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Opening words
Disclaimer: This is more a collection of pointers* than a tutorial, it’s a starting point…
(Almost) no code but a bias towards C++ and Python

Note: While the lecture focus is software, most of the content equally applies to firmware 
programming.

Acknowledgment: Slides are based on previous lectures by Alessandro Thea, Joschka Pöttgen 
(Lingemann) and Erkcan Ozcan

*further reading and tips in
these boxes
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What is programming?
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What is programming?
● Understand & define the problem to solve

○ Define the requirements for your software
○ Choose the language
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What is programming?
● Understand & define the problem to solve

○ Define the requirements for your software
○ Choose the language

● Formulate a possible solution (design)
○ Identify key functionalities and features
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What is programming?
● Understand & define the problem to solve

○ Define the requirements for your software
○ Choose the language

● Formulate a possible solution (design)
○ Identify key functionalities and features

● Implement the design
○ Write code, debug it
○ Prepare documentation
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What is programming?
● Understand & define the problem to solve

○ Define the requirements for your software
○ Choose the language

● Formulate a possible solution (design)
○ Identify key functionalities and features

● Implement the design
○ Write code, debug it
○ Prepare documentation

● Validate the code
○ Perform thorough verification
○ Execute unit and system tests
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What is programming?
● Understand & define the problem to solve

○ Define the requirements for your software
○ Choose the language

● Formulate a possible solution (design)
○ Identify key functionalities and features

● Implement the design
○ Write code, debug it
○ Prepare documentation

● Validate the code
○ Perform thorough verification
○ Execute unit and system tests

● Deliver the code
○ Collect feedback
○ Ensure portability to different platforms?

● Go back to square 1
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What can programming be like…
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● Inherit some code
○ Poke at it to get the hang of it
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from some person



● Inherit some code
○ Poke at it to get the hang of it

● Add some features
○ The purpose of which is not completely clear
○ By hack… patching some files
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make it do X?
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● Inherit some code
○ Poke at it to get the hang of it

● Add some features
○ The purpose of which is not completely clear
○ By hack… patching some files

● On the only existing working system
○ Well, it’s the only place where the code runs, isn’t 

it?
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from some person

Oh Just fix it,
it’s on PC Y

Now can you
make it do X?
By tomorrow?



● Inherit some code
○ Poke at it to get the hang of it

● Add some features
○ The purpose of which is not completely clear
○ By hack… patching some files

● On the only existing working system
○ Well, it’s the only place where the code runs, isn’t 

it?
● Break some other code by accident

○ Desperately try to figure out why.
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broke Z?!?



● Inherit some code
○ Poke at it to get the hang of it

● Add some features
○ The purpose of which is not completely clear
○ By hack… patching some files

● On the only existing working system
○ Well, it’s the only place where the code runs, isn’t 

it?
● Break some other code by accident

○ Desperately try to figure out why.
● Just to finally realise you got it wrong in the first 

place…
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● Inherit some code
○ Poke at it to get the hang of it

● Add some features
○ The purpose of which is not completely clear
○ By hack… patching some files

● On the only existing working system
○ Well, it’s the only place where the code runs, isn’t 

it?
● Break some other code by accident

○ Desperately try to figure out why.
● Just to finally realise you got it wrong in the first 

place…
○ And so on and so on…
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What can programming be like…
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Here is some code
from some person

Oh Just fix it,
it’s on PC Y

Now can you
make it do X?
By tomorrow?

Hey, who
broke Z?!?

What did you want 
again?

Oh no…



● Many ways to do this right
○ Agile/waterfall project management
○ Extreme programming

■ Test driven development
■ Pair programming

○ …
○ Some of these have ideas/techniques that are even 

useful in isolation

● General guidelines
○ Avoid duplication of work
○ Avoid feature bloating
○ Ensure code quality
○ Keep in mind: Software engineering relies heavily 

on communication!
■ Communication with the computer
■ Communication with your peers

But it doesn't have to be…
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Iterative Development

Test-Driven Development



Requirements
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Choosing the programming language
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Things to consider:
● Problem domain

○ Analysis?
○ DAQ?

● Popularity
○ The more people using the language the more 

questions already asked (and hopefully answered)



Things to consider:
● Problem domain

○ Analysis?
○ DAQ?

● Popularity
○ The more people using the language the more 

questions already asked (and hopefully answered)
○ But it shouldn't be short lived…

Choosing the programming language
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Stable
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Choosing the programming language
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Things to consider:
● Problem domain

○ Analysis?
○ DAQ?

● Popularity
○ The more people using the language the more 

questions already asked (and hopefully answered)
○ But it shouldn't be short lived…

● Documentation and support
○ Don't underestimate the utility of useful official 

docs



Choosing the programming language

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024 21

Things to consider:
● Problem domain

○ Analysis?
○ DAQ?

● Popularity
○ The more people using the language the more 

questions already asked (and hopefully answered)
○ But it shouldn't be short lived…

● Documentation and support
○ Don't underestimate the utility of useful official 

docs
● Can you choose?

○ Existing expertise in group
○ Language support at workplace

● …



Do you really
have to 
program?
Or has somebody already done it for you?
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Design
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Sketch out what you want to design
● Unified modeling language (UML) diagrams

○ Support for many types of diagrams
■ Structural, behaviour, interaction diagrams,...

○ Very powerful
■ Not very widespread nowadays, though…

● C4 model
○ Rather new arrival, but gaining popularity
○ Four levels of diagrams from "birds eye view" to "code level" diagram

■ UML used for lowest level code description

Write your first ideas out in pseudo-code
● Don't need to think about scope, initialisation, etc.
● Allows you to quickly put your thoughts to paper

○ Can be useful e.g., for algorithm design, when you want to spend your 
brain cycles on the problem, not on the tools

Plan ahead
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function find_local_optimum()
while solution is not locally optimal do

find s with f(s) < f(solution)
return s



Goal
● Are you still building what was required?
● Are you adding unneeded features?

Maintainability
● Is it easy to adapt to changed environment?
● Can you cope with (slightly) changed requirements?

Scalability
● Large data volumes

○ Think about data-flow and data layout
○ Try to avoid complicated data structures

Re-usability
● Identify parts of the design that could be used elsewhere
● Could these be extracted in a dedicated library?

Things to keep in mind when designing
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Implementation
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Look around for existing solutions
● Many problems have already been solved
● Look for libraries where:

○ Active community? Well maintained? Tested?
○ Rule of thumb: Last commit a few days ago, at most a year old

● Be wary of libraries with many features
○ Often come with lots of dependencies, increasing your attack surface, overall 

complexity, might slow down your code, …
● Caveat: Don't pull in external code for trivialities

○ Almost no reason to use e.g., https://pypi.org/project/isEven/

Getting to know new frameworks:
● Read the docs

○ Investing time in the beginning will pay off
● python packages: try the ipython “help”
● Start with a simple test

○ Modify existing examples to do what you want to do
○ Does the code do what you expect?

Do not reinvent the wheel
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“Prof. Lucifer Butts and his Self-Operating 
Napkin”, 
by Rube Goldberg

Before searching for external libraries: Check out e.g., STL and 
Python standard library!
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If you squeeze every conceivable feature in one place:
● You’ll probably end up doing nothing right
● Write specialised toolkits/libraries

Define features by writing a test that needs to be passed
● Only implement what is strictly needed to pass that test

Be pragmatic
● Generalising a problem before solving it: 

○ Probably not a good idea
○ Only do it when you have a use case

● Keep everything as concise as possible (increased readability)
○ Introduce abstraction only when likely to be 

actually used
● Keep it as simple as possible!

When coding: Avoid feature bloating
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Whatever you do, you’ll end up using (at least)

● Editor
○ Know* at least one ubiquitous editor: nano, vi(m), emacs, etc.
○ More modern solutions: can make your life a lot easier..
○ Depending on the language/platform (e.g., Java): IDEs are a better choice (Eclipse, Netbeans, etc.)

● Terminal
○ Learn about shortcuts (minimal set: Tab, Ctrl+r, Ctrl+e, Ctrl+a,… have a look**)
○ Knowing about some basic command line-tools can come in handy

Tools of the Trade: Editor, Terminal and IDEs
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*at least how to exit them :-)

**https://ostechnix.com/list-useful-bash-keyboard-shortcuts/
or https://gist.github.com/tuxfight3r/60051ac67c5f0445efee

https://ostechnix.com/list-useful-bash-keyboard-shortcuts/
https://gist.github.com/tuxfight3r/60051ac67c5f0445efee


Some words on editors: Choose what suits you
The choice of editor is yours to make…
● Do you want 

○ “a great operating system, lacking only a decent editor”
○ Or one with two modes: “beep constantly” and “break everything”*

● Both are versatile and learning them is worthwhile

However: Modern alternatives have a less-steep learning-curve
● Some are commercial (Sublime Text, TextMate,…)
● Some are (reasonably) open: e.g., Microsoft VSCode, Adobe Brackets,...

○ Plugins, git integration, active communities, more plugins…

Once you decided which one is best for you:
● Spend some time learning about features and keybindings
● Many things that might require dozens of keystrokes can be done with 2
● Learn about: Linters, version control system integrations, and other plugins
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vs

*from The Editor War

https://en.wikipedia.org/wiki/Editor_war


The terminal
Initially: Clicking is faster than typing, no need for the terminal. 
After learning about some command line tools… probably not.

● What if you don’t have a GUI?
● Searching files: grep, find — example:

○ $ grep -R -A 3 "foo" *
■ Displays all matches of  “foo” (+3 lines below) in all files in the current directory and its subfolders

○ Can be extended to only search files with certain ending
■ $ find . -name "*.cc" -exec grep -A 3 "foo" {} +

● Once you learn some tools it becomes very versatile:
○ sed, head, tail, sort… awk (a turing-complete interpreted language)
○ At the beginning: Note down often used commands…
○ After a tutorial dump your history* (increase cache size for max usage)

Shell scripting:
● Anything you do with the shell can be put into a script
● Alternative: Can solve most things more conveniently with an interpreted language

○ Con: Might not always be available where you need it
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*to dump e.g., the last 100 commands:
$ history | tail -n 100 > history.txt

Bite size bash (few dollars, but quite useful):
https://wizardzines.com/zines/bite-size-bash/

https://wizardzines.com/zines/bite-size-bash/


Interlude: Working on the road — SSH
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SSH — very, very versatile:

● Tunneling
○ Secure connections to other machines
○ Can e.g., establish secure connections to machines behind firewalls

● Keys for authentication instead of passwords
○ Makes life a bit more comfortable
○ Alternative: Login via Kerberos token if available*

● To work around shaky connections
○ Always use tmux/screen or a similar terminal multiplexer

● SSHFS
○ Files on remote host but "pretend" to be local
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Lots of things possible with the ssh-config:
HOST <host>
    USER <remote-user>
    ProxyCommand ssh <tunnel> nc <host> <port>

More on (auto-)tunnelling: 
https://security.web.cern.ch/security/recommendations/en/ssh
_tunneling.shtml

tmux guides and courses:
https://robots.thoughtbot.com/a-tmux-crash-course
http://www.hamvocke.com/blog/a-quick-and-easy-guide-to-tm
ux/

* see e.g., https://linux.web.cern.ch/docs/kerberos-access/

https://security.web.cern.ch/security/recommendations/en/ssh_tunneling.shtml
https://security.web.cern.ch/security/recommendations/en/ssh_tunneling.shtml
https://robots.thoughtbot.com/a-tmux-crash-course
http://www.hamvocke.com/blog/a-quick-and-easy-guide-to-tmux/
http://www.hamvocke.com/blog/a-quick-and-easy-guide-to-tmux/
https://linux.web.cern.ch/docs/kerberos-access/


The right tool for many jobs: Interpreted languages

Keep your code as short as possible while maintaining 
readability

● Sometimes means to use the right language
● Often these are interpreted languages

○ python, perl, ruby, tcl, lua
● Used as binding languages:

○ Performance critical code in C/C++
○ Instantiated within python 

(e.g. in CMS, ATLAS & LHCb offline software)
○ Best of both worlds

● Python: large standard library & very expressive!
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import click

months = {"january": 31, "february": 28, "march": 31,
          "april": 30, "may": 31, "june":30,
          "july": 31, "august": 31, "september": 30,
          "october": 31, "november": 30, "december": 31}

@click.command()
@click.option('--month', prompt='Which month are you interested in?',
              help='Print the number of days this month has.')
def print_days_in_month(month):
    """Simple program that states how many days MONTH has."""
    if month in months:
        print(f"{month} has {months[month]} days.")
    else:
        print(f"Sorry. Month {month} not known.")

if __name__ == '__main__':
    print_days_in_month()
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● Often these are interpreted languages
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(e.g. in CMS, ATLAS & LHCb offline software)
○ Best of both worlds

● Python: large standard library & very expressive!

34D. Rabady (CERN)

import click

months = {"january": 31, "february": 28, "march": 31,
          "april": 30, "may": 31, "june":30,
          "july": 31, "august": 31, "september": 30,
          "october": 31, "november": 30, "december": 31}

@click.command()
@click.option('--month', prompt='Which month are you interested in?',
              help='Print the number of days this month has.')
def print_days_in_month(month):
    """Simple program that states how many days MONTH has."""
    if month in months:
        print(f"{month} has {months[month]} days.")
    else:
        print(f"Sorry. Month {month} not known.")

if __name__ == '__main__':
    print_days_in_month()

ISOTDAQ 2024. Hefei, China. 24 June 2024

$ python month_script.py --help
Usage: month_script.py [OPTIONS]

  Simple program that states how many days MONTH has.

Options:
  --month TEXT  Print the number of days this month has.
  --help        Show this message and exit.
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readability
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● Often these are interpreted languages
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$ python month_script.py --help
Usage: month_script.py [OPTIONS]

  Simple program that states how many days MONTH has.

Options:
  --month TEXT  Print the number of days this month has.
  --help        Show this message and exit.
$ python month_script.py --month november
november has 30 days.
$ python month_script.py
Which month are you interested in?: november
november has 30 days.

import click

months = {"january": 31, "february": 28, "march": 31,
          "april": 30, "may": 31, "june":30,
          "july": 31, "august": 31, "september": 30,
          "october": 31, "november": 30, "december": 31}

@click.command()
@click.option('--month', prompt='Which month are you interested in?',
              help='Print the number of days this month has.')
def print_days_in_month(month):
    """Simple program that states how many days MONTH has."""
    if month in months:
        print(f"{month} has {months[month]} days.")
    else:
        print(f"Sorry. Month {month} not known.")

if __name__ == '__main__':
    print_days_in_month()



While writing your code:
● There are static code analysis tools that can help you

○ Like spell-check for your code
● Try out a linter for your preferred editor*

○ Highlights potentially problematic code
○ Your code will be more reliable

Static checking at compile time:
● Clang has a nice suite of static checks implemented** 

○ Can also enforce coding styles
○ Takes longer than compiling; HTML reports with 

possible bugs
● Might flag some false-positives

Static code checking helps you avoid problems early on!

Static Code Checking
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* Examples for VSCode:
Python: https://code.visualstudio.com/docs/python/linting
Shell: https://github.com/vscode-shellcheck/vscode-shellcheck

** see http://clang-analyzer.llvm.org

https://code.visualstudio.com/docs/python/linting
https://github.com/vscode-shellcheck/vscode-shellcheck
http://clang-analyzer.llvm.org


● While running your code:
○ Printing to console/log: especially convenient if working in unfamiliar programming environment

■ This works for a surprisingly long time…
○ Sooner or later you'll want to use a debugger: e.g. gdb (GNU debugger)

■ basic commands: run, bt, info <*>, help
■ Very useful documentation in the Red Hat Developer Guides for e.g. RHEL7 and RHEL9

○ Python debugger (pdb, ipdb*, pygdb)
○ Under Linux: strace

■ To determine which system calls the program uses (and where they might be failing)
■ Use with: strace <program name>
■ Nice tutorials in the internet (e.g. https://opensource.com/article/19/10/strace)

Debugging
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* import ipdb
  ipdb.set_trace() # set a breakpoint

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/developer_guide/debugging-running-application
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/developing_c_and_cpp_applications_in_rhel_9/debugging-applications_developing-applications
https://opensource.com/article/19/10/strace


● Segmentation violations due to memory management
○ Life-time vs. scope
○ Look at smart pointers (part of C++11/14 standards, alternative: boost)

● Even if you don’t have crashes: Memory Leaks, try valgrind
● When all else fails: Use a rubber duck

○ or invite your colleague for a coffee…
○ Verbalising a problem one has can often lead to a moment of epiphany 

General hints for debugging
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https://valgrind.org/
https://en.wikipedia.org/wiki/Rubber_duck_debugging


Two sides of the same coin: embedded and standalone 
documentation
● Both necessary to make your programs easy to use
● They have different purpose!

Embedded documentation:
● Explain interfaces i.e., function signatures
● Make note of possible future problems (better: 

prevent them)
● Sometimes might be good to document your 

reasoning
● Do not “over comment”

○ Can at worst lead to "comment bugs"
● Clean code (almost) documents itself: You write 

it once but you read it many times

Documentation: Do it while it’s fresh
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if a > b: # when a is greater than b, do...

class TheClass(object):
    """ Documentation of this class. """
    def __init__(self, var):
        self.var_ = var
    ## @var var_
    # my member variable

    ## Documentation of this function.
    # More on what this function does.
    ## @param arg1 an integer argument
    ## @param arg2 a string argument
    ## @returns a list of ...
    def some_function(self, arg1, arg2):
        pass



Documentation: Do it while it’s fresh
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if a > b: # when a is greater than b, do...

class TheClass(object):
    """ Documentation of this class. """
    def __init__(self, var):
        self.var_ = var
    ## @var var_
    # my member variable

    ## Documentation of this function.
    # More on what this function does.
    ## @param arg1 an integer argument
    ## @param arg2 a string argument
    ## @returns a list of ...
    def some_function(self, arg1, arg2):
        pass

Two sides of the same coin: embedded and standalone 
documentation
● Both necessary to make your programs easy to use
● They have different purpose!

Embedded documentation:
● Explain interfaces i.e., function signatures
● Make note of possible future problems (better: 

prevent them)
● Sometimes might be good to document your 

reasoning
● Do not “over comment”

○ Can at worst lead to "comment bugs"
● Clean code (almost) documents itself: You write 

it once but you read it many times



Documentation: Do it while it’s fresh
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Two sides of the same coin: embedded and standalone 
documentation
● Both necessary to make your programs easy to use
● They have different purpose!

Standalone documentation:
● Again: Explain your interfaces (can be derived 

from internal, e.g. doxygen.org)
● For large projects: Explain the big picture

○ Give use-cases and examples
○ Consider using UML (unified modelling 

language) or other graphical notation techniques 
(e.g., the C4 model)



Documentation: Do it while it’s fresh
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Two sides of the same coin: embedded and standalone 
documentation
● Both necessary to make your programs easy to use
● They have different purpose!

Standalone documentation:
● Again: Explain your interfaces (can be derived 

from internal, e.g. doxygen.org)
● For large projects: Explain the big picture

○ Give use-cases and examples
○ Consider using UML (unified modelling 

language) or other graphical notation techniques 
(e.g., the C4 model)



Don’t underestimate the challenge of tracking 
your code
● Deceitfully simple at the beginning…

○ e.g.: zip/tar-based backups, versioning and 
distribution

● But the illusion is shattered soon enough
○ Upgrading tools or library,  refactoring, rushing-in a 

patch
○ “Long-range” bugs are a thing, not always 

immediate to catch

Get familiar with Revision Control early
● Learn to track (and comment) every code change
● RCS is essential (and unavoidable) for collaboration

Always track code changes - Revision Control
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https://jwiegley.github.io/git-from-the-bottom-up/


A software tool that helps you keep track of changes to your code

● Once upon a time: CVS and Subversion

● Nowadays: Distributed revision control – Great for personal use 
○ Easy to work on the go
○ Your local copy has everything (including history)
○ The most popular probably git: git-scm.com 

■ Other distributed solutions are: Mercurial, Breezy…
■ Easy to get started…

Version Control Software

Repo-To-Repo Collaboration

Git 
repo

Git 
repo

Git 
repo

Central-Repo-To-Working-Copy Collaboration

SVN 
repo

Working 
Copy

Working 
Copy
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http://git-scm.com


$ git init
○Initialized empty Git repository in /TestDirectory/.git/

Interlude: git basics
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$ git init
○Initialized empty Git repository in /TestDirectory/.git/
$ touch README.md # Create a readme file
$ # Edit the file…

Interlude: git basics
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$ git init
○Initialized empty Git repository in /TestDirectory/.git/
$ touch README.md # Create a readme file
$ # Edit the file…
$ git add README.md # Add the file to the index

Interlude: git basics
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$ git init
○Initialized empty Git repository in /TestDirectory/.git/
$ touch README.md # Create a readme file
$ # Edit the file…
$ git add README.md # Add the file to the index
$ git commit -m "Initial commit to my new repo"

Interlude: git basics
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$ git init
○Initialized empty Git repository in /TestDirectory/.git/
$ touch README.md # Create a readme file
$ # Edit the file…
$ git add README.md # Add the file to the index
$ git commit -m "Initial commit to my new repo"
$ # Create more files and edit them..
$ git add firstFile.txt sourceFile.cc headerFile.h
$ git commit -m "Short descriptive summary
dquote> 
dquote> More expansive explanation of the commit,     
dquote> if necessary."

Interlude: git basics
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Random github commit messages: 
http://whatthecommit.com/ 

How-to write  good commit messages:
https://cbea.ms/git-commit/
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http://whatthecommit.com/
https://cbea.ms/git-commit/


Interlude: git basics, avoid this:
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Learn basic concepts and commands
● Create repository, add file, commit new versions: git 

(init, add, commit)

Familiarise yourself with parallel development concepts
● Switch to branches or create new ones: git (switch 

[-c]/checkout [-b])

● Merging and rebasing: git (merge, rebase)

Learn how to interact with remote repositories and users
● Retrieve and share code: git (clone, pull, push, 

fetch)

Very powerful system means there is inherent complexity
● It is entirely possible to use restricted feature set and be 

very productive!
Still worth spending some time reading about it!*

Git in a nutshell

*Ultimate git guide: https://jwiegley.github.io/git-from-the-bottom-up/

Git tutorials:
http://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
http://pcottle.github.io/learnGitBranching/
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https://jwiegley.github.io/git-from-the-bottom-up/
http://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
http://pcottle.github.io/learnGitBranching/


Testing

52D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024



Different tests, different purposes:
● Unit test

○ Testing “units of code”, e.g. a function or class
○ Given a defined input → expected output?

● Integration test
○ Testing a larger part of your software
○ For example running an example and checking output

Modifying code base that is well-covered by tests is infinitely more fun 
than one that is almost untested!

Do not confuse it with verification
Checks if specifications are met

What do we mean with tests?
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How to come up with tests?
● What should the algorithm do?

○ Check if well defined input produces correct result
● How should the algorithm fail?

○ Check if wrong input fails in the way you want
You’ll probably miss corner cases
● Once you discover them, implement a test!

○ Only let a bug hit you once
● Have users help you

○ Use issue tracker
○ Be responsive!

Look at existing solutions to implement tests
● Python: doctest and unittest packages
● C++: CTest (integrated with cmake) & Catch

Writing good tests is hard

Tests needed 
to find bugs

Tests needed 
for coverage
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https://docs.python.org/3.6/library/doctest.html
https://docs.python.org/3.6/library/unittest.html
https://cmake.org/Wiki/CMake/Testing_With_CTest
https://github.com/philsquared/Catch


$ python testfib.py

Interlude: doctest

def fib(n):
    """ Returns the fibonacci series at n
    >>> [fib(n) for n in range(6)]
    [0, 1, 1, 2, 3, 5]
    >>> fib(-1)
    Traceback (most recent call last):
      ...
    ValueError: n should be >= 0
    """
    if n < 0:   raise ValueError("n should be >= 0")
    if n == 0:  return 0
    a, b = 1, 1
    for i in range(n-1):
        a, b = b, a+b
    return a

import doctest
doctest.testmod()

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024 55



$ python testfib.py
$ # No error → All tests passed!

Interlude: doctest

def fib(n):
    """ Returns the fibonacci series at n
    >>> [fib(n) for n in range(6)]
    [0, 1, 1, 2, 3, 5]
    >>> fib(-1)
    Traceback (most recent call last):
      ...
    ValueError: n should be >= 0
    """
    if n < 0:   raise ValueError("n should be >= 0")
    if n == 0:  return 0
    a, b = 1, 1
    for i in range(n-1):
        a, b = b, a+b
    return a

import doctest
doctest.testmod()
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$ python testfib.py -v

Interlude: doctest

def fib(n):
    """ Returns the fibonacci series at n
    >>> [fib(n) for n in range(6)]
    [0, 1, 1, 2, 3, 5]
    >>> fib(-1)
    Traceback (most recent call last):
      ...
    ValueError: n should be >= 0
    """
    if n < 0:   raise ValueError("n should be >= 0")
    if n == 0:  return 0
    a, b = 1, 1
    for i in range(n-1):
        a, b = b, a+b
    return a

import doctest
doctest.testmod()
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$ python testfib.py -v
Trying:
    [fib(n) for n in range(6)]
Expecting:
    [0, 1, 1, 2, 3, 5]
ok
Trying:
    fib(-1)
Expecting:
    Traceback (most recent call last):
      ...
    ValueError: n should be >= 0
ok
1 items had no tests:
    __main__
1 items passed all tests:
   2 tests in __main__.fib
2 tests in 2 items.
2 passed and 0 failed.
Test passed.

Interlude: doctest

def fib(n):
    """ Returns the fibonacci series at n
    >>> [fib(n) for n in range(6)]
    [0, 1, 1, 2, 3, 5]
    >>> fib(-1)
    Traceback (most recent call last):
      ...
    ValueError: n should be >= 0
    """
    if n < 0:   raise ValueError("n should be >= 0")
    if n == 0:  return 0
    a, b = 1, 1
    for i in range(n-1):
        a, b = b, a+b
    return a

import doctest
doctest.testmod()
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See https://docs.python.org/3/library/doctest.html for more examples and explanations!

https://docs.python.org/3/library/doctest.html


Deploying your software
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When you release your software:
● Tag the repository

○ Defines a common "checkpoint"
● Test in the target environment

○ In e.g., fresh virtual machine or docker container
○ If you test locally you might be unknowingly using 

private files/variables
● Create/release accompanying documentation

○ Produce e.g., Doxygen pages
○ Update wikis or whatever documentation pages you 

use (tag a new version)
○ Make sure all examples work

Ideal case: All this is done automatically!

Releasing the Software
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Automate
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We would like to
● Commit some code

and then automatically make it ready for deployment.

Goal
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We would like to
● Commit some code

and then automatically e.g.,
● Test

○ e.g., Unit tests
● Build
● Package the products and name them

○ e.g., RPM, JAR, tar/zip archives, …
● Test again

○ e.g., Integration tests
● Provide the packages for deployment

○ OR… deploy them immediately

Goal
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But why?
● Reduces work

○ Committing to repository is enough
■ Tests are run
■ Builds are performed
■ Product provided for download

● Possibility for non-experts to build complex or resource intensive software
or firmware
○ Added bonus: Per construction there is a recipe to build your code in the 

repository!
● Consistent record of your development

○ With indication whether particular revision is known to be good
● Gives confidence

○ "Spatial": Does my work build correctly on other machines?
■ e.g., Did I commit everything required to my repository?

○ "Temporal": Is this particular commit from two years ago supposed to work?
● Ensures consistency of a given package

○ We know that this was built with these libraries and in this environment
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Interlude: Gitlab CI
$ cat .gitlab-ci.yml
image: gitlab-registry.cern.ch/scouting-demonstrator/scone/rpm-builder:v1_0_0

build_rpm_tag:
  stage: build
  only: 
    - tags
  script:
    - bash build.sh
    - bash package.sh
  artifacts:
    name: "scone-${CI_JOB_NAME}_${CI_COMMIT_TAG}"
    paths:
      - cms-scone*.rpm
      - info.json
    expire_in: 1 week

65D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024



Interlude: Gitlab CI
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For resource intensive builds/tests or other special requirements for the running machine: Can 
set up specialised runners (i.e., "computers that run your jobs").

See https://docs.gitlab.com/ee/ci/ for a complete documentation!

https://docs.gitlab.com/ee/ci/


Many solutions available for this…

Gitlab CI - https://about.gitlab.com/features/gitlab-ci-cd/ 

Travis CI - https://travis-ci.org
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Also https://www.jenkins.io/, https://circleci.com/, 
https://docs.github.com/en/actions/automating-builds-and-tests/about-continuous-integration, …

https://about.gitlab.com/features/gitlab-ci-cd/
https://travis-ci.org
https://www.jenkins.io/
https://circleci.com/
https://docs.github.com/en/actions/automating-builds-and-tests/about-continuous-integration


Words of advice
● Well designed build tools are crucial

○ Invaluable even when not using continuous integration
■ Essential when using it

● Some measure of discipline required to get the most out of this
○ Build system requires some time to set up

■ Very good investment, but initially somewhat frustrating
○ Continuous integration most useful if actually used regularly

■ If you put each code change into your repository you can later come back and check what was the breaking change

● Spend time finding the right development process for you(r team)
○ Use of tags?
○ Use of branches?
○ Pull/Merge requests?
○ …
○ Lots of "standard" processes around (Gitflow, trunk-based,... )

■ Significant experience probably also around your lab (and coffee is cheap)

● Above all: Don't get overwhelmed by the possibilities!
○ Start simple!
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General tips & pointers



Coursera and Udacity
● https://www.coursera.org/courses

○ Large variety of courses
■ Not only technology / programming
■ Also physics, biology, economics… and more
■ Also in different languages

● https://www.udacity.com/courses/all?price=Free
○ Mixed courses: Some free, recently switched to a paid model with monthly fees

University Homepages — have a look, many courses available through YouTube etc.
● e.g.: Programming Paradigms, Stanford University
● https://www.edx.org/search?tab=course

Learning about software development
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https://www.coursera.org/courses
https://www.udacity.com/courses/all?price=Free
https://www.youtube.com/watch?v=Ps8jOj7diA0&feature=PlayList&p=9D558D49CA734A02&index=0
https://www.edx.org/search?tab=course


These slides were full of starting points: You have to follow up to get something out of it
● Most of it are tools to make your life easier
● Nothing is free

○ You’ll have to invest some effort to learn, but most tools shown here bring benefits very early in the learning curve!
● Many more tools to discover, lots of fun to be had with them!

Homework:
● Install git, start a repository. Try branching on the web
● Run tmux, kill the connection, reconnect and see if you can continue where you left off

○ Beware: If you use a service like lxplus you get a machine from a pool (e.g. lxplus769) → Tmux/screen is running on that one!
● Tune your .bashrc / .bash_profile to get a more useful prompt

○ You can try e.g. oh-my-bash or oh-my-zsh, depending on the shell you are using
● Try out vim/emacs/vscode and learn what suits you best

○ Download a shortcut summary… 
○ Learn how to block-select, indent multiple lines, rename occurrences of text

Conclusion
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https://github.com/ohmybash/oh-my-bash
https://ohmyz.sh/

