
Design and
Implementation
of a Monitoring
System
Serguei Kolos,

University of California, Irvine

What you are expected to
learn in the next hour
❑ Why systems need to be monitored

❑ The Basic one-size-fits-all Architecture
❑ Technology independent

❑ Implementation Strategy:
❑ With a few technology examples

❑ Data Quality Monitoring

25/6/2024 14th International School of Trigger & Data Acquisition 2

Why systems need to be Monitored?

• Cos the Universe is not
perfect

• The rate of failures is
proportional to the system
complexity

• Monitoring is indispensable
for successful operation

25/6/2024 14th International School of Trigger & Data Acquisition 3

How Higgs boson discovery would look
like in an ideal world

25/6/2024 14th International School of Trigger & Data Acquisition 4

What
happens in
reality

• A complex project has a
chance to succeed only if it
is ready to deal with
problems

• Monitoring System provides
the first line of defense:

• Detects issues

• Reports them

• Helps to Investigate

25/6/2024 14th International School of Trigger & Data Acquisition 5

The Simplest Monitoring Example

25/6/2024 14th International School of Trigger & Data Acquisition

print(“Hello, World”)

The message
The monitoring API

function

6

The Basic Monitoring Architecture

API Communication Visualization

• The critical
component

• All system
components
should use the
same API

25/6/2024 14th International School of Trigger & Data Acquisition 7

print() The Python
builtins module

• Transparent for
the system
components

• Should be
customizable by
the end users

The print() function drawbacks

print(“Hello, World”)

• Not bad for the HelloWorld application but doesn’t scale to
any real system

• With multiple applications running for a long time on many
computers, we want to know:
• When did something happen?

• Where did it come from?

• How important is it?

• Do better solutions exist?

25/6/2024 14th International School of Trigger & Data Acquisition 8

Logging API to the rescue

import logging

logging.info("Hello, World!")

25/6/2024 14th International School of Trigger & Data Acquisition 9

Use the standard well-
designed API

SeverityTimestamp Origin

The output format can
be easily customized

logging.basicConfig(level=logging.INFO,

format="%(asctime)s %(levelname)s\

[%(filename)s:%(lineno)s%(funcName)s()] %(message)s")

The Updated Monitoring Architecture

• The Logging API
• Well-designed and mature

• The Logging API and Communication layers are completely
independent

• Communication:
• Many of the shelf implementations exist on the market
• Can be exchanged transparently for the end-user applications

25/6/2024 14th International School of Trigger & Data Acquisition 10

Logging API Communication Visualization

Programming Languages Support

Python
import logging

class Logger:

def critical(msg, *args, **kwargs):

def debug(msg, *args, **kwargs):

def error(msg, *args, **kwargs):

def info(msg, *args, **kwargs):

def warning(msg, *args, **kwargs):

Java
import java.util.logging.Logger

class Logger {

void severe(String msg);

void fine(String msg);

void error(String msg);

void info(String msg);

void warning(String msg);

}

25/6/2024 14th International School of Trigger & Data Acquisition 11

Existing Appenders for the Java
Logging API
• CassandraAppender - writes its output to an Apache

Cassandra database

• FileAppender – writes events to an arbitrary file.

• FlumeAppender - Apache Flume is a distributed, reliable
and highly available system for efficiently collecting,
aggregating, and moving large amounts of log data

• JDBCAppender - writes log events to a relational database
table using standard JDBC

• NoSQLAppender - writes log events to a NoSQL database

• SMTPAppender - sends an e-mail when a specific logging
event occurs, typically on errors or fatal errors

• ZeroMQAppender - uses the JeroMQ library to send log
events to one or more ZeroMQ endpoints

25/6/2024 14th International School of Trigger & Data Acquisition 12

https://cassandra.apache.org/
http://flume.apache.org/index.html
https://github.com/zeromq/jeromq

What about C++?

• Rare case where using MACRO for the public API is a viable option
DAQ_LOG_CRITICAL(“File ‘” << file_name << “’ not found”)

DAQ_LOG_ERROR(…)

DAQ_LOG_WARNING(…)

DAQ_LOG_INFO(…)

DAQ_LOG_DEBUG(…)

• Initial implementation may be trivial:

#define DAQ_LOG_CRITICAL(m) std::cerr << m << std::endl;

• A scalable implementation can be provided later:
• Will not affect users’ code

• Getting better with the C++ language evolution:
• A few implementations recently appeared based on the new C++20

std::format and C++23 std::print specifications

25/6/2024 14th International School of Trigger & Data Acquisition 13

https://en.cppreference.com/w/cpp/utility/format
https://en.cppreference.com/w/cpp/io/print

Example: The ATLAS Error Reporting
Service

25/6/2024 14th International School of Trigger & Data Acquisition 14

C++
MACRO

CORBA1 Splunk2

1 Common Object Request
Broker Architecture –
inter-process communication
technology

2 Splunk – A software platform to
stream and collect data

Monitoring System evolution during the
project lifetime

• The destination of the messages can be changed at any moment:
• No changes in the Software Applications required!

• Data Storage is optional but very handy:
• Adds persistence – can be used for postmortem analysis

25/6/2024 14th International School of Trigger & Data Acquisition 15

D
A

Q
 A

p
p

lic
at

io
n

Lo
gg

in
g

A
P

I

step 2
Send to subscribers via HTTP

H
T

TP

Se
rv

er

Print to terminal step 1

D
at

a
W

ri
te

r

Save to Data Storage step 3

Set Priorities Properly

• Choose (or implement) the Monitoring API
before starting to implement the DAQ
system:
• The Monitoring must be used by all components

of the DAQ system
• Changing them later will be a pain

• Can take care about Communication and
Visualization implementations later:
• Using simple output to terminal would be

sufficient for the beginning

25/6/2024 14th International School of Trigger & Data Acquisition 16

• Advantages:
• Using the monitoring system will exercise its functionality and

performance
• Learn the best ways of presenting information
• Speed up the DAQ system development

How Monitoring System can speed
up DAQ System Development

Efficient development cycle using
Monitoring API

Activate
Debug
Output

Run

Deactivate
Debug
Output

“Traditional” development cycle

Add
printouts

Recompile

Run

Remove
printouts

Recompile

• Reduces time for debugging

• Optimizes the placement of DEBUG
output in the code

25/6/2024 14th International School of Trigger & Data Acquisition 17

Can we Extend the Same
Ideas to the Other Types of

Monitoring Data?

Monitoring Data Types

• Messages – used to inform about
anything of importance that
happens in the system

• Metrics – show how the system
performs:
• Values of properties of the

software and hardware system
components

• Counters, Gauges and Histograms

25/6/2024 14th International School of Trigger & Data Acquisition 19

Main Metrics Types

Counter
• Monotonically increasing

integer number

• Simple to monitor:
• Last value for the last time

period

• Examples:
• Cumulative totals: number

of triggers, number of bytes
sent/received, etc.

Gauge
• Arbitrary changing value:

• Integer or floating point

• Monitoring can be tricky:
• Last value

• Mean value

• Min/Max values

• Examples:
• Resources usage: CPU, memory, buffe

• Rates: triggers/s, bytes/s, etc.

• HW Properties: voltage, current,
temperature, etc.

25/6/2024 14th International School of Trigger & Data Acquisition 20

Metrics Monitoring Requirements

25/6/2024 14th International School of Trigger & Data Acquisition 21

✓Must be displayed as time series
✓Must be accessible in real-time
✓Must be recorded to be checked later

Reusing the Same Architecture

API Communication Visualization

• For both Communication and Visualization components
many implementations exist on the market:
• All they need is a stream of time series data
• They can store and visualize them

• They may be freely exchanged during the project’s life-time

• For this the API must be independent of the
Communication and Visualization

25/6/2024 14th International School of Trigger & Data Acquisition 22

Does a Common API for Metrics
exist?

• There is no commonly accepted API for Metrics

• SW tools for metrics collection and analysis usually define
just a format of metrics stream they accept

• A well-known example is Prometheus:
• Retrieves data via HTTP

• No programming language API

25/6/2024 14th International School of Trigger & Data Acquisition 23

User Apps HTTP Prometheus
Prometheus

Storage
Prometheus
Visualization

Custom API for Metrics Monitoring

package Atlas.Monitoring;

interface Gauge {

void setValue(double v);

}

interface Counter {

void increment();

void reset();

}

interface Metrics {

Counter createCounter(String name)

throw (AlreadyExistsException);

Gauge createGauge(String name)

throw (AlreadyExistsException);

}

25/6/2024 14th International School of Trigger & Data Acquisition 24

Makes it independent of
the Communication
implementation

Enforces
uniqueness of
Metrics IDs

Supports different
treatment for Counters
and Gauges

Metrics IDs

• All Metrics must have unique IDs

• Uniform human-readable naming schema greatly simplifies
Metrics handling:
• Finding required Metrics is straightforward

• Easy selection and filtering using regular expressions

• A possible approach:
• System/Sub-system/Component/Metrics

• Examples:
• /ATLAS/DAQ/EventRecoder/EventsNumber

• /ATLAS/DAQ/EventRecoder/RecordingRate

25/6/2024 14th International School of Trigger & Data Acquisition 25

Some Implementation Options

• The underlying implementation can be updated as the
project evolves:
• Does not affect the applications

• The same Analytics and Visualization tools can still be used

25/6/2024 14th International School of Trigger & Data Acquisition 26

D
A

Q
 A

p
p

lic
at

io
n

Metrics
Analytics and
Visualization

REST Request

Option #1

Time series in Json format

Data Storage

Option #2

M
et

ri
cs

 A
P

I

H
TT

P
 S

er
ve

r

RESTful Protocol

• REST – Representational State Transfer

• Client-server HTTP-based stateless communication protocol

• Supported by most of the modern information storage as
well as Web-based Visualization systems:
• Supports seamless interoperations

• Makes it easy to switch from one Storage or Visualization
platform to another

25/6/2024 14th International School of Trigger & Data Acquisition 27

REST Protocol Example

• Request:
https://atlasop.cern.ch/monitoring/

? id=ATLAS.Dataflow.RecordedEvents.Rate

& from=now-30d

& to=now

• Response:
Json Time Series, e.g.:
[

{t:1579104640,v:12345},

{t:1579104645,v:12346},

{t:1579104650,v:12347},

{t:1579104655,v:12348}

]

25/6/2024 14th International School of Trigger & Data Acquisition 28

Web-Based Visualization Tools

• Javascript tools which work in Web Browsers:
• Grafana - the open observability platform

• Prometheus – monitoring platform

• D3 – a low-level JavaScript toolbox for data visualization

• Rickshaw – a JavaScript toolkit for creating interactive time series
graphs

• There are many others as well…

• Very convenient for the end users:
• Don’t require extra software installation

• Provide real-time monitoring data access from any place of the
World

25/6/2024 14th International School of Trigger & Data Acquisition 29

Are there some other Advantages of
the common API?

API Communication Visualization

• The API can hide implementation of common data
handling patterns

➢Produce Derivative Metrics

➢Perform Metrics Rate Downsampling

➢Keeps “Observer Effect” under control

25/6/2024 14th International School of Trigger & Data Acquisition 30

Derivative Metrics

• Derivative Metrics can be automatically produced:
• Counters => Rates

• Gauges => Min, Mean, Max, Frequency distributions
(histograms)

25/6/2024 14th International School of Trigger & Data Acquisition 31

import Atlas.Monitoring;

Counter events =

Metrics.createCounter(“/DAQ/EventRecoder/Events”);

…

void eventReceived() {

evenets.increment();

}

1. “/DAQ/EventRecoder/Events”

2. “/DAQ/EventRecoder/EventsRate”

Metrics Rate Down-sampling

• Metrics update rate is defined by the data handling rate:
• E.g. rate of triggers for the ATLAS experiment is 100 kHz

• High update rates must be scaled down:
• Takes too much space in the data storage

• 100 kHz of event rate => (8 + 8)*3600*105 = ~6 GB data per hour per
single metrics

• Cannot be visualized:
• 4K displays have 3840 pixels along X axis

• Can display data for 40ms only

25/6/2024 14th International School of Trigger & Data Acquisition 32

Application Update Rate API Recording Rate Communication

Metrics Rate Down-sampling

• Metrics values can be down-sampled by the API
implementation:
• Reduces recording rate
• Simplifies storage requirements

• Output update interval can be made configurable:
• A default value for all metrics
• Individual values per specific metrics

• Transparent for the Applications and Communication
components

25/6/2024 14th International School of Trigger & Data Acquisition 33

Application Update Rate API Recording Rate Communication

Down-sampling: Counters vs Gauges

• Counter:
• Publish the last value for

each output update interval

• Gauge:
• Publish three values for

each update interval:
• Min, Average, Max

25/6/2024 14th International School of Trigger & Data Acquisition 34

Using Average only may hide
important information

0
10
20
30
40
50
60
70
80
90

100

0 100 200 300
O

cc
u

p
an

cy
 (

%
)

Time (ms)

Buffer Occupancy (%)

Min

Average

Max

The Observer Effect

• An observation affects the system:
• It consumes resources (CPU, memory, network bandwidth)

• It may affect performance of the monitored application

• Information must be passed to the Communication
component asynchronously:
• Monitoring information is updated by the DAQ thread

• Down-sampling and publishing must be done by another thread

• Thread-safety must be considered:
• But excessive thread-safety measures may hit the DAQ application

performance

25/6/2024 14th International School of Trigger & Data Acquisition 35

Thread-safety Overhead: Counters

25/6/2024 14th International School of Trigger & Data Acquisition 36

• Counters don’t require critical section

• Atomic variables are available in all modern languages

RAM

Counter
ValueUpdate Read

DAQ
Thread

Monitoring
Thread

Thread-safety Overhead: Gauges

25/6/2024 14th International School of Trigger & Data Acquisition 37

• Monitoring Thread must not hold
the lock when passing data to
Communication component

• Monitoring Thread should:
• Lock the mutex
• Make a local copy of the gauge(s)
• Unlock the mutex
• Pass the local copies to the

Communication component

RAM
Gauge
Value

Update

Read

DAQ
Thread

Monitoring
Thread

Min Value

Max Value

Average
Value

U
p

d
ate

CommunicationSend

Thread-Safety Overhead

• Locking an unlocked mutex takes ~50 CPU cycles => 20ns

• Not a problem when:
• DAQ thread locks the mutex often

• Monitoring threads locks it once every few seconds

• Mutex contention happens when a mutex is locked by
multiple threads equally often

• Even non-contended mutex may produce overhead:
• 10 kHz input rate:

• Mutex locking takes 0.2ms every second => 0.02% overhead

• 1 MHz input rate:
• Mutex locking takes 20ms every second => 2% overhead

25/6/2024 14th International School of Trigger & Data Acquisition 38

Scaling up the
Monitoring
System

25/6/2024 14th International School of Trigger & Data Acquisition 39

The HEP Experimental Realm

• DAQ system of a modern HEP
experiment consists of:
• O(1K) computers and network devices

• O(10K) SW applications

• O(100K) Metrics

25/6/2024 14th International School of Trigger & Data Acquisition 40

• A single counter metrics for 24h run requires:
• (8 + 8)*360*24 = 138KB of storage

• 100K Metrics => 14GB per day => 100GB per week => 5TB per
year

• The main difficulty is given by the O(10)KHz of data
generation rate

Time-Series Storage Systems

• Dedicated time-series storage systems would usually work
better than general purpose RDBMS
• Whisper – a lightweight, flat-file database format for storing time-

series data

• InfluxDB – a time-series database written in Go

• Cassandra – scalable, high availability storage platform for time-
series data

• MongoDB - a general purpose, document-based, distributed
database

• Prometheus – monitoring platform that has its own time-series
optimized storage

25/6/2024 14th International School of Trigger & Data Acquisition 41

The ATLAS Experiment: Web-based
Metrics Monitoring

25/6/2024 14th International School of Trigger & Data Acquisition 42

In-house file-based
time-series storage

DAQ
Application

CORBA

Monitoring API

Grafana customizable
dashboard

DAQ Specialty:
Data Quality Monitoring

How to Monitor the Detector?

• Detectors of LHC experiments are
incredibly complex devices:

• Up to 108 output data channels

• Mostly custom electronics

• 40 MHz operational frequency

• Traditional monitoring would
yield in O(1) PHz (petahertz) of
metrics update rate:

• These metrics are not even
attempted to be produced

• However, DAQ system has a
handle on these metrics…

25/6/2024 14th International School of Trigger & Data Acquisition 44

Detector Metrics

• Every Physics Event contains
states of a sub-set of
detector channels:

• An expert can spot problems
by looking into a graphical
event representation

• Such experts are not many and
can’t be in the Control Room
24/7

25/6/2024 14th International School of Trigger & Data Acquisition 45

Automated Data Quality
Analysis

• Dedicated DAQ applications apply
standard physics analysis algorithms to a
statistical sub-set of Physics Events:
• Extract Detector Metrics and build their

statistical distributions(histograms)

• Analyze histograms and produce a new set
of Metrics – Data Quality statuses

25/6/2024 14th International School of Trigger & Data Acquisition 46

Physics Event
Analysis

Algorithms

Samples
of Physics
Events

Statistical
Distributions

Statistical
Analysis

Algorithms

Summary: The Key Points

Have your Monitoring System API ready from the beginning
of the main project

Use standard Monitoring APIs whenever it is possible:

• e.g. Logging API

Think carefully when designing a custom API:

• It must not depend on a particular technology

The Monitoring System implementation may evolve during
DAQ system development

Use existing solutions for Communication and Visualization
components:

• In-house development must be well justified

25/6/2024 14th International School of Trigger & Data Acquisition 47

