
Programming for today's
physicists and engineers

D. Rabady, CERN
ISOTDAQ 2024: 14th International School of Trigger and Data Acquisition

Hefei, China, 27 June 2024

Opening words
Disclaimer: This is more a collection of pointers* than a tutorial, it’s a starting point…
(Almost) no code but a bias towards C++ and Python

Note: While the lecture focus is software, most of the content equally applies to firmware
programming.

Acknowledgment: Slides are based on previous lectures by Alessandro Thea, Joschka Pöttgen
(Lingemann) and Erkcan Ozcan

*further reading and tips in
these boxes

2D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

What is programming?

3D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

https://en.m.wikipedia.org/wiki/Systems_development_life_cycle

https://en.m.wikipedia.org/wiki/Systems_development_life_cycle

What is programming?
● Understand & define the problem to solve

○ Define the requirements for your software
○ Choose the language

4D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

https://en.m.wikipedia.org/wiki/Systems_development_life_cycle

https://en.m.wikipedia.org/wiki/Systems_development_life_cycle

What is programming?
● Understand & define the problem to solve

○ Define the requirements for your software
○ Choose the language

● Formulate a possible solution (design)
○ Identify key functionalities and features

5D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

https://en.m.wikipedia.org/wiki/Systems_development_life_cycle

https://en.m.wikipedia.org/wiki/Systems_development_life_cycle

What is programming?
● Understand & define the problem to solve

○ Define the requirements for your software
○ Choose the language

● Formulate a possible solution (design)
○ Identify key functionalities and features

● Implement the design
○ Write code, debug it
○ Prepare documentation

6D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

https://en.m.wikipedia.org/wiki/Systems_development_life_cycle

https://en.m.wikipedia.org/wiki/Systems_development_life_cycle

What is programming?
● Understand & define the problem to solve

○ Define the requirements for your software
○ Choose the language

● Formulate a possible solution (design)
○ Identify key functionalities and features

● Implement the design
○ Write code, debug it
○ Prepare documentation

● Validate the code
○ Perform thorough verification
○ Execute unit and system tests

7D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

https://en.m.wikipedia.org/wiki/Systems_development_life_cycle

https://en.m.wikipedia.org/wiki/Systems_development_life_cycle

What is programming?
● Understand & define the problem to solve

○ Define the requirements for your software
○ Choose the language

● Formulate a possible solution (design)
○ Identify key functionalities and features

● Implement the design
○ Write code, debug it
○ Prepare documentation

● Validate the code
○ Perform thorough verification
○ Execute unit and system tests

● Deliver the code
○ Collect feedback
○ Ensure portability to different platforms?

● Go back to square 1

8D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

https://en.m.wikipedia.org/wiki/Systems_development_life_cycle

https://en.m.wikipedia.org/wiki/Systems_development_life_cycle

9

What can programming be like…

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

● Inherit some code
○ Poke at it to get the hang of it

10

What can programming be like…

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

Here is some code
from some person

● Inherit some code
○ Poke at it to get the hang of it

● Add some features
○ The purpose of which is not completely clear
○ By hack… patching some files

11

What can programming be like…

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

Here is some code
from some person

Now can you
make it do X?
By tomorrow?

● Inherit some code
○ Poke at it to get the hang of it

● Add some features
○ The purpose of which is not completely clear
○ By hack… patching some files

● On the only existing working system
○ Well, it’s the only place where the code runs, isn’t

it?

12

What can programming be like…

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

Here is some code
from some person

Oh Just fix it,
it’s on PC Y

Now can you
make it do X?
By tomorrow?

● Inherit some code
○ Poke at it to get the hang of it

● Add some features
○ The purpose of which is not completely clear
○ By hack… patching some files

● On the only existing working system
○ Well, it’s the only place where the code runs, isn’t

it?
● Break some other code by accident

○ Desperately try to figure out why.

13

What can programming be like…

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

Here is some code
from some person

Oh Just fix it,
it’s on PC Y

Now can you
make it do X?
By tomorrow?

Hey, who
broke Z?!?

● Inherit some code
○ Poke at it to get the hang of it

● Add some features
○ The purpose of which is not completely clear
○ By hack… patching some files

● On the only existing working system
○ Well, it’s the only place where the code runs, isn’t

it?
● Break some other code by accident

○ Desperately try to figure out why.
● Just to finally realise you got it wrong in the first

place…

14

What can programming be like…

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

Here is some code
from some person

Oh Just fix it,
it’s on PC Y

Now can you
make it do X?
By tomorrow?

Hey, who
broke Z?!?

What did you want
again?

● Inherit some code
○ Poke at it to get the hang of it

● Add some features
○ The purpose of which is not completely clear
○ By hack… patching some files

● On the only existing working system
○ Well, it’s the only place where the code runs, isn’t

it?
● Break some other code by accident

○ Desperately try to figure out why.
● Just to finally realise you got it wrong in the first

place…
○ And so on and so on…

15

What can programming be like…

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

Here is some code
from some person

Oh Just fix it,
it’s on PC Y

Now can you
make it do X?
By tomorrow?

Hey, who
broke Z?!?

What did you want
again?

Oh no…

● Many ways to do this right
○ Agile/waterfall project management
○ Extreme programming

■ Test driven development
■ Pair programming

○ …
○ Some of these have ideas/techniques that are even

useful in isolation

● General guidelines
○ Avoid duplication of work
○ Avoid feature bloating
○ Ensure code quality
○ Keep in mind: Software engineering relies heavily

on communication!
■ Communication with the computer
■ Communication with your peers

But it doesn't have to be…

16D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

Iterative Development

Test-Driven Development

Requirements

17D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

Choosing the programming language

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024 18

Things to consider:
● Problem domain

○ Analysis?
○ DAQ?

● Popularity
○ The more people using the language the more

questions already asked (and hopefully answered)

Things to consider:
● Problem domain

○ Analysis?
○ DAQ?

● Popularity
○ The more people using the language the more

questions already asked (and hopefully answered)
○ But it shouldn't be short lived…

Choosing the programming language

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

Stable

19

Choosing the programming language

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024 20

Things to consider:
● Problem domain

○ Analysis?
○ DAQ?

● Popularity
○ The more people using the language the more

questions already asked (and hopefully answered)
○ But it shouldn't be short lived…

● Documentation and support
○ Don't underestimate the utility of useful official

docs

Choosing the programming language

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024 21

Things to consider:
● Problem domain

○ Analysis?
○ DAQ?

● Popularity
○ The more people using the language the more

questions already asked (and hopefully answered)
○ But it shouldn't be short lived…

● Documentation and support
○ Don't underestimate the utility of useful official

docs
● Can you choose?

○ Existing expertise in group
○ Language support at workplace

● …

Do you really
have to
program?
Or has somebody already done it for you?

22D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

Design

23D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

Sketch out what you want to design
● Unified modeling language (UML) diagrams

○ Support for many types of diagrams
■ Structural, behaviour, interaction diagrams,...

○ Very powerful
■ Not very widespread nowadays, though…

● C4 model
○ Rather new arrival, but gaining popularity
○ Four levels of diagrams from "birds eye view" to "code level" diagram

■ UML used for lowest level code description

Write your first ideas out in pseudo-code
● Don't need to think about scope, initialisation, etc.
● Allows you to quickly put your thoughts to paper

○ Can be useful e.g., for algorithm design, when you want to spend your
brain cycles on the problem, not on the tools

Plan ahead

24D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

function find_local_optimum()
while solution is not locally optimal do

find s with f(s) < f(solution)
return s

Goal
● Are you still building what was required?
● Are you adding unneeded features?

Maintainability
● Is it easy to adapt to changed environment?
● Can you cope with (slightly) changed requirements?

Scalability
● Large data volumes

○ Think about data-flow and data layout
○ Try to avoid complicated data structures

Re-usability
● Identify parts of the design that could be used elsewhere
● Could these be extracted in a dedicated library?

Things to keep in mind when designing

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024 25

Implementation

26D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

Look around for existing solutions
● Many problems have already been solved
● Look for libraries where:

○ Active community? Well maintained? Tested?
○ Rule of thumb: Last commit a few days ago, at most a year old

● Be wary of libraries with many features
○ Often come with lots of dependencies, increasing your attack surface, overall

complexity, might slow down your code, …
● Caveat: Don't pull in external code for trivialities

○ Almost no reason to use e.g., https://pypi.org/project/isEven/

Getting to know new frameworks:
● Read the docs

○ Investing time in the beginning will pay off
● python packages: try the ipython “help”
● Start with a simple test

○ Modify existing examples to do what you want to do
○ Does the code do what you expect?

Do not reinvent the wheel

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

“Prof. Lucifer Butts and his Self-Operating
Napkin”,
by Rube Goldberg

Before searching for external libraries: Check out e.g., STL and
Python standard library!

27

https://pypi.org/project/isEven/

If you squeeze every conceivable feature in one place:
● You’ll probably end up doing nothing right
● Write specialised toolkits/libraries

Define features by writing a test that needs to be passed
● Only implement what is strictly needed to pass that test

Be pragmatic
● Generalising a problem before solving it:

○ Probably not a good idea
○ Only do it when you have a use case

● Keep everything as concise as possible (increased readability)
○ Introduce abstraction only when likely to be

actually used
● Keep it as simple as possible!

When coding: Avoid feature bloating

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024 28

Whatever you do, you’ll end up using (at least)

● Editor
○ Know* at least one ubiquitous editor: nano, vi(m), emacs, etc.
○ More modern solutions: can make your life a lot easier..
○ Depending on the language/platform (e.g., Java): IDEs are a better choice (Eclipse, Netbeans, etc.)

● Terminal
○ Learn about shortcuts (minimal set: Tab, Ctrl+r, Ctrl+e, Ctrl+a,… have a look**)
○ Knowing about some basic command line-tools can come in handy

Tools of the Trade: Editor, Terminal and IDEs

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024 29

*at least how to exit them :-)

**https://ostechnix.com/list-useful-bash-keyboard-shortcuts/
or https://gist.github.com/tuxfight3r/60051ac67c5f0445efee

https://ostechnix.com/list-useful-bash-keyboard-shortcuts/
https://gist.github.com/tuxfight3r/60051ac67c5f0445efee

Some words on editors: Choose what suits you
The choice of editor is yours to make…
● Do you want

○ “a great operating system, lacking only a decent editor”
○ Or one with two modes: “beep constantly” and “break everything”*

● Both are versatile and learning them is worthwhile

However: Modern alternatives have a less-steep learning-curve
● Some are commercial (Sublime Text, TextMate,…)
● Some are (reasonably) open: e.g., Microsoft VSCode, Adobe Brackets,...

○ Plugins, git integration, active communities, more plugins…

Once you decided which one is best for you:
● Spend some time learning about features and keybindings
● Many things that might require dozens of keystrokes can be done with 2
● Learn about: Linters, version control system integrations, and other plugins

30D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

vs

*from The Editor War

https://en.wikipedia.org/wiki/Editor_war

The terminal
Initially: Clicking is faster than typing, no need for the terminal.
After learning about some command line tools… probably not.

● What if you don’t have a GUI?
● Searching files: grep, find — example:

○ $ grep -R -A 3 "foo" *
■ Displays all matches of “foo” (+3 lines below) in all files in the current directory and its subfolders

○ Can be extended to only search files with certain ending
■ $ find . -name "*.cc" -exec grep -A 3 "foo" {} +

● Once you learn some tools it becomes very versatile:
○ sed, head, tail, sort… awk (a turing-complete interpreted language)
○ At the beginning: Note down often used commands…
○ After a tutorial dump your history* (increase cache size for max usage)

Shell scripting:
● Anything you do with the shell can be put into a script
● Alternative: Can solve most things more conveniently with an interpreted language

○ Con: Might not always be available where you need it

31D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

*to dump e.g., the last 100 commands:
$ history | tail -n 100 > history.txt

Bite size bash (few dollars, but quite useful):
https://wizardzines.com/zines/bite-size-bash/

https://wizardzines.com/zines/bite-size-bash/

Interlude: Working on the road — SSH

32

SSH — very, very versatile:

● Tunneling
○ Secure connections to other machines
○ Can e.g., establish secure connections to machines behind firewalls

● Keys for authentication instead of passwords
○ Makes life a bit more comfortable
○ Alternative: Login via Kerberos token if available*

● To work around shaky connections
○ Always use tmux/screen or a similar terminal multiplexer

● SSHFS
○ Files on remote host but "pretend" to be local

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

Lots of things possible with the ssh-config:
HOST <host>
 USER <remote-user>
 ProxyCommand ssh <tunnel> nc <host> <port>

More on (auto-)tunnelling:
https://security.web.cern.ch/security/recommendations/en/ssh
_tunneling.shtml

tmux guides and courses:
https://robots.thoughtbot.com/a-tmux-crash-course
http://www.hamvocke.com/blog/a-quick-and-easy-guide-to-tm
ux/

* see e.g., https://linux.web.cern.ch/docs/kerberos-access/

https://security.web.cern.ch/security/recommendations/en/ssh_tunneling.shtml
https://security.web.cern.ch/security/recommendations/en/ssh_tunneling.shtml
https://robots.thoughtbot.com/a-tmux-crash-course
http://www.hamvocke.com/blog/a-quick-and-easy-guide-to-tmux/
http://www.hamvocke.com/blog/a-quick-and-easy-guide-to-tmux/
https://linux.web.cern.ch/docs/kerberos-access/

The right tool for many jobs: Interpreted languages

Keep your code as short as possible while maintaining
readability

● Sometimes means to use the right language
● Often these are interpreted languages

○ python, perl, ruby, tcl, lua
● Used as binding languages:

○ Performance critical code in C/C++
○ Instantiated within python

(e.g. in CMS, ATLAS & LHCb offline software)
○ Best of both worlds

● Python: large standard library & very expressive!

33D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

import click

months = {"january": 31, "february": 28, "march": 31,
 "april": 30, "may": 31, "june":30,
 "july": 31, "august": 31, "september": 30,
 "october": 31, "november": 30, "december": 31}

@click.command()
@click.option('--month', prompt='Which month are you interested in?',
 help='Print the number of days this month has.')
def print_days_in_month(month):
 """Simple program that states how many days MONTH has."""
 if month in months:
 print(f"{month} has {months[month]} days.")
 else:
 print(f"Sorry. Month {month} not known.")

if __name__ == '__main__':
 print_days_in_month()

The right tool for many jobs: Interpreted languages

Keep your code as short as possible while maintaining
readability

● Sometimes means to use the right language
● Often these are interpreted languages

○ python, perl, ruby, tcl, lua
● Used as binding languages:

○ Performance critical code in C/C++
○ Instantiated within python

(e.g. in CMS, ATLAS & LHCb offline software)
○ Best of both worlds

● Python: large standard library & very expressive!

34D. Rabady (CERN)

import click

months = {"january": 31, "february": 28, "march": 31,
 "april": 30, "may": 31, "june":30,
 "july": 31, "august": 31, "september": 30,
 "october": 31, "november": 30, "december": 31}

@click.command()
@click.option('--month', prompt='Which month are you interested in?',
 help='Print the number of days this month has.')
def print_days_in_month(month):
 """Simple program that states how many days MONTH has."""
 if month in months:
 print(f"{month} has {months[month]} days.")
 else:
 print(f"Sorry. Month {month} not known.")

if __name__ == '__main__':
 print_days_in_month()

ISOTDAQ 2024. Hefei, China. 24 June 2024

$ python month_script.py --help
Usage: month_script.py [OPTIONS]

 Simple program that states how many days MONTH has.

Options:
 --month TEXT Print the number of days this month has.
 --help Show this message and exit.

The right tool for many jobs: Interpreted languages

Keep your code as short as possible while maintaining
readability

● Sometimes means to use the right language
● Often these are interpreted languages

○ python, perl, ruby, tcl, lua
● Used as binding languages:

○ Performance critical code in C/C++
○ Instantiated within python

(e.g. in CMS, ATLAS & LHCb offline software)
○ Best of both worlds

● Python: large standard library & very expressive!

35D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

$ python month_script.py --help
Usage: month_script.py [OPTIONS]

 Simple program that states how many days MONTH has.

Options:
 --month TEXT Print the number of days this month has.
 --help Show this message and exit.
$ python month_script.py --month november
november has 30 days.
$ python month_script.py
Which month are you interested in?: november
november has 30 days.

import click

months = {"january": 31, "february": 28, "march": 31,
 "april": 30, "may": 31, "june":30,
 "july": 31, "august": 31, "september": 30,
 "october": 31, "november": 30, "december": 31}

@click.command()
@click.option('--month', prompt='Which month are you interested in?',
 help='Print the number of days this month has.')
def print_days_in_month(month):
 """Simple program that states how many days MONTH has."""
 if month in months:
 print(f"{month} has {months[month]} days.")
 else:
 print(f"Sorry. Month {month} not known.")

if __name__ == '__main__':
 print_days_in_month()

While writing your code:
● There are static code analysis tools that can help you

○ Like spell-check for your code
● Try out a linter for your preferred editor*

○ Highlights potentially problematic code
○ Your code will be more reliable

Static checking at compile time:
● Clang has a nice suite of static checks implemented**

○ Can also enforce coding styles
○ Takes longer than compiling; HTML reports with

possible bugs
● Might flag some false-positives

Static code checking helps you avoid problems early on!

Static Code Checking

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024 36

* Examples for VSCode:
Python: https://code.visualstudio.com/docs/python/linting
Shell: https://github.com/vscode-shellcheck/vscode-shellcheck

** see http://clang-analyzer.llvm.org

https://code.visualstudio.com/docs/python/linting
https://github.com/vscode-shellcheck/vscode-shellcheck
http://clang-analyzer.llvm.org

● While running your code:
○ Printing to console/log: especially convenient if working in unfamiliar programming environment

■ This works for a surprisingly long time…
○ Sooner or later you'll want to use a debugger: e.g. gdb (GNU debugger)

■ basic commands: run, bt, info <*>, help
■ Very useful documentation in the Red Hat Developer Guides for e.g. RHEL7 and RHEL9

○ Python debugger (pdb, ipdb*, pygdb)
○ Under Linux: strace

■ To determine which system calls the program uses (and where they might be failing)
■ Use with: strace <program name>
■ Nice tutorials in the internet (e.g. https://opensource.com/article/19/10/strace)

Debugging

37D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

* import ipdb
 ipdb.set_trace() # set a breakpoint

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/developer_guide/debugging-running-application
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/9/html/developing_c_and_cpp_applications_in_rhel_9/debugging-applications_developing-applications
https://opensource.com/article/19/10/strace

● Segmentation violations due to memory management
○ Life-time vs. scope
○ Look at smart pointers (part of C++11/14 standards, alternative: boost)

● Even if you don’t have crashes: Memory Leaks, try valgrind
● When all else fails: Use a rubber duck

○ or invite your colleague for a coffee…
○ Verbalising a problem one has can often lead to a moment of epiphany

General hints for debugging

38D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

https://valgrind.org/
https://en.wikipedia.org/wiki/Rubber_duck_debugging

Two sides of the same coin: embedded and standalone
documentation
● Both necessary to make your programs easy to use
● They have different purpose!

Embedded documentation:
● Explain interfaces i.e., function signatures
● Make note of possible future problems (better:

prevent them)
● Sometimes might be good to document your

reasoning
● Do not “over comment”

○ Can at worst lead to "comment bugs"
● Clean code (almost) documents itself: You write

it once but you read it many times

Documentation: Do it while it’s fresh

39D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

if a > b: # when a is greater than b, do...

class TheClass(object):
 """ Documentation of this class. """
 def __init__(self, var):
 self.var_ = var
 ## @var var_
 # my member variable

 ## Documentation of this function.
 # More on what this function does.
 ## @param arg1 an integer argument
 ## @param arg2 a string argument
 ## @returns a list of ...
 def some_function(self, arg1, arg2):
 pass

Documentation: Do it while it’s fresh

40D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

if a > b: # when a is greater than b, do...

class TheClass(object):
 """ Documentation of this class. """
 def __init__(self, var):
 self.var_ = var
 ## @var var_
 # my member variable

 ## Documentation of this function.
 # More on what this function does.
 ## @param arg1 an integer argument
 ## @param arg2 a string argument
 ## @returns a list of ...
 def some_function(self, arg1, arg2):
 pass

Two sides of the same coin: embedded and standalone
documentation
● Both necessary to make your programs easy to use
● They have different purpose!

Embedded documentation:
● Explain interfaces i.e., function signatures
● Make note of possible future problems (better:

prevent them)
● Sometimes might be good to document your

reasoning
● Do not “over comment”

○ Can at worst lead to "comment bugs"
● Clean code (almost) documents itself: You write

it once but you read it many times

Documentation: Do it while it’s fresh

41D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

Two sides of the same coin: embedded and standalone
documentation
● Both necessary to make your programs easy to use
● They have different purpose!

Standalone documentation:
● Again: Explain your interfaces (can be derived

from internal, e.g. doxygen.org)
● For large projects: Explain the big picture

○ Give use-cases and examples
○ Consider using UML (unified modelling

language) or other graphical notation techniques
(e.g., the C4 model)

Documentation: Do it while it’s fresh

42D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

Two sides of the same coin: embedded and standalone
documentation
● Both necessary to make your programs easy to use
● They have different purpose!

Standalone documentation:
● Again: Explain your interfaces (can be derived

from internal, e.g. doxygen.org)
● For large projects: Explain the big picture

○ Give use-cases and examples
○ Consider using UML (unified modelling

language) or other graphical notation techniques
(e.g., the C4 model)

Don’t underestimate the challenge of tracking
your code
● Deceitfully simple at the beginning…

○ e.g.: zip/tar-based backups, versioning and
distribution

● But the illusion is shattered soon enough
○ Upgrading tools or library, refactoring, rushing-in a

patch
○ “Long-range” bugs are a thing, not always

immediate to catch

Get familiar with Revision Control early
● Learn to track (and comment) every code change
● RCS is essential (and unavoidable) for collaboration

Always track code changes - Revision Control

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024 43

https://jwiegley.github.io/git-from-the-bottom-up/

A software tool that helps you keep track of changes to your code

● Once upon a time: CVS and Subversion

● Nowadays: Distributed revision control – Great for personal use
○ Easy to work on the go
○ Your local copy has everything (including history)
○ The most popular probably git: git-scm.com

■ Other distributed solutions are: Mercurial, Breezy…
■ Easy to get started…

Version Control Software

Repo-To-Repo Collaboration

Git
repo

Git
repo

Git
repo

Central-Repo-To-Working-Copy Collaboration

SVN
repo

Working
Copy

Working
Copy

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024 44

http://git-scm.com

$ git init
○Initialized empty Git repository in /TestDirectory/.git/

Interlude: git basics

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024 45

$ git init
○Initialized empty Git repository in /TestDirectory/.git/
$ touch README.md # Create a readme file
$ # Edit the file…

Interlude: git basics

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024 46

$ git init
○Initialized empty Git repository in /TestDirectory/.git/
$ touch README.md # Create a readme file
$ # Edit the file…
$ git add README.md # Add the file to the index

Interlude: git basics

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024 47

$ git init
○Initialized empty Git repository in /TestDirectory/.git/
$ touch README.md # Create a readme file
$ # Edit the file…
$ git add README.md # Add the file to the index
$ git commit -m "Initial commit to my new repo"

Interlude: git basics

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024 48

$ git init
○Initialized empty Git repository in /TestDirectory/.git/
$ touch README.md # Create a readme file
$ # Edit the file…
$ git add README.md # Add the file to the index
$ git commit -m "Initial commit to my new repo"
$ # Create more files and edit them..
$ git add firstFile.txt sourceFile.cc headerFile.h
$ git commit -m "Short descriptive summary
dquote>
dquote> More expansive explanation of the commit,
dquote> if necessary."

Interlude: git basics

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

Random github commit messages:
http://whatthecommit.com/

How-to write good commit messages:
https://cbea.ms/git-commit/

49

http://whatthecommit.com/
https://cbea.ms/git-commit/

Interlude: git basics, avoid this:

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024 50

Learn basic concepts and commands
● Create repository, add file, commit new versions: git

(init, add, commit)

Familiarise yourself with parallel development concepts
● Switch to branches or create new ones: git (switch

[-c]/checkout [-b])

● Merging and rebasing: git (merge, rebase)

Learn how to interact with remote repositories and users
● Retrieve and share code: git (clone, pull, push,

fetch)

Very powerful system means there is inherent complexity
● It is entirely possible to use restricted feature set and be

very productive!
Still worth spending some time reading about it!*

Git in a nutshell

*Ultimate git guide: https://jwiegley.github.io/git-from-the-bottom-up/

Git tutorials:
http://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
http://pcottle.github.io/learnGitBranching/

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024 51

https://jwiegley.github.io/git-from-the-bottom-up/
http://git-scm.com/book/en/v2/Getting-Started-About-Version-Control
http://pcottle.github.io/learnGitBranching/

Testing

52D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

Different tests, different purposes:
● Unit test

○ Testing “units of code”, e.g. a function or class
○ Given a defined input → expected output?

● Integration test
○ Testing a larger part of your software
○ For example running an example and checking output

Modifying code base that is well-covered by tests is infinitely more fun
than one that is almost untested!

Do not confuse it with verification
Checks if specifications are met

What do we mean with tests?

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024 53

How to come up with tests?
● What should the algorithm do?

○ Check if well defined input produces correct result
● How should the algorithm fail?

○ Check if wrong input fails in the way you want
You’ll probably miss corner cases
● Once you discover them, implement a test!

○ Only let a bug hit you once
● Have users help you

○ Use issue tracker
○ Be responsive!

Look at existing solutions to implement tests
● Python: doctest and unittest packages
● C++: CTest (integrated with cmake) & Catch

Writing good tests is hard

Tests needed
to find bugs

Tests needed
for coverage

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024 54

https://docs.python.org/3.6/library/doctest.html
https://docs.python.org/3.6/library/unittest.html
https://cmake.org/Wiki/CMake/Testing_With_CTest
https://github.com/philsquared/Catch

$ python testfib.py

Interlude: doctest

def fib(n):
 """ Returns the fibonacci series at n
 >>> [fib(n) for n in range(6)]
 [0, 1, 1, 2, 3, 5]
 >>> fib(-1)
 Traceback (most recent call last):
 ...
 ValueError: n should be >= 0
 """
 if n < 0: raise ValueError("n should be >= 0")
 if n == 0: return 0
 a, b = 1, 1
 for i in range(n-1):
 a, b = b, a+b
 return a

import doctest
doctest.testmod()

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024 55

$ python testfib.py
$ # No error → All tests passed!

Interlude: doctest

def fib(n):
 """ Returns the fibonacci series at n
 >>> [fib(n) for n in range(6)]
 [0, 1, 1, 2, 3, 5]
 >>> fib(-1)
 Traceback (most recent call last):
 ...
 ValueError: n should be >= 0
 """
 if n < 0: raise ValueError("n should be >= 0")
 if n == 0: return 0
 a, b = 1, 1
 for i in range(n-1):
 a, b = b, a+b
 return a

import doctest
doctest.testmod()

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024 56

$ python testfib.py -v

Interlude: doctest

def fib(n):
 """ Returns the fibonacci series at n
 >>> [fib(n) for n in range(6)]
 [0, 1, 1, 2, 3, 5]
 >>> fib(-1)
 Traceback (most recent call last):
 ...
 ValueError: n should be >= 0
 """
 if n < 0: raise ValueError("n should be >= 0")
 if n == 0: return 0
 a, b = 1, 1
 for i in range(n-1):
 a, b = b, a+b
 return a

import doctest
doctest.testmod()

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024 57

$ python testfib.py -v
Trying:
 [fib(n) for n in range(6)]
Expecting:
 [0, 1, 1, 2, 3, 5]
ok
Trying:
 fib(-1)
Expecting:
 Traceback (most recent call last):
 ...
 ValueError: n should be >= 0
ok
1 items had no tests:
 __main__
1 items passed all tests:
 2 tests in __main__.fib
2 tests in 2 items.
2 passed and 0 failed.
Test passed.

Interlude: doctest

def fib(n):
 """ Returns the fibonacci series at n
 >>> [fib(n) for n in range(6)]
 [0, 1, 1, 2, 3, 5]
 >>> fib(-1)
 Traceback (most recent call last):
 ...
 ValueError: n should be >= 0
 """
 if n < 0: raise ValueError("n should be >= 0")
 if n == 0: return 0
 a, b = 1, 1
 for i in range(n-1):
 a, b = b, a+b
 return a

import doctest
doctest.testmod()

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024 58

See https://docs.python.org/3/library/doctest.html for more examples and explanations!

https://docs.python.org/3/library/doctest.html

Deploying your software

59D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

When you release your software:
● Tag the repository

○ Defines a common "checkpoint"
● Test in the target environment

○ In e.g., fresh virtual machine or docker container
○ If you test locally you might be unknowingly using

private files/variables
● Create/release accompanying documentation

○ Produce e.g., Doxygen pages
○ Update wikis or whatever documentation pages you

use (tag a new version)
○ Make sure all examples work

Ideal case: All this is done automatically!

Releasing the Software

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024 60

Automate

61D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

We would like to
● Commit some code

and then automatically make it ready for deployment.

Goal

62D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

We would like to
● Commit some code

and then automatically e.g.,
● Test

○ e.g., Unit tests
● Build
● Package the products and name them

○ e.g., RPM, JAR, tar/zip archives, …
● Test again

○ e.g., Integration tests
● Provide the packages for deployment

○ OR… deploy them immediately

Goal

63D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

But why?
● Reduces work

○ Committing to repository is enough
■ Tests are run
■ Builds are performed
■ Product provided for download

● Possibility for non-experts to build complex or resource intensive software
or firmware
○ Added bonus: Per construction there is a recipe to build your code in the

repository!
● Consistent record of your development

○ With indication whether particular revision is known to be good
● Gives confidence

○ "Spatial": Does my work build correctly on other machines?
■ e.g., Did I commit everything required to my repository?

○ "Temporal": Is this particular commit from two years ago supposed to work?
● Ensures consistency of a given package

○ We know that this was built with these libraries and in this environment

64D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

Interlude: Gitlab CI
$ cat .gitlab-ci.yml
image: gitlab-registry.cern.ch/scouting-demonstrator/scone/rpm-builder:v1_0_0

build_rpm_tag:
 stage: build
 only:
 - tags
 script:
 - bash build.sh
 - bash package.sh
 artifacts:
 name: "scone-${CI_JOB_NAME}_${CI_COMMIT_TAG}"
 paths:
 - cms-scone*.rpm
 - info.json
 expire_in: 1 week

65D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

Interlude: Gitlab CI

66D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

For resource intensive builds/tests or other special requirements for the running machine: Can
set up specialised runners (i.e., "computers that run your jobs").

See https://docs.gitlab.com/ee/ci/ for a complete documentation!

https://docs.gitlab.com/ee/ci/

Many solutions available for this…

Gitlab CI - https://about.gitlab.com/features/gitlab-ci-cd/

Travis CI - https://travis-ci.org

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024 67

Also https://www.jenkins.io/, https://circleci.com/,
https://docs.github.com/en/actions/automating-builds-and-tests/about-continuous-integration, …

https://about.gitlab.com/features/gitlab-ci-cd/
https://travis-ci.org
https://www.jenkins.io/
https://circleci.com/
https://docs.github.com/en/actions/automating-builds-and-tests/about-continuous-integration

Words of advice
● Well designed build tools are crucial

○ Invaluable even when not using continuous integration
■ Essential when using it

● Some measure of discipline required to get the most out of this
○ Build system requires some time to set up

■ Very good investment, but initially somewhat frustrating
○ Continuous integration most useful if actually used regularly

■ If you put each code change into your repository you can later come back and check what was the breaking change

● Spend time finding the right development process for you(r team)
○ Use of tags?
○ Use of branches?
○ Pull/Merge requests?
○ …
○ Lots of "standard" processes around (Gitflow, trunk-based,...)

■ Significant experience probably also around your lab (and coffee is cheap)

● Above all: Don't get overwhelmed by the possibilities!
○ Start simple!

68D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

69D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024

General tips & pointers

Coursera and Udacity
● https://www.coursera.org/courses

○ Large variety of courses
■ Not only technology / programming
■ Also physics, biology, economics… and more
■ Also in different languages

● https://www.udacity.com/courses/all?price=Free
○ Mixed courses: Some free, recently switched to a paid model with monthly fees

University Homepages — have a look, many courses available through YouTube etc.
● e.g.: Programming Paradigms, Stanford University
● https://www.edx.org/search?tab=course

Learning about software development

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024 70

https://www.coursera.org/courses
https://www.udacity.com/courses/all?price=Free
https://www.youtube.com/watch?v=Ps8jOj7diA0&feature=PlayList&p=9D558D49CA734A02&index=0
https://www.edx.org/search?tab=course

These slides were full of starting points: You have to follow up to get something out of it
● Most of it are tools to make your life easier
● Nothing is free

○ You’ll have to invest some effort to learn, but most tools shown here bring benefits very early in the learning curve!
● Many more tools to discover, lots of fun to be had with them!

Homework:
● Install git, start a repository. Try branching on the web
● Run tmux, kill the connection, reconnect and see if you can continue where you left off

○ Beware: If you use a service like lxplus you get a machine from a pool (e.g. lxplus769) → Tmux/screen is running on that one!
● Tune your .bashrc / .bash_profile to get a more useful prompt

○ You can try e.g. oh-my-bash or oh-my-zsh, depending on the shell you are using
● Try out vim/emacs/vscode and learn what suits you best

○ Download a shortcut summary…
○ Learn how to block-select, indent multiple lines, rename occurrences of text

Conclusion

D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024 71

https://github.com/ohmybash/oh-my-bash
https://ohmyz.sh/

