
Design and
Implementation
of a Monitoring
System
Serguei Kolos,

University of California, Irvine

What you are expected to
learn in the next hour
Ç Why systems need to be monitored

Ç The Basic one-size-fits-all Architecture
Ç Technology independent

Ç Implementation Strategy:
Ç With a few technology examples

Ç Data Quality Monitoring

25/6/2024 14th International School of Trigger & Data Acquisition 2

Why systems need to be Monitored?

ÅCos the Universe is not
perfect

ÅThe rate of failures is
proportional to the system
complexity

ÅMonitoring is indispensable
for successful operation

25/6/2024 14th International School of Trigger & Data Acquisition 3

How Higgs boson discovery would look
like in an ideal world

25/6/2024 14th International School of Trigger & Data Acquisition 4

What
happens in
reality

ÅA complex project has a
chance to succeed only if it
is ready to deal with
problems

ÅMonitoring System provides
the first line of defense:

ÅDetects issues

ÅReports them

ÅHelps to Investigate

25/6/2024 14th International School of Trigger & Data Acquisition 5

The Simplest Monitoring Example

25/6/2024 14th International School of Trigger & Data Acquisition

print(ñHello, Worldò)

The message
The monitoring API

function

6

The Basic Monitoring Architecture

API Communication Visualization

ÅThe critical
component

ÅAll system
components
should use the
same API

25/6/2024 14th International School of Trigger & Data Acquisition 7

print() The Python
builtins module

ÅTransparent for
the system
components

ÅShould be
customizable by
the end users

The print() function drawbacks

print(άIŜƭƭƻΣ ²ƻǊƭŘέ)

ÅNot bad for the HelloWorldŀǇǇƭƛŎŀǘƛƻƴ ōǳǘ ŘƻŜǎƴΩǘ ǎŎŀƭŜ ǘƻ
any real system

ÅWith multiple applications running for a long time on many
computers, we want to know:
ÅWhendid something happen?

ÅWheredid it come from?

ÅHow important is it?

ÅDo better solutions exist?

25/6/2024 14th International School of Trigger & Data Acquisition 8

Logging API to the rescue

import logging

logging.info ("Hello, World!")

25/6/2024 14th International School of Trigger & Data Acquisition 9

Use the standard well-
designed API

SeverityTimestamp Origin

The output format can
be easily customized

logging.basicConfig (level= logging.INFO ,

format ="%(asctime)s %(levelname)s \

[%(filename)s:%(lineno)s%(funcName)s()] %(message)s")

The Updated Monitoring Architecture

ÅThe Logging API
ÅWell-designed and mature

ÅThe Logging APIand Communication layers are completely
independent

ÅCommunication:
ÅMany of the shelf implementations exist on the market
ÅCan be exchanged transparently for the end-user applications

25/6/2024 14th International School of Trigger & Data Acquisition 10

Logging API Communication Visualization

Programming Languages Support

Python
import logging

class Logger:

def critical (msg, * args , ** kwargs):

def debug (msg, * args , ** kwargs):

def error (msg, * args , ** kwargs):

def info (msg, * args , ** kwargs):

def warning (msg, * args , ** kwargs):

Java
import java.util.logging.Logger

class Logger {

void severe(String msg);

void fine(String msg);

void error(String msg);

void info(String msg);

void warning(String msg);

}

25/6/2024 14th International School of Trigger & Data Acquisition 11

ExistingAppendersfor the Java
Logging API
ÅCassandraAppender- writes its output to anApache

Cassandradatabase

ÅFileAppenderςwrites events to an arbitrary file.

ÅFlumeAppender- Apache Flumeis a distributed, reliable
and highly available system for efficiently collecting,
aggregating, and moving large amounts of log data

ÅJDBCAppender- writes log events to a relational database
table using standard JDBC

ÅNoSQLAppender- writes log events to a NoSQL database

ÅSMTPAppender- sends an e-mail when a specific logging
event occurs, typically on errors or fatal errors

ÅZeroMQAppender- uses theJeroMQlibrary to send log
events to one or more ZeroMQendpoints

25/6/2024 14th International School of Trigger & Data Acquisition 12

https://cassandra.apache.org/
http://flume.apache.org/index.html
https://github.com/zeromq/jeromq

What about C++?

ÅRare case where using MACRO for the public API is a viable option
DAQ_LOG_CRITICAL(ñFile óò << file_name << ñô not foundò)

DAQ_LOG_ERROR(é)

DAQ_LOG_WARNING(é)

DAQ_LOG_INFO(é)

DAQ_LOG_DEBUG(é)

ÅInitial implementation may be trivial:

#define DAQ_LOG_CRITICAL(m) std:: cerr << m << std:: endl ;

ÅA scalable implementation can be provided later:
Å²ƛƭƭ ƴƻǘ ŀŦŦŜŎǘ ǳǎŜǊǎΩ ŎƻŘŜ

ÅGetting better with the C++ language evolution:
ÅA few implementations recently appeared based on the new C++20

std::formatandC++23 std::printspecifications

25/6/2024 14th International School of Trigger & Data Acquisition 13

https://en.cppreference.com/w/cpp/utility/format
https://en.cppreference.com/w/cpp/io/print

Example: The ATLAS Error Reporting
Service

25/6/2024 14th International School of Trigger & Data Acquisition 14

C++
MACRO

CORBA1 Splunk2

1 Common Object Request
Broker Architecture ς
inter-process communication
technology

2 SplunkςA software platform to
stream and collect data

Monitoring System evolution during the
project lifetime

ÅThe destination of the messages can be changed at any moment:
ÅNo changes in the Software Applications required!

ÅData Storage is optional but very handy:
ÅAdds persistenceςcan be used for postmortem analysis

25/6/2024 14th International School of Trigger & Data Acquisition 15

D
A

Q
 A

p
p

lic
a
tio

n

L
o

g
g

in
g

 A
P

I

step 2
Send to subscribers via HTTP

H
T

T
P

S

e
rv

e
r

Print to terminal step 1

D
a
ta

W

ri
te

r

Save to Data Storage step 3

