transceivers, etc.)
 FPGA vendor (e.q. AMD Xilinx, Intel (Altera), Microchip (Microsemi), etc.)
* Electronic board (Custom or COTS (%))

* Development tools (FPGA vendor or Commercial)

o [ptimization (Speed, Area, Power or default)

e Design language (HDL, Schematics or HLS)

« [oding convention Example of Coding Convention

description extension example

variable prefix v v_Buffer
vour code alias prefix a a_Bitb
should he constant prefix ¢ c_Lenght

type definition prefix t t MyType
readahle generics prefix g g_Width

46

(*) Commercial Off-The-Shelf (COTS)

Project Specification

This [s the mest critical Step.-

Bather requirements fromthe users | 1€ rest of the design process is based on it!!

Specify:

* Target application (beneral purpose or Specific)

Example of ELII

EEK

 Main features (e.q. System bus, SoC, Multi-gigabit transceivers, etc.)

« FPGA vendor (e.g. AMD Xilinx, Intel (Altera), Microchip (Microsemi), etc.]
e Electronic board (Custom or COTS (*)) =

* Development tools (FPGA vendor or Commercial)
o [ptimization (Speed, Area, Power or default)

e Design language (HDL, Schematics or HLS)

« [oding convention =
o Software interface (GUI, Scripts or both)

Example of TCL script

BEEEEEEAEAEEEEEAE ISR R R R R R R R R R R XIlIﬂX |SE TEL EUHS[IlE
FEEFEFEE S 444444 Commands for Adding the Source Files of the GBET-FPGR Core F¥$##353333dsdd3434344
EE s s iy i ii i ettt e s s E TS EE]

Td Console
#% Comment: Adding Common files:
puts "osn
puts "-> Adding common files of the GBT-FPGA Core to the ISE pr
puts "->"
xfile add S$50URCE PATH/gbt bank/core sources/gbt_ rx/gbt_rx.vhd
xfile add $50URCE PATH/gbt bank/core sources/gbt_ rx/fgbt_rx deco Command> | xtdsh gbt fpga il virtex 7
xfile add £50URCE PATH/gbt bank/core sources/gbt_rx/gbt_rx deco = ' 47

I||§| Conscle |© Errors |i‘-, Warnings | E Td Console | i Find in Files Results
-

Project Specification

A

This Is tihe most critical step...
The rest

* [Gather requirements from the users
« Specify:

* Target application (beneral purpose or Specific)

* Main features (e.q. System bus, SoC, Multi-gigabit transc

 FPGA vendor (e.g. AMD Xilinx, Intel (Altera), Microchip (Mi
o Electronic board (Custom or COTS (*))

* Development tools (FPGA vendor or Commercial)

Automate as much as you
can, specially for big
projects!

 Compilation

 Simulation
* Hardware tests

o [ptimization (Speed, Area, Power or default)
e Design language (HDL, Schematics or HLS)

« [oding convention

o Software interface (GUI, Scripts or both)

Example of TCL script

i e

PR R R R R A R R A R A R R A R R R A R A R T R A R R R A A S R A R A AR AR A AR AR EF A TE AT
FEEFEFEE S 444444 Commands for Adding the Source Files of the GBET-FPGR Core F¥$##353333dsdd3434344

PRI EI T T AT I I AT T A T A I A A T A T IR TR AT AR AT R4S

Xilinx ISE TCL console

Td Console

#% Comment: Adding Common files:

puts "-»"

puts "-> Adding common files of the GBT-FPGA Core to the ISE pr

puts "->"

xfile add S$50URCE PATH/gbt bank/core sources/gbt_ rx/gbt_rx.vhd

xfile add $50URCE PATH/gbt bank/core sources/gbt_ rx/fgbt_rx deco

xfile add £50URCE PATH/gbt bank/core sources/gbt_rx/gbt_rx deco

Command > | xtdsh ght_fpoa.td wling virtex7

I@ Console @ Errors | ! Warnings E Td Console | [

48
Find in Files Results

Project Specification
This [is the most critical step.-.

+ Gather requirements from thewsers | N rest of the design process is based on it!!!
« Specify:

* Target application (beneral purpose or Specific)

 Main features (e.q. System bus, SoC, Multi-gigabit transceivers, etc.)

 FPGA vendor (e.q. AMD Xilinx, Intel (Altera), Microchip (Microsemi), etc.)
* Electronic board (Custom or COTS (%))

« [evelopment tools (FPGA vendor or Commercial) E Q

o [ptimization (Speed, Area, Power or default)

« Design language (HDL, Schematics or HLS) Sy
Coding convention RSio "

o Software interface (GUI, Scripts or both)

o lse of files repositary (SN, GIT, etc.. or none)
(*) Commercial Off-The-Shelf (EI]TS)

Project Specification
This [is the most critical step.-.

« Black diagram of the system The rest of the design process is based on it!!!
* |nclude the FPGA logic...

e .. butalsothe on-board devices and related devices
 May combine different abstraction levels

Example of system block diagram

MTCA Crate

GBT Deserializaer

SFP+
Transceiver 8Bty
Recovered
PLL
CLK 40MHz jj CLK

50

Project Specification

Block diagram of the system Tl'IE rest

A

This is he most critical S1eD

Include the FPGA logic...

.. but also the on-board devices and related devices
May combine different abstraction levels

Check manufacturer’s
recommendations for your |

design’s features!

e Pins for clocks?
* Jitter specs?
e External PLLs?

GBT Deserializaer

-

SFP+

Transceiver

Recovered

CLK 40MH:z

PI.I.]—‘

CLK

4.8Gbps

51

Project Specification

This [s the mest critical Step.-

» Pin planning The rest of the design process is hased on |t”|

Pin Planner - /home/adpl/CPRE281/project/Project - Project

Fin assignments are one type

File Edit View Processing Tools Window Help (&) {Search altera.com ‘ °
of Location Constraints — o P———
@ T Cycione 11 - EPZC3SF672C8
Named+ v -
=] S 3 PR v/ Xe TeTe e 1o e (e i\ e o\v/c e o o o o Te e)
B » Node Name i Direction | Location | 4 888%8 oooooeg
— <<new group>=>

| | jo

Critical for
Custom Boards!!l | ;}ggge

= 1 D

-Il:l P PP, ~

" B Named{* v | & |Edit: % | v Filter:{Pins: all s

B e Node Name Direction Location 1/O Bank VREF Group /O Standard Reserve¢®.

#H i8> Bit0 Input PIN_N25 5 B5_N1 3.3-V ...fault) E
ie* Bitl Input PIN_N26 5 B5_N1 3.3-V ...fault)

= 15> Bit2 Input PIN_P25 6 B6_NO 3.3-V ...fault)

_____ P> Bit3 Input PIN_AE14 7 B7_N1 3.3-V ...fault)

H B* Clear Input PIN_V2 1 B1_NO 3.3-V ...fault)

B* Clock Input PIN_N2 2 B2_N1 3.3-V ...fault)

ko » | I Control Input PIN_C13 3 B3_NO 3.3-V ...fault)

2 £ |BGn Input PIN_B13 4 B4 _N1 3.3-V ...fault) L

@ = (!f innuta Qutnut PIN I3 2 B2 N1 3 3-V_...faulh))

¥ << 4 I | '] 5 2

Example of Pin Planner GUI 0% 00:00:00

FPGA gateware design workflow
Design Entry

nput Stale =——-——-———-

PHASE 3

53

FPGA gateware design workflow
Design Entry: Modularity & Reusability

Your system should be Modular

« Design at RTL [evel (think hard...ware)

* Well defined clocks and resets schemes

« Separated Data & Control paths Clock
« Multiple instantiations

Good example of Modular System

.

8-bit
P B-bit Counter p—gfip
[ncrement Reset
A
v
Pattern Data Valid Flag N
Generator | ... 1B-bit
Reset

Your code should be Reusable Reset

 Add primitives (and modules) to the system by inference when possible

i

Address

RAM

20bx16-bit

Write Enable

Data

Reset

}

« |lse parameters in your code (e.q. generics in VHDL, parameters in Verilog, etc.)

« [entralise parameters in external files (e.g. packages in VHDL, headers in Verilog, etc.)
e lse configurable modules interfaces when possible (e.q. parametrised vectors, records in VHDL, etc.)

o |lse standard features (e.g. |2C, Wishbone, etc.)

o |se standard IP Cores (e.g. from www.0penCores.org, etc.)

e Avoid vendor specific IP Cores when possible

« Talk with your colleagues and see what other FPGA designers are doing

http://www.opencores.org/

FPGA gateware design workflow
Design Entry: Modularity & Reusability

* Your system should be Modular

Design at RTL level (think hard..ware) Se riously, talk to your

 Well defined clocks and resets schemes Colleagues before Wasting]
. SE[JEIIFEI’[I.EEI []ata. E.Enntrul paths Clock your time on code!
« Multiple instantiations
* They might have done
Patty what you need already!
Gener
Resq

* Your code should be Reusable Reset i ~
 Add primitives (and modules) to the system by inference when possible

« |lse parameters in your code (e.q. generics in VHDL, parameters in Verilog, etc.)

« [entralise parameters in external files (e.g. packages in VHDL, headers in Verilog, etc.)

e lse configurable modules interfaces when possible (e.q. parametrised vectors, records in VHDL, etc.)
o |lse standard features (e.g. |2C, Wishbone, etc.)

o |se standard IP Cores (e.g. from www.0penCores.org, etc.)

e Avoid vendor specific IP Cores when possible

« Talk with your colleagues and see what other FPGA designers are doing

http://www.opencores.org/

FPGA gateware design workflow
Design Entry: Coding for Synthesis

synthesizable code is intended for
FPGA implementation

* Use non-synthesizable HLD statements only in simulation test benches

A fundamental quiding principle when coding for synthesis is to minimize, if not eliminate, all structures
and directives that could potentially create a mismatch between simulation and synthesis.

From book “Advanced FPGA Design” by Steve Kilts (Copyright € 2007 John Wiley & Sons, Inc.)

* The RTL synthesis tool is expecting a synchronous design...

56

FPGA gateware design workflow
Uesign Entry: Coding for Synthesis

synthesizable code is intended for
FPGA implementation

* Use non-synthesizable HLD statements only in simulation test benches

A fundamental quiding principle when coding for synthesis is to minimize, if not eliminate, all structures
and directives that could potentially create a mismatch between simulation and synthesis.

From book "Advanced FPGA Design” by Steve Kilts (Copyright € 2007 John Wiley & Sons, Inc.)

* The RTL synthesis tool is expecting a synchronous design...

But what is a synchronous design???

* Use non-synthesizable HLD statements only in simulation test benches

FPGA gateware design workflow
Design Entry: Coding for Synthesis

synthesizable code is intended for
FPGA implementation

A fundamental quiding principle when coding for synthesis is to minimize, if not eliminate, all structures
and directives that could potentially create a mismatch between simulation and synthesis.

From book “Advanced FPGA Design” by Steve Kilts (Copyright € 2007 John Wiley & Sons, Inc.)

* The RTL synthesis tool is expecting a synchronous design...
Synchronous design is the one compose by combinatorial logic (e.g. logic gates, multiplexors, etc..) and

sequential logic (registers that are triggered on the edge of a single clock),

Combinatorial Logic

Sequential Logic

v v
R R

—D " Q D "Q

}
D

— Qut

—p clk |—}c1k

Synchronous design

Rst

In

Clk=—

Combinatorial Logic

58

— Qut

https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Field-programmable_gate_array

Design Entry: Coding for Synthesis

 [Combinatorial logic coding rules

e Sensitivity list must include ALL input signals

Not respecting this may lead to non responsive outputs under changes of input signals

 ALL output signals must be assigned under ALL possible input conditions
Not respecting this may lead to undesired latches (asynchronous storage element)

 Nofeedback from output to input signals

Not respecting this may lead to unknown output states (metastability) & undesired latches

Good combinatorial coding for synthesis

Typical
Truth Table
A CBA|Q
B t] 0o0oO0|0
™ 0010
C 0 010|0
/ 0110
100|1
1010
110(|0
1110
process (Input &, Input B, Input C)
begin
Cutput _nand <= Input & nand Input B;
Cutput _nor <= Input & nor Input B;
Cutput_ O <= Output nand and Input C© and Output nor;

end process;

Bad combinatorial coding for synthesis

Asynchronous Latch

0 1
0 1 0

Metastable

Tput_Q <= Input R nor Cut
Cutput © n <= Input 5 nor CutputNQ/
nd process;

http://en.wikipedia.org/wiki/Register-transfer_level
http://en.wikipedia.org/wiki/Register-transfer_level
https://en.wikipedia.org/wiki/Field-programmable_gate_array

FPGA gateware design workflow
Design Entry: Coding for Synthesis

 Sequential logic coding rules

e [nly clock signal (and asynchronous set/reset signals when used) in sensitivity list
Not respecting this may produce undesired combinatorial logic

Al registers of the sequence must be triggered by the same clock edge (either Rising or Falling)
Not respecting this may lead to metastability at the output of the registers

o Include all registers of the sequence in the same reset branch
Not respecting this may |ead to undesired register values after reset

Good sequential coding for synthesis Bad sequential coding for synthesis

process (Clk,E=st)

begin Rst pRgoess (Clk,Est, Input_In)

if (Rst = '1') then X g begl
gutput_gut <= : : : In D Q D " QpF—Out ut oupSl= 100
atpuat <= 'Of; - N

elsif rising edge(Clk) then sls1T rivNg T:dgftgif;uthg?
Dutput_Dut <= Dutput_Q; : . T, :
Cutput <= Input In; Clk Clk Clk S

end if;

end process;

60

http://en.wikipedia.org/wiki/Register-transfer_level
http://en.wikipedia.org/wiki/Register-transfer_level

Design Entry: Coding for Synthesis

e Synchronous design coding rules:

FULLY synchronous design
o No combinatorial feedback

o Noasynchronous latches

Not respecting this may lead to incorrect analysis from the FPGA design tool
Register ALL output signals (input signals also recommended)

Not respecting this may lead to uncontrolled length of combinatorial paths

Properly design of reset scheme (mentioned later)

Not respecting this may lead to undesired register values after reset

Properly design of clocking scheme (mentioned later)

Not respecting this may lead to metastability at the output of the registers & Misuse of resources
Properly handle Clock Domain Crossings (CDC) (mentioned later)

Not respecting this may lead to metastability at the output of the registers

v

Combinatorial Logic o

61

Design Entry: Coding for Synthesis
Finite State Machines (FSMs):

Digital logic circuit with a finite number of internal states

Widely used for system control
Two variants of FSM
o Moore: Dutputs depends only on the current state of the FSM

o Mealy: Outputs depends only on the current state of the FSM as well as the current values of the inputs

Modelled by State Transition Diagrams Button Nat
Button Pressed prascer

Button Mot
Pressed

Button Pressed

Many different FSM coding styles (But not all of them are good!!)
FSM coding considerations:

o Synchronize inputs & outputs

o [utputs may be assigned during states or state transitions
o Be careful with unreachable/illegal states

o You can add counters to FSMs

62

FPGA gateware designworkflow

Design Entry: Reset Scheme A bad reset scheme may get you crazy!!!

* Used to initialize the output of the registers to a know state
e [t has a direct impact on:

 Performance
* Logic utilization
* Reliability
« Different approaches:

o Asynchronous
Pros: No free running clock required, easier timing closure

Cons: skew, glitches, simulation mismatch, difficult to debug, extra constraints, etc.
o Synchronous

Pros: No Skew, No Glitches, No simulation mismatch, Easier to debug, No extra constraints, etc..
Cons: Free-running clock required, More difficult timing closure

o NoReset Scheme
Pros; Easier Routing, Less resources, Easiest timing closure
Cons: Only reset at power up (in some devices not even that...) <- In fact, reset is not always needed

o Hybrid: Usually in big designs (Avoid when possible!!!)

63

FPGA gateware designworkflow

Design Entry: Reset Scheme A bad reset scheme may get you crazy!!!

o Used to initialize the output of the registers to a know state
e [t has a direct impact on:

. Performance My advise s...
* Logic utilization vnu snould lse
* Reliability
o Different approaches: stc“nouous HESET
o Asynchronous l]v de'a““

Pros: No free running clock required, easier timing closure
Cons: skew, glitches, simulation mismatch, difficult to debug, extra constraints, etc.
o Synchronous
Pros: No Skew, No Glitches, No simulation mismatch, Easier to debug, No extra constraints, etc..
Cons: Free-running clock required, More difficult timing closure

o NoReset Scheme
Pros; Easier Routing, Less resources, Easiest timing closure
Cons: Only reset at power up (in some devices not even that..) <- In fact, reset is not always needed

o Hybrid: Usually in big designs (Avoid when possible!!!)

64

FPGA gateware design workflow
Design Entry: Clocks Scheme

* Clock regions
 [lock trees (Global & Local)

o [ther FPGA clocking resources

* [lock capable pins
o [lock buffers

 [lock Multiplexors
« PlLs&DCM

Local clock tree _li

Clock Regiuns<

 Bad practices when designing your clocking scheme

CLK

[ated clocks

FF

Suu

Do not use these clocks
in your system!!!

CLK

Derived clocks

&

FF

65

FPGA gateware design workflow
Design Entry: Timing

« Sampling In B0 Out

Sampling clk clk
Point

X | X omm X

No Stable Data
(Metastable Area)

Clock)

66

Design Entry: Timing

Clock Domain Crossing (CDC)

See you on the other side...

67

Design Entry: Timing

Clock Domain Crossing (CDC)

-_
Ot B e RS ot : =
S BT e e i O e e ERES L et 2 2 v
~ :or maybe not. '®4&
-3 X . . -

See you on the other side...

¢ LN .)

= —

68

FPGA gateware design workflow
Design Entry: Timing

* [Clock Domain Crossing (CDC): The problem...

* [lock Domain Crossing (COC) : passing a signal from one clock domain to another (A to B)
|t clocks are unrelated to each other (asynchronous) timing analysis may not be reliable
e Setup and Hold times of FlipFlop B are likely to be violated -> Metastability!!!

Aout Bout Aout
!
ClkB

clkA clkB

Signal violates the setup-time of FlipFlop B clocked by Clk B /

Bout becomes metastable and then settles at either at ‘' or '

Avoid creating unnecessary clock domains ~

Design Entry: Timing

* [Clock Domain Crossing: The workaround...

Rst

Synchronizers

Handshaking

BLOCK A

VALID l

(READY

DATA

=it

v v
In D R Q D R Qp—oOut
Clk——’Clk |—’Clk
ey | Din
—>| WrEn Asynchronous
— Ful FIFO
—>| WrClk

Dout

RrEn je——
Empty |«——
Rd Clk je——

Be aware of FIFO averflow/underflow!!!

BLOCK B

DPRAM

#
i

[0..0] ey
—

Din
Wr En

Wr Addr
Wr Clk

Dout

RrEn
Rd Addr
Rd Clk

lll

< (][]
<—

Phase alignment
il Dl Wl Wi—

1

L I L1

70

Design Entry: Timing

Clock Domain Crossing: The workaround...

Synchronizers

Rst

v

y

— Qut

Clk—T—p Clk |—'Clk

Handshaking

BLOCK A

VALID l

(READY

DATA

=it

ey | Din
—>| Wrkn

—> Full
—>| Wr Clk

Asynchronous

FIFD

Dout »

RrEn je——
Empty j«——
Rd Clk je——

Be aware of FIFO averflow/underflow!!!

Timing will be your worst
nightmare!

Every second you spend

understanding it will pay

off in the future... i

Phase alignm&
B e TN sy BN sy SN

S L

LI LI

Design Entry: Primitives & IP Cores

Primitives: Basic components of the FPGA
« Vendor (and device) specific

o Examples: Buffers (I/0 & Clock), Registers, BRAMs, DSP blocks, Logic bates (programed LUTs)

Hard IP Cores: Complex hardware blocks embedded into the FPGA

« \Vendor (and device) specific
* Fixed |/0 location
* |nmany cases they may be set through GUI (Wizards)

o Examples: : PLLs, Multi-gigabit Transceivers, Ethernet MAC, Microprocessors, etc..

Soft IP Cores: Complex (or simple) modules ready to be implemented

« They may be vendor specific or agnostic:

o Vendor Specific: Encrypted Code or Requires Hard IP Core

Instantiated FlipFlop
(for Microsemi ProAsicd)

DFN1Cl FlipFlop |
.D {Input D),
.CLE (Clk),

o Vendor Agnostic: Commercial or Open Source (www.OpenCores.org) CIR (Rst),

* |n many cases they may be set through GUI (Wizards)
 Examples: : All kind of modules

Two ways of adding Primitives & IP Cores to your system:
* Instantiation: The module is EXPLICITLY added to the system

o Inference: The module is IMPLICITLY added to the system

.0 (Cutput Q));

Inferred FlipFlop (Verilog)

always @ (posedge Clk or posedge Rst)
begin
if (Rst)
Qutput_Q <= 0;
else
Output_Q <= Input D;
end

Design Entry: Primitives & IP Cores

Primitives: Basic components of the FPGA
* Vendor (and device) specific

Add Primitiygs by Infergngp

o Examples: Buffers (I/0 & Clock), Registers, BRAMs, DSP blocks, Logic bates (programed LUTs)
Hard IP Cores: Complex hardware blocks embedded into the FPGA

« \Vendor (and device) specific
* Fixed |/0 location
* |nmany cases they may be set through GUI (Wizards)

o Examples: : PLLs, Multi-gigabit Transceivers, Ethernet MAC, Microprocessors, etc..

Soft [P Cores: Complex (or simple) modules ready to be implemented Instantiated FlipFlop
" . (for Microsemi ProAsicd)
* They may be vendor specific or agnostic: _
DFN1C1l FlipFlop |
o Vendor Specific: Encrypted Code or Requires Hard IP Core o (g D,
o \Vendor Agnostic: Commercial or Open Source (www.OpenCores.org) _CIR (Rst),

* |n many cases they may be set through GUI (Wizards)
 Examples: : All kind of modules

Two ways of adding Primitives & IP Cores to your system:
* Instantiation: The module is EXPLICITLY added to the system

o Inference: The module is IMPLICITLY added to the system

.0 (Cutput Q));

Inferred FlipFlop (Verilog)

always @ (posedge Clk or posedge Rst)
begin
if (Rst)
Qutput_Q <= 0;
else
Output_Q <= Input D; 73
end

Design Entry: Primitives & IP Cores

Primitives: Basic components of the FPGA
* Vendor (and device) specific

Add Primitiygs by Infergngp

o Examples: Buffers (I/0 & Clock), Registers, BRAMs, DSP blocks, Logic bates (programed LUTs)
Hard IP Cores: Complex hardware blocks embedded into the FPGA

 \Vendor (and device) specific
* Fixed |/0 location
* |nmany cases they may be set through GUI (Wizards)

S

Add [p
L(. Cores py Instantiatiun]

and use the Wizarg jf Possihlg)

o Examples: : PLLs, Multi-gigabit Transceivers, Ethernet MAC, Microprocessors, etc.. o

Soft [P Cores: Complex (or simple) modules ready to be implemented Instantiated FlipFlop
" . (for Microsemi ProAsicd)
* They may be vendor specific or agnostic: _
DFN1C1l FlipFlop |
o Vendor Specific: Encrypted Code or Requires Hard IP Core o (g D,
o \Vendor Agnostic: Commercial or Open Source (www.OpenCores.org) _CIR (Rst),

* |n many cases they may be set through GUI (Wizards)
 Examples: : All kind of modules

Two ways of adding Primitives & IP Cores to your system:
* Instantiation: The module is EXPLICITLY added to the system

o Inference: The module is IMPLICITLY added to the system

.0 (Cutput Q));

Inferred FlipFlop (Verilog)

always @ (posedge Clk or posedge Rst)
begin
if (Rst)
Qutput_Q <= 0;
else
Output_Q <= Input D; 74
end

Synthesis

» What does it do?

 Translates the schematic or HDL code into elementary logic functions
o Defines the connection of these elementary functions

e |ses Boolean Algebra and Karnaugh maps to optimize logic functions

 The FPGA design tool optimizes the design during synthesis
|t may do undesired changes to the system (e.g. remove modules, change signal names, etc.)!l!

o Always check the synthesis report Example of Synthesis Report
 Warnings & Errors
o Estimated resource utilization
o [ptimizations
e And more...

ight leds.v line 208: attribute on instance <INIT 13> overrides gen
line 208: attribute on instance <INIT 1C> overrides generic/parameter of

line 208: attribute on instance <INIT 1D> overrides generic/parameter

2 (5 B |

»

-

3

m

N

-

0

w o
o ‘
o
2]

b

'y
| &1
o
"

o)
on instance <INIT_1E> overrides generic/parameter of
- - i o

line 202 -~ o e o 5 -~ - Y el - ~

ct
m
H

9 4 v a [Erroject Summary x @ Device x @ Delayvhd x il Schematic x
-)D g3cells 1310 Ports

S

L

I

!

I
K

b o> o~

MEIEEEEEEIEEE

 And also check the RTL/Technology viewers

s
o
|

T 5 count reg(1]_C
@ 1cil I o |
" ———CR
- L |]
* IT; FOCE]
X
N
[\\\\\\\\\\\\\\\\\\\\\\\\\\\ 5 count regl2) LDC_|
I~ 0 - I ob——
| =
TBUF iz s_count_reg(2] LDC
T2 Y
s_count regl2]_LDC_i_ [
! A
072 LDCE —
\\\\\\\\\\\\\\\\ 3] inst -
L L
p ml

FPGA gateware desion workflow
Constraints: Timing

* For a reliable system, the timing requirements for all paths must be provided to the FPGA design tool.
Provided through constraint files (e.g. Xilinx .XDC, etc..) or GUI (that creates/writes constraint files).
The most commaon types of path categories include:

* Input paths Example of timing constraint (Xilinx .ucf)
o [utput paths —
* Register-to-register paths (combinatorial paths) S Tsu/ Th
« Path specitic exceptions (e.g. false path, multi-cycle paths, etc.) T ’ _ °
o To efficiently specify these constraints: 4o

) Begin with global constraints (in many cases with this is enough) ~— CkExt [F Tk
'«— OFFSETIN —»|
BEFORE .

Z) Add path specific exceptions as needed

Over constraining will difficult the routing

]

| |
1 |
| |
1 |
| | |
] VALID Data [
|
|

|
[
le—— VALID Duration ——!

TIMEGRP DATA_IN OFFSET = IN 1 VALID 3 BEFORE CLK RISING;

Lonstraints: Physical

* Pin planning

Synthesized Design - netiist_2 -synth_2 constrs_2 | xc7k70tfbg484-2 make active
[H] netlist_1-synth_1 | constrs_2 | xc7k70tfbg484-2 = [4] netlist_2 - synth_2 | constrs_2 | xc7k70tfbg484-2 Close

Netiist — 02 X il Package x |@ Device X
= | :
3 bft
+- Nets (1918
Primitives (336
+-[@] arnd1
+-{@] arnd2 (round_2
+-[@] arnd3
#-{8] amd4 (round_4
+)-[4] egressLoop[0].egressFifo (FifoBuff
¥ egressLoop[1].egressFifo (FifoBuff
+1-[@] egressloop[?].egressFifo (FifoBuffer_NO3_earessloop_2_ eq
+-{8] egressLoop[3].egressFifo (FifoBuffe
7-[@] egressLoop[4].egressFifo (FifoBuff

1.[7]_anrece nnnlSl snreccFifn (Fif ff
=

7 8 9 10 11 12 1

&5 Sources .] Netlist

* Floorplanning
* Tryto place logic close to their related [/0 pins
e Try to avoid routing across the chip
 Place the Hard IP cores, the related logic will follow
* You can separate the logic by areas (e.g. Xilinx Pblocks)

Floorplanning may impraove routing times and allow
faster system speeds... but too much will difficult the routing!!!

As previously mentioned...
You should do Pin Planning
during Specification Stage

|mplementation
The FPGA design tool:

[) Translates the Timing and Physical constraints in order to guide the implementation
2) Maps the synthesized netlist: =4 L

o Logic elements to FPGA logic cells

I
|
1
|
L--
I
1
|
|
1

o Hard IP Cores to FPGA hard blocks I "
o \Verifies that the design can fit the target device Logic odl

Block
d) Places and Routes (P&R) the mapped netlist:

o Physical placement of the FPGA logic cells

o Physical placement of the FPGA hard blocks
o Routing of the signals through the interconnect network & clock tree

-1
| |
|
1
1

|
I

|

I

-J

:
L

Interconnect Block

 The FPGA design tool may be set for different optimizations (Speed, Area, Power or default)
* Physical Placement & Timing change after re-implementing (use constraints to minimize these changes)

* You should always check the different reports generated during implementation

|mplementation

 The FPGA design toal:
[) Translates the Timing and Physical constraints in ordey The behavior mlght differ

Z2) Maps the synthesized netlist: - 2 |
o Logic elements to FPGA logic cells 3 among compllat|ons.

o Hard IP Cores to FPGA hard blocks

o Verifies that the design can fit the target device * Place & Route is “random”
* Logic usage varies

* |Implementation might vary

d) Places and Routes (P&R) the mapped netlist:
o Physical placement of the FPGA logic cells

o Physical placement of the FPGA hard blocks
o Routing of the signals through the interconnect network & clock tree

* The FPGA design tool may be set for different optimizations (Speed, Area, Power or default)
* Physical Placement & Timing change after re-implementing (use constraints to minimize these changes)

* You should always check the different reports generated during implementation

Interconn

FPGA gateware design workflow
Static Timing Analysis

 The FPGA design tool analyses the signals propagation delays and clock relationships after P&R
« A timing report is generated, including the paths that did not meet the timing requirements
* Rule of thumb for timing violations:

\y/ e Setup violations: Too long combinatorial paths

Hold violations: [ssue with COC and/or Path specific exceptions
e The timing closure flow:

FPGA gateware design workflow
Static Timing Analysis

 The FPGA design tool analyses the signals propagation delays and clock relationships after P&R
« A timing report is generated, including the paths that did not meet the timing requirements

* Rule of thumb for timing violations:
y J + Setup violations: Too long combinatorial paths Ll L

Hold violations: [ssue with COC and/or Path specific exceptions
e The timing closure flow:

Design meets timing?

v v v v

Timing constraint Physical constraints

FPGA design tool options
changes (floorplanning) changes

changes

v

P Re-implementation

Design changes

Bitstream Generation & FPGA Programming

« Bitstream:
« RBinary file containing the FPGA configuration data
o Each FPGA vendor has its own bitstream file extension (e.g. .bit (Xilinx), .sof (Altera))

 FPGA programming:
o RBitstream is loaded into the FPGA through JTAG
* [Configuration data may be stored in on-board FLASH and loaded by the FPGA at power up
 Remote programming (e.q. through Ethernet)
 Multiboot/Safe FPGA configuration

82

Bitstream Generation & FPGA Programming

« Bitstream:
« RBinary file containing the FPGA configuration data
o Each FPGA vendor has its own bitstream file extension (e.g. .bit (Xilinx), .sof (Altera))

 FPGA programming:

Bitstream is loaded into the FPGA through JTAG
Configuration data may be stored in on-board FLASH and loaded by the FPGA at power up
Remote programming (e.g. through Ethernet)
Multiboot/Safe FPGA configuration Sokdenimage

- : User image
FLASH — (bitstream 1) (bitstream 2)
User Image
(hitstream 2)
400000k ED FPGA
Golden image
{bitstream 1) User image
000000k Golden image (bitstream 2)
(bitstream 1) CORRUPTED
. . . . ur
Multiboot/Safe FPGA configuration diagrams INCORRECT

Manual Trigger

Simulation / Verification

Firmwares are like cats

84

Simulation / Verification

Firmwares are like cats
You never know if they are dead

or alive until you open the box

(and if they're alive, they'll bite you)

85

Simulation / Verification

Firmwares are like cats
You never know if they are dead

or alive until you open the box

(and if they're alive, they'll bite you)

(otherwise, they'll bite you even harder)

86

Simulation / Verification

Event-based simulation to recreate the parallel nature of digital designs
Verification of HDL modules and/or full systems

HDL simulators:

* Most popular: Modelsim/Questa

o [ther simulators: Vivado Simulator (Xilinx), lcarus Verilog (Open-source), etc.

Different levels of simulation

* Behavioural: simulates only the behaviour of the design Fast
* Functional: uses realistic functional models for the target technology

« Timing: most accurate. Uses Implemented design after timing analysis Very Slow

Advanced simulation suites available (e.g. Universal Verification Methodology (LVM))
Example of simulator wave window

4 jsimple_delay/delay_rst
4 [simple_delay/delay _clk

Test Bench m :
4 jsimple_delay/delay_ena
4 [simple_delay/delay_ld

B< [simple_delay/delay_Id_value

i i
Device Under Test - /simple delay/s count
] (DI.IT) ¢ Jsimple_delay/s_delay done
u

Event-based simulation to recreate the parallel naturd

Simulation / Verification

Verification of HDL modules and/or full systems
HDL simulators:

* Most popular: Modelsim/Questa

e [ther simulators: Vivado Simulator (Xilinx), lcarus Ver

Don’t neg
Don’t neg
Don’t neg

Day 1

Day 2

Day 3

Day 4

Day 5

9am

RTL Synthesis and
Synchronisation

Exercise 1

Exercise 4

Introduction
Verification
Methodology

Timein
Testbenches

Other
Testbench
Functions

Writing Readable
Designs

Finite State
Machine Synthesis

Exercise 2

Exercise 5

e OSVVM
e UVVM
 Formal Verification

ect verification!
ect verification!
ect verification!

Subprograms and .)
Protected Types | Exercise4 Exercise 7
Exercise 1 Behavioral
Modelling 0OSVVM

More on File I/O

and Checkers

S5pm

Writing For Re-use

Packages and
Configurations

Exercise 3

Properties and
Assertions

Exercise 2

Advanced Coding
Styles

Exercise 6

Transaction Level
Verification

Exercise 5 Exercise 8
Constrained
Random Testing UVVM

and Coverage

Exercise3

Exercise 6

Exercise 9

e window

| I

ethodology (LVM))

— T

04 03 02 01 100 IFF \FE -

FPGA gateware design workflow
In-System Analysers & Virtual |/0s

* Your design is up... and also running?
 Muost FPGA vendors provide in-system analyzers & virtual 1/0s
 [Can be embedded into the design and controlled by JTAG

e Allow monitoring but also contral of the FPGA signals

* Minimize interfering with your system by:

Placing extra registers hetween the monitored signals and the In-System Analyser

e ltis useful to spy inside the FPGA... but the issue may come from the rest of the board!!!
* Remember...it is HARDWARE Example of Virtual /0 (Xilinx VID)

ulErg

EXEmIJlE Df |H'Sy3tEm AﬂﬂlySEF (AltEFE Slgnal-l-ap ”) {E] VIO Console - DEV:0 MyDevice0 {XC7K325T) UNIT:0 MyVIOO (VIO}

Bus/Signal

g
&

LATENCY-OPTIMIZED GBI LINK (LOW WHEN STANDARD GBI}

PLL LOCKED

N) . MGT READY
log: 2006/05/0: click toinsert time bar
RX_WORDCLK RALIGNED (ALIGNED TO TX_ WORDCLK) (LOW WHEN STANDARD GBT)

Type | Alias |!_,II-2 =i 0 1 2 3 4 g 5 T:" R¥_FRAMECLX ALIGNED (ALIGNED TO TX_FRAMECLK) (LOW WHEN STANDAERD GET)

RX GBT READY

o RX BITSLIP NUMEER

1 013h i 012h

FPGA_CLKOUT ('0' —> TX FRAMECLK | "1' -> TX WORDCLK)

0' -> NORMAL | '2' -> PMA LODPBACK) (XILINX UG366 PAGE 124)

: _

E BCECh W oosch X 000%h

o~ ENCODING SELECTOR ('0' -> GBT FRAME | '1' -> WIDE-BUS)

© PATTERN SELECT ('l' -> COUNTER | '2' -> STATIC | others -> NO DATA ERROR DETECTION)

RESET RX GBT READY LOST FLAG

b
I
I
X
RX GBT READY LOST FLAG

| | RESET DATA ERRCR SEEN FLAG

COMMON DATA ERROR SEEN FLAG

'S EXTRA DATA ERROR SEEN FLAG

ENCEB10B EXTRA DATA ERROR SEEN FLAG

0' -> IDLE | "1' -> DATA)

RX HEADER IS DATA FLAG ("0' -> IDLE | "1' -> DATA)

(S RO [[[(R L Lo (R[]

L ; FEFFR

20000005

E

i

L

FPGA gateware design workflow
Debugging Techniques

90

FPGA gateware design workflow
Debugging Techniques

FCLKA
P AUXCLK CLKOUTs l
CLOCK SYNTH.
NTTER CLEANER
FMCI_CLKO_M2C (coces2005)
FMC2_CLKO_M2C
= T > PRI CLK SEC CLK)
SYNC CTRL
2KB12C
EEPROM]
EULas Y AAZ
MGT REFCLKs FABRICCLKs FPGAOUT TCLKB.
Y
e CLK SYNTH &8
— SECCLK P!
r(.'_rx_l SR [1: 4] MGT st
E PRICLK 122, \pmc oplo: 2] maT e
REG! =
ey
SYSTEM 1#a_swvio]
oS e CDCE_CLKO_GTXE1 (5FP)

MONITORING

CDCE_CLK3_GTXEL (FMC1)

WB_SLV[0:N]
AMCP[2: 3]
AMC P[12:15]
(MLVDS) AMC P[17:20] {3

Ve_LED[3]
1PB_SLV[0:N]

SYS_USER_PCle

(]

=——d .

SYS_SERIAL Pele 343 Lamre ppa: 7 mo

-
— — —p [YAmc P[a:11] MET >

AMC_PL

[wenrucs o
e |<——brMc1 105

VOLTAGE e

SUPERVISOR ")
BRESETIC - FICL CLKs (e
IP & MAC Addr FMCL CTRL

Clks T —

- FABRIC
> PU l CLKs {(‘;f,‘:”’““’z - praca 105l
R— FMC2 CLKs o
SYSTEM CORE USER_LOGIC _ MGT REFCLKs FMC2 CTRLSE 3
]

FPGA gateware design workflow
Debugging Techniques

FCLKA
P AUXCLK CLKOUTs l
CLOCK SYNTH.
NTTER CLEANER
FMCI_CLKO_M2C (cDCE62005)
FMC2_CLKO_M2C
= T > PRI CLK SEC CLK)
SYNC CTRL
2KB12C
EEPROM I
EULas Y AAZ
MGT REFCLKs FABRICCLKs FPGAOUT TCLKB.
Y
SYNTH &8t
e SECCLK i]
r(.'_rx_l SR [1: 4] MGT st
PRICLK 122, \pmc oplo: 2] maT e
[GBF‘
L |

CDCE_CLKO_GTXEL (SFP)

GBT PHASE
MONITORING

CDCE_CLK3 GTXEL (FMC1)

|
|
! WB_SLV[0:N]
V6_LED[3] } AMIC P 2: 3]
= AMC P[12:15]
} 1PB_SLV[0:N] (MLVDS) AMC P[17:20] 4
|
-] | SYS_USER_PCle
|
==7r SYS_SERIAL_PCle_xd«--p- [AMC Pla: 7] MGT [
-

— — —p [amcpfa:11] mGT)

AMC_PL

[re—
T |4——bFMC1 105

VOLTAGE = e

SUPERVISOR L ")
BRESETIC - FICL CLKs (e
IP & MAC Addr FMCL CTRL

Clks T —

- FABRIC
> PU l CLKs {(‘;f,‘:”’““’z - praca 105l
R— FMC2 CLKs o
SYSTEM CORE USER_LOGIC _ MGT REFCLKs FMC2 CTRLSE 3
]

FPGA gateware design workflow
Debugging Techniques

Divide & Conquer

93

FPGA gateware design workflow
Debugging Techniques

Divide & Conquer L
8-hit
Clock P> 8-bit Counter - | Address
[ncremen Rese
— RAM
v 25Bx1B-bit

Pattern Data Valid Flag »| Write Enable
Generator

Data 16-bit
Reset * Data Reset
/ Reset i f

94

FPGA gateware design workflow
Debugging Techniques

Divide & Conquer

Clock

Follow the chain

8-bit

v

p> B-bit Counter pfiep- | Address
[ncremen t Reset
A A RAM
256x16-bit
Data Valid Flag o Write Ereble
Data 1B-bit
Data Reset

95

Debugging Techniques Fallow the chain
Divide & Conquer L
8-bi
Clock p 8-bit Counter —I—It> Address
[ncremen Rese

— RAM
256 x16-bit

Write Enable
Data Reset
]

96

FPGA gateware design workflow
Debugging Techniques

Divide & Conquer

Clock

Follow the chain

3 8-bit L
> g | Address
In t

RAM

236x1B-bit
Write Enable

Data Reset

}

97

FPGA gateware design workflow
Debugging Techniques

Divide & Conquer

Follow the chain

8-bit

98

Debugging Techniques Follow the chain
Divide & Conquer L

99

Debugging Techniques Follow the chain
Divide & Conquer L

8-bit
> 3 g | Address

In t
A I
Data Valid Flag 2/
—» Wr

100

Debugging Techniques Follow the chain
Divide & Conquer

101

Debugging Techniques Follow the chain

Divide & Conguer F
Clack 31:[

102

Debugging Techniques Follow the chain
Divide & Conquer

2 8-bit
Clock > J ’—f—> Address
In t

Data Valid Flag

Data Reset

Reset

8 onatiom 0603 Myestosh MCHLISOT) IHTS WAL 1LY

s [xfo[gh & 48 W 4

-0 State

R

ol
Cursor 15 sec
e cursor 3 [5 sec |

Debugging Techniques Follow the chain

Divide & Conquer L

8-bit
Clock > 3j ’—f—> Address
In t

Data Reset

5 otm. V3 U TN L Ve B

- 5
o lammmmf]us‘mm " @ m om m @

'K T 7 N — - | M &
| : - | — J
B lm=n g X i SRR | .3 e e
i
'K
[43
LR |
|

T

We are debugging HARDWARE!! 4

FPGA gateware design workflow
After debugging...

105

FPGA gateware design workflow
After debugging...

106

After debugging...

v
. Y Yy

107

FPGA gateware design workflow
After debugging...

 Documentation @Y‘

EEEEEEEEEE

GBT-FPGA user manua 1

FPGA gateware design workflow
After debugging...

e Documentation @V‘ CERN PHLESE
GBT-FPGA user manual
4 svn_test
branch
 Maintenance 4)l tags 101
gbt_fpga_0_1_0_beta :

ghbt_fpga_3 0.0
ght_fpga 301
gbt_fpga_3_ 02
ght_fpga 310
gbt fpga 311

FPGA gateware design workflow
After debugging...

e Documentation @V‘ CERN PH.ESE

GBT-FPGA user manual

4 svn_test
branch
 Maintenance s)l tags
' gbt_fpga_0_1_0_beta
ghbt_fpga_3 0.0
ght_fpga 301
gbt_fpga_3_ 02
ght_fpga 310

version 1.01

gbt fpga 311

Re: GLIB: question on GBT

Mon 22/07/2013 17:56
Manoel Barros Marin

o ...and maybe User Support

Manoel,
ves, I would love to be included in the GBT-FPGA-users mailing list.

And thanks for the tip about using the GBT-FPGA reference design.

best regards,

Advanced FPGA design

ISOTDAQ 2024 @ Hefei (China)
24/06/2024

Dutline:
JsjHoithelnreviousjiesson
JieyiconcentsiahoiyERGATIESIgn
JERGAyatewarelieSignivokkilow:
- SUmmary

oM
¢

ISOTDAQ Mauricio Féo

 FPGA - Wikipedia
A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by
a customer or a designer after manufacturing - hence "field-programmable”.

...for Geeks

112

 FPGA - Wikipedia
A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by
a customer or a designer after manufacturing - hence "field-programmable”.

 Key concepts about FPGA design

 FPGA gateware design is NOT programming
 HDL are used for describing HARDWARE
* Timing in FPGA gateware design is critical

113

FPGA - Wikipedia

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by
a customer or a designer after manufacturing - hence "field-programmable”.

Key concepts about FPGA design

 FPGA gateware design is NOT programming

 HDL are used for describing HARDWARE

Project
Specification

Y

* Timing in FPGA gateware design is critical

FPGA gateware design flow

Constraints
(Physical
& Timing)

.

Design Entry

'

Synthesis

'

Implementation

'

Static Timing Analysis

Bitstream Generation
& FPGA Programming

l

Y

l'

Behavioural Simulation

Functional Simulations
(Post-Synthesis
or
Post-Implementation)

Timing Simulation

In-System
Debugging

114

FPGA - Wikipedia

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by
a customer or a designer after manufacturing - hence "field-programmable”.

Key concepts about FPGA design

 FPGA gateware design is NOT programming

 HDL are used for describing HARDWARE

Project
Specification

Y

* Timing in FPGA gateware design is critical

FPGA gateware design flow

Constraints
(Physical
& Timing)

.

A running system is not the end of the road... (Documentation, Maintenance. User Support)

Design Entry

'

Synthesis

'

Implementation

'

Static Timing Analysis

Bitstream Generation
& FPGA Programming

¥ But it works ©

l

~
_~

1

l'

Behavioural Simulation

Functional Simulations
(Post-Synthesis
or
Post-Implementation)

Timing Simulation

In-System
Debugging

115

Where do | find more info about this??

There are nice papers & books but...
FPGA vendors provide very good documentation
about all topics mentioned in this lecture

Organisers of ISOTDAQ-24
Andrea Borga (OpenCores), Torsten Alt (FIAS) for their contribution to this lecture

Thibaut Lefevre, Andrea Boccardi & other colleagues from CERN SY-BI-BP

Manoel Barros Barin for providing this presentation

117

Any
Juestion?

&

	Default Section
	Slide 1: ISOTDAQ 2024 @ Hefei (China) 24/06/2024
	Slide 2: ISOTDAQ 2024 @ Hefei (China) 24/06/2024
	Slide 3
	Slide 4: ISOTDAQ 2024 @ Hefei (China) 24/06/2024
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: ISOTDAQ 2024 @ Hefei (China) 24/06/2024
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111: ISOTDAQ 2024 @ Hefei (China) 24/06/2024
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118: Any Question?

