An Introduction to Neural Networks

Satchit Chatterji MSc Artificial Intelligence University of Amsterdam

satchit.chatterji@gmail.com

June 24th, 2024

Why you should consider Neural Networks

Satchit Chatterji BSc Artificial Intelligence University of Groningen

satchit.chatterji@gmail.com

An Introduction to Neural Networks

Satchit Chatterji MSc Artificial Intelligence University of Amsterdam

satchit.chatterji@gmail.com

I don't need to convince you to use Neural Networks

Satchit Chatterji MSc Artificial Intelligence University of Amsterdam

satchit.chatterji@gmail.com

- They're useful!

- They're useful!
- They're fast!

- They're useful!
- They're fast!
- They're (now) easy to implement!

- They're useful!
- They're fast!
- They're (now) easy to implement!
- They're cute!

https://twitter.com/gdb/status/15125219 12064229377

- They're useful!
- They're fast!
- They're (now) easy to implement!
- They're cute!

https://twitter.com/gdb/status/15125219 12064229377

- They're useful!
- They're fast!
- They're (now) easy to implement!
- They're cute!
- They're *definitely* not going to take over the world!

https://twitter.com/gdb/status/15125219 12064229377

- They're useful!
- They're fast!
- They're (now) easy to implement!
- They're cute!
- They're *definitely* not going to take over the world!

The long answer

It's a bit more complicated than that...

https://twitter.com/gdb/status/15125219 12064229377

Introduction to the introduction

Goals of this lecture:

The whats, hows, whys, whichs and wheres

- Teach you what a neural network is and how it works
- Why you should use them, and why not
- Which neural networks are used today
- <u>Where</u> neural networks are headed next

Along with:

- A demo in a simulated environment
- A few tips on building and training your own networks

Introduction to the introduction

Goals of this lecture:

The whats, hows, whys, whichs and wheres

- Teach you what a neural network is and how it works
- Why you should use them, and why not
- Which neural networks are used today
- Where neural networks are headed next

Along with:

- A demo in a simulated environment
- A few tips on building and training your own networks

Given: Input-output examples of the form:

$$S = (\mathbf{x}_i, \mathbf{y}_i)_{i=1,...,T} \quad \mathbf{x}_i \in \mathbb{R}^N, \mathbf{y}_i \in \mathbb{R}^M$$

Given: Input-output examples of the form:

$$S = (\mathbf{x}_i, \mathbf{y}_i)_{i=1,...,T} \quad \mathbf{x}_i \in \mathbb{R}^N, \mathbf{y}_i \in \mathbb{R}^M$$

Given: Input-output examples of the form:

$$S = (\mathbf{x}_i, \mathbf{y}_i)_{i=1,\dots,T} \quad \mathbf{x}_i \in \mathbb{R}^N, \mathbf{y}_i \in \mathbb{R}^M$$

Assumption: Data is generated by a "true" function, with some added noise:

$$\mathbf{y}_i = f(\mathbf{x}_i) + v_i$$

Given: Input-output examples of the form:

$$S = (\mathbf{x}_i, \mathbf{y}_i)_{i=1,\dots,T} \quad \mathbf{x}_i \in \mathbb{R}^N, \mathbf{y}_i \in \mathbb{R}^M$$

Assumption: Data is generated by a "true " function, with some added noise:

$$\mathbf{y}_i = f(\mathbf{x}_i) + v_i$$

Goal: Learn an approximation $\hat{f}(\mathbf{x})$ of the generator function to use on new data:

$$\widehat{f}(\mathbf{x}) \approx f(\mathbf{x})$$

Given: Input-output examples of the form:

$$S = (\mathbf{x}_i, \mathbf{y}_i)_{i=1,\dots,T} \quad \mathbf{x}_i \in \mathbb{R}^N, \mathbf{y}_i \in \mathbb{R}^M$$

Assumption: Data is generated by a "true " function, with some added noise:

$$\mathbf{y}_i = f(\mathbf{x}_i) + v_i$$

Goal: Learn an approximation $\hat{f}(\mathbf{x})$ of the generator function to use on new data:

 $\hat{f}(\mathbf{x}) \approx f(\mathbf{x})$

Loss function: A distance between $\hat{f}(\mathbf{x})$ and $f(\mathbf{x})$ such that we can say $\hat{f}(\mathbf{x})$ is "good" if *L* is low across many given instances of *S*.

$$L: \mathbb{R}^M \times \mathbb{R}^M \to \mathbb{R}^{\geq 0}$$

Aim: Learn a function with low "risk"

Risk: What we want to minimize

$$R(\hat{f}) = E[L(\hat{f}(X), Y)]$$

Slide adapted from Jaeger, H. (2022) *Neural Networks* Lecture Notes, https://www.ai.rug.nl/minds/uploads/LN_NN_RUG.pdf

Aim: Learn a function with low "risk"

Risk: What we want to minimize

$$R(\hat{f}) = E[L(\hat{f}(X),Y)]$$

Empirical Risk: What we can actually calculate

(for a "candidate" model **h**, averaged over **N** training examples)

$$R^{\text{emp}}(h) = 1/N \sum_{i=1}^{N} L(h(\mathbf{x}_i), \mathbf{y}_i)$$

Slide adapted from Jaeger, H. (2022) *Neural Networks* Lecture Notes, https://www.ai.rug.nl/minds/uploads/LN_NN_RUG.pdf

Common Approaches

- Linear/Polynomial/Logistic Regression
- (Boosted) Decision trees
- Support Vector Machines
- Naive Bayes
- Neural Networks
- ...

 $\text{Inputs} \in \mathbb{R}^{N} \qquad \text{Hidden Layer} \in \mathbb{R}^{H_{1}} \ \text{Hidden Layer} \in \mathbb{R}^{H_{2}} \ \text{Hidden Layer} \in \mathbb{R}^{H_{3}} \qquad \text{Outputs} \in \mathbb{R}^{M}$

you vs the guy she told you not to worry about:

Source: linkedin.com/company/deeplearningai

Artificial vs Biological NNs

ANNs initially inspired by the brain:

Alexander Bain (1873), William James (1890)

Electrical connections/flow of neurons result in thought and movement

McColloch & Pitts (1943)

Modern mathematical "artificial" NN models (not the only neural network model!)

Rosenblatt (1958)

Description of the perceptron

Rumelhart, Hinton & Williams (1986)

Multi-layer perceptrons and error backpropagation (learning principle)

Modern:

- ANNs used everywhere for everything!
- Simplified, abstracted version of "synaptically"-connected "neurons"
- Biologically implausible

Building a Neural Network From Scratch (mathematically)

 x_2

$\hat{y} = w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n$

 $w_i \leftarrow \text{Coefficients}$ $x_i \leftarrow \text{Variables}$

 $\hat{y} = \tau(w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n)$

 $\tau(x) = \begin{cases} 1 & \text{if } x \ge 0 & e^- \\ 0 & \text{if } x < 0 & p^+ \end{cases}$

$$\hat{y} = \tau(w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n)$$

The "Perceptron"

Multi-layer Perceptrons (MLPs)

$\hat{y} = \sigma(w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n)$

$$\hat{y} = \sigma(w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n)$$

= $\sigma(\vec{w}^{\mathsf{T}} \vec{x})$

$$\vec{w} = \begin{bmatrix} w_0 \\ w_1 \\ w_2 \\ \vdots \\ w_n \end{bmatrix} \qquad \vec{x} = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$\begin{array}{cccc}
\overset{``\text{Activation''}}{\hat{y}} & \overset{``\text{Bias''}}{\to} & \overset{``\text{Activation}}{\to} & \overset{``\text{Activation}}{\to} & \overset{``\text{Activation}}{\to} & \overset{``\text{Activation function''}}{\to} & \overset{``\text{Activation function''}}{\to} & \overset{``\text{Activation function''}}{\to} & \overset{``\text{Activation function''}}{\to} & \overset{``\text{Constant function''}}{\to} & \overset{``\text{Activation function''}}{\to} & \overset{``\text{Activativation function''}}{\to} & \overset{``\text{Activation function''}}{\to} & \overset{``\text{Activation function''}}{\to} & \overset{``\text{Activativativation function''}}{\to} & \overset{``\text{Activativativativativativativativativa$$

Activation/ output of neuron k

$$\downarrow \\ o^k = \begin{bmatrix} w_0^k & w_1^k & \cdots & w_n^k \end{bmatrix}$$

$$\begin{bmatrix} 1\\ x_1\\ \vdots\\ x_n \end{bmatrix}$$

$$o^{1} = \begin{bmatrix} w_{0}^{1} & w_{1}^{1} & \cdots & w_{n}^{1} \end{bmatrix} \begin{bmatrix} 1 \\ x_{1} \\ \vdots \\ x_{n} \end{bmatrix}$$

$$o^{1} = \begin{bmatrix} w_{0}^{1} & w_{1}^{1} & \cdots & w_{n}^{1} \end{bmatrix} \begin{bmatrix} 1 \\ x_{1} \\ \vdots \\ x_{n} \\ 1 \\ \vdots \\ x_{n} \\ 1 \\ \vdots \\ x_{n} \\ \vdots \\ x_{n} \end{bmatrix}$$

$$o^{1} = \begin{bmatrix} w_{0}^{1} & w_{1}^{1} & \cdots & w_{n}^{1} \end{bmatrix} \begin{bmatrix} 1 \\ x_{1} \\ \vdots \\ x_{n} \\ \vdots \\ x_{n} \end{bmatrix}$$
$$o^{2} = \begin{bmatrix} w_{0}^{2} & w_{1}^{2} & \cdots & w_{n}^{2} \end{bmatrix} \begin{bmatrix} 1 \\ x_{1} \\ \vdots \\ x_{n} \end{bmatrix}$$
$$\vdots$$
$$\vdots$$
$$o^{k} = \begin{bmatrix} w_{0}^{k} & w_{1}^{k} & \cdots & w_{n}^{k} \end{bmatrix} \begin{bmatrix} 1 \\ x_{1} \\ \vdots \\ x_{n} \end{bmatrix}$$

$$o^{L} = \begin{bmatrix} w_{0}^{1} & w_{1}^{1} & \cdots & w_{n}^{1} \\ w_{0}^{2} & w_{1}^{2} & \cdots & w_{n}^{2} \\ \vdots & \vdots & \ddots & \vdots \\ w_{0}^{k} & w_{1}^{k} & \cdots & w_{n}^{k} \end{bmatrix} \begin{bmatrix} 1 \\ x_{1} \\ \vdots \\ x_{n} \end{bmatrix}$$
$$o^{L} = W^{*} \vec{x}^{*}$$

 $o^{L} = \begin{bmatrix} w_{0}^{1} & w_{1}^{1} & \cdots & w_{n}^{1} \\ w_{0}^{2} & w_{1}^{2} & \cdots & w_{n}^{2} \\ \vdots & \vdots & \ddots & \vdots \\ w_{0}^{k} & w_{1}^{k} & \cdots & w_{n}^{k} \end{bmatrix} \begin{bmatrix} 1 \\ x_{1} \\ \vdots \\ x_{n} \end{bmatrix}$ $o^L = W^* \vec{r}^*$

$$o^{L} = \begin{bmatrix} w_{1}^{1} & w_{2}^{1} & \cdots & w_{n}^{1} \\ w_{1}^{2} & w_{2}^{2} & \cdots & w_{n}^{2} \\ \vdots & \vdots & \ddots & \vdots \\ w_{1}^{k} & w_{2}^{k} & \cdots & w_{n}^{k} \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{bmatrix} + \begin{bmatrix} w_{0}^{1} \\ w_{0}^{2} \\ \vdots \\ w_{0}^{k} \end{bmatrix} \\ o^{L} = W\vec{x} + \vec{b}$$

Most common way of writing out the activation of a layer of an MLP

$o^L = W\vec{x} + \vec{b}$

$$o^L = W\vec{x} + \vec{b}$$

$$\hat{y} = \sigma(w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n)$$

$$o^L = W\vec{x} + \vec{b}$$

$$\hat{y} = \sigma(w_0 + w_1 x_1 + w_2 x_2 + \dots + w_n x_n)$$

$$o = \sigma(Wx^{in} + b)$$

The **output** of each layer is the product of its **weight matrix** and the **input vector** plus its **bias vector**, all wrapped in a **non-linear activation function**.

A multi-layer perceptron is a series of affine transformations of an input vector, each of which is wrapped in a non-linear activation function.

 $\mathcal{N}: \mathbb{R}^N \to \mathbb{R}^M$ $N, M \in \mathbb{N}$

(Translation: an MLP is a fancy function)

A Note on Nonlinearity

Without a non-linear activation function, a series of linear transformations would result in just a linear transformation of the input to the output.

We would still be stuck in the land of linear separability!

Loss functions

Depends on the task!

Mean Squared Error Used for e.g. regression tasks

Cross Entropy

Used for e.g. classification tasks

Define your own!

Note: Must be differentiable for gradient descent based methods

$$\mathcal{L}_{MSE} = \frac{1}{N} \sum_{i=1}^{N} (y_i - \hat{y}_i)^2$$
$$\mathcal{L}_{CCE} = -\frac{1}{N} \sum_{i=1}^{N} \sum_{c=1}^{C} y_{i,c} \log(\hat{y}_{i,c})$$

Common nonlinear functions

Sigmoid:
$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Hyperbolic tangent:
$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

Rectified Linear Unit: $\mathrm{ReLU}(x) = max(0, x)$ Sigmoid

Taph

Step Function

0, xcn 1, x3n 4=

Softplus y = ln (1+e*)

y= 1+e*

0, x(0 x, x30 4=

Softsign

y = tanh (x)

ELU

Swish

y=1+e*

Sinc

Leaky ReLU

y= max(0.1x,x)

Mish

Implementing learning: Gradient Descent

Given:

- Family of parameters Θ (e.g. possible weights of a NN)
- Differentiable risk function $\mathcal{R}(\theta)$

Goal:
$$\theta_{opt} = \operatorname*{argmin}_{\theta \in \Theta} \mathcal{R}(\theta)$$

Backprop: Efficient NN GD

- Goal: change optimization from $\mathcal{O}(|\theta|^2)$ to $\mathcal{O}(|\theta|)$
- Recall an MLP:

$$\mathcal{N}(x) = a^{\ell} \circ h^{\ell} \circ a^{\ell-1} \circ h^{\ell-1} \circ \dots \circ a^{1} \circ h^{1}x$$

$$\mathcal{L}(\mathcal{N}(x), y) \longrightarrow \underbrace{\frac{\partial \mathcal{L}(\mathcal{N}(x), y)}{w_{i}}}_{W_{i}} \longrightarrow w_{i} \leftarrow w_{i} - \eta \frac{\partial \mathcal{L}(\mathcal{N}(x), y)}{\partial w_{i}}$$

- Use the chain rule to compute the derivatives from output to input "Backpropagation of errors"

$$\frac{d\mathcal{L}}{dw_{l}} = \frac{d\mathcal{L}}{dh_{L}} \cdot \frac{dh_{L}}{dh_{L-1}} \cdot \dots \cdot \frac{dh_{l}}{dw_{l}} \implies \frac{d\mathcal{L}}{dw_{l}} = \frac{d\mathcal{L}}{dh_{l}} \cdot \frac{dh_{l}}{dw_{l}}$$
Gradient of loss w.r.t. the module output Gradient of a module w.r.t. its parameters

Backprop: Efficient NN GD

Apologies for different notation

- Goal: change optimization from $\mathcal{O}(|\theta|^2)$ to $\mathcal{O}(|\theta|)$ Recall an MLP: -

$$\mathcal{N}(x) = a^{\ell} \circ h^{\ell} \circ a^{\ell-1} \circ h^{\ell-1} \circ \dots \circ a^{1} \circ h^{1}x$$

$$\mathcal{L}(\mathcal{N}(x), y) \longrightarrow \underbrace{\frac{\partial \mathcal{L}(\mathcal{N}(x), y)}{w_{i}}}_{w_{i}} \longrightarrow w_{i} \leftarrow w_{i} - \eta \frac{\partial \mathcal{L}(\mathcal{N}(x), y)}{\partial w_{i}}$$

Use the chain rule to compute the derivatives from output to input -"Backpropagation of errors"

A "real" loss landscape:

- Many (many many) local minima
- Saddle points

http://www.telesens.co/2019/01/16/neural-network-loss-visualization/

Optimizers

Stochastic/Mini-batch GD: Speed improvement!

Perform backprop on errors of batches of training samples instead of all at once

- Reduces the number of expensive backward passes
- Helps with getting out of local minima (due to higher gradient noise)

Optimizers determine exactly how backpropagation is implemented

- Stochastic Gradient Descent (most common)
- RMSProp
- Adaptive Momentum Estimation ("Adam")
Optimizers

Stochastic/Mini-batch GD: Speed improvement!

Perform backprop on errors of batches of training samples instead of all at once

- Reduces the number of expensive backward passes
- Helps with getting out of local minima (due to higher gradient noise)

Optimizers determine exactly how backpropagation is implemented

- Stochastic Gradient Descent (most common)
- RMSProp

- Adaptive Momentum Estimation ("A'dam")

ML Training paradigms (a selection)

- Supervised
 - Train a model with explicit input-output pairs
- Unsupervised
 - Learns "patterns" from unlabelled data
- Semi-supervised learning
 - Learn a few things with input-output pairs, relate them to patterns learnt unsupervised
- Reinforcement Learning
 - Learn an optimal "policy" that gives you the best action to take at any given state space by taking random actions and learning through positive or negative reinforcement.
- Evolution
 - Optimize parameters through (Darwinian) evolution; e.g. genetic algorithms.

Types of Neural Networks

Multi-layer Perceptrons

Useful for **static** input-output relations

More hidden layers ~ better approximation of more complicated functions

Quick to design and implement

Convolutional Neural Networks

Learn "**kernels**", i.e. 'tensors' (multi-dimensional arrays) that convolve over *n*-dimensional data to extract abstract, lower-dimensional features.

Used often in **image and signal processing tasks** such as object detection and segmentation.

Accounts for translational variance: the object can be anywhere in the image and still be found

LeNet's architecture: One of the first CNNs https://doi.org/10.1162/neco.1989.1.4.541

Recurrent Neural Networks

Outputs go back and forth between neurons (loops exist in the graphs)

Approximates dynamical systems

- Any time-based function
- Any data that can be modelled as being "ordered"

Used often in **time-series tasks** like signal processing, natural language processing

Several types: Fully-connected, LSTMs, GRUs, reservoirs

An LSTM cell schematic. Adapted from: doi.org/10.4233/uuid:dc73e1ff-0496-459a-9 86f-de37f7f250c9

Echo state network schematic. Adapted from www.scholarpedia.org/article/Echo_state_network

Graph Neural Networks

Models any system that can be modelled as a graph

Learns relations between nodes, edges, global properties

Accounts for **relational inductive bias**, **node invariance**, others

Used in e.g. image segmentation, chemistry and pharmacy models, NLP, hierarchically-related data

Image adapted from this excellent intro to GNNs: https://distill.pub/2021/gnn-intro/

Geometric DL Models

Models or uses 'manifold embeddings' on non-Euclidean domains like graphs, meshes and manifolds - *geometric* inductive bias

Captures **various forms of invariance and equivariance** (e.g. Grids, Groups, Graphs, Geodesics, and Gauges)

Used in e.g. 3D object recognition, protein structures, medical imagine, etc.

What NNs can and can't do

Universal Approximation Theorem

Theorem (schematic). Let \mathcal{F} be a certain class of functions $f : \mathbb{R}^K \to \mathbb{R}^M$. Then for any $f \in \mathcal{F}$ and any $\varepsilon > 0$ there exists an multilayer perceptron \mathcal{N} with one hidden layer such that $||f - \mathcal{N}|| < \varepsilon$.

⇒ We can approximate any function we want with a one-layer MLP! More effective with more layers than just one ("deeper" networks) Easier said than done in practice

Schematic borrowed from Jaeger, H. (2022) *Neural Networks* Lecture Notes, https://www.ai.rug.nl/minds/uploads/LN_NN_RUG.pdf

Collection of proofs:

https://ai.stackexchange.com/questions/13317/where-can-i-find-the-proof-of-the-universal-approximation-theorem

Where NNs thrive

- > Statistical/correlation inference needed
- > There exists a lot of good quality (labelled) training data
- > Parallelizable training and deployment
- > Tasks without expansion (input-output fixed)
- > Specialized tasks
- > Good in-range performance IRL

https://lasp.colorado.edu/home/minxss/2016/07 /12/minimum-mission-success-criteria-met/

Limits of NNs

- > No causal relations possible (yet)
- > Very data hungry "Garbage in, garbage out"
- > Often expensive to train (depending on size)
- Nonextensible and specialized to a range and task
 Add one more neuron → needs fine-tuning
 - Undefined behaviour on out-of-domain test examples

Note on specialization: rf. 'Foundation Models'

https://knowyourmeme.com/memes /grumpy-cat

Overfitting & Underfitting

The real troublemakers in ML in general!

Underfitting: When the model fits the training data not well enough

- Empirical risk is high, actual risk is high
- Training loss is high, testing loss is not optimal

Overfitting: When the model fits the training data *too* closely (incl. noise)

- Empirical risk is low, actual risk is high
- Training loss is low, testing loss is not optimal
- e.g. An D-degree polynomial can fit D-1 training points with zero error

Overfitting & Underfitting

More complex models (e.g. more layers, neurons per layer) -> higher likelihood of overfitting

Image source: https://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html

Validation

Split your training set into two!

- New train set
- Unseen-by-the-model "validation" set

Train Set

Test Set (unseen)

Validation

Split your training set into two!

- New train set
- Unseen-by-the-model "validation" set

- e.g. 80-20 split (Note: split ratio depends on the model, task and data)

Train Set	Validation Set	Test Set (unseen)
80%	20%	

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- "Gold standard" for evaluating generality of neural network models

Train Set

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- "Gold standard" for evaluating generality of neural network models

| Train Set |
-----------	-----------	-----------	-----------	-----------

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- "Gold standard" for evaluating generality of neural network models

Validation Set	Train Set	Train Set	Train Set	Train Set
----------------	-----------	-----------	-----------	-----------

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- "Gold standard" for evaluating generality of neural network models

Train Set	Validation Set	Train Set	Train Set	Train Set
-----------	----------------	-----------	-----------	-----------

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- "Gold standard" for evaluating generality of neural network models

Train Set	Train Set	Validation Set	Train Set	Train Set
-----------	-----------	----------------	-----------	-----------

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- "Gold standard" for evaluating generality of neural network models

Train Set	Train Set	Train Set	Validation Set	Train Set
-----------	-----------	-----------	----------------	-----------

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- "Gold standard" for evaluating generality of neural network models

e.g. k=5 (5-fold cross-validation)

Train Set	Train Set	Train Set	Train Set	Validation Set
-----------	-----------	-----------	-----------	----------------

Result = average over all validation passes

Training curves

Important to plot!

Training curves

Important to plot!(!!!!)

Shows if and how fast your model is learning on task-relevant metrics

- e.g. loss, accuracy, AUC, F1 score
- Plot scores over training epochs

Shows if and how fast your model is learning on task-relevant metrics

- e.g. loss, accuracy, AUC, F1 score
- Plot scores over training epochs

May indicate potential over and underfitting

validation loss > training loss

then often the model is good!

validation loss >> training loss

then often the model is overfitting

Low loss == Better

validation loss ~ training loss

then often the model is underfitting

Low loss == Better

validation loss < training loss

then something is very wrong, or totally expected!

Low loss == Better

Regularization

L1/L2 Regularization
 Added losses:

$$\lambda \cdot \sum_{i=1}^{d} |w_i| \qquad \lambda \cdot \sum_{i=1}^{d} w_i^2$$

- Dropout (on when training, off when testing/deploying)
- Early stopping

Parallelization: Speeding up NNs

Main math operation in NNs:

- Matrix-vector multiplications
- Element-wise nonlinear activation functions

Parallelization can be used to massively speed up learning and deployment!

- Multi-core CPUs
- Graphics processing units (GPUs)
- Tensor processing units (TPUs)
- FPGAs

Image from https://cloud.google.com/blog/products/ai-machine-learning/ an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

Frontiers

Deep learning

- Models with hundreds of layers, billions of weights
- Transformers, generative adversarial networks, autoencoders
- Foundation models, self-supervised learning
- AutoMLs: a tool to automatically generate good ML models for a task

Explainable AI (XAI)

- Explainable+interpretable+controllable models
- Human-like and human-understandable reasoning
- Neurosymbolic:

Semantic losses, logic tensors, symbolic regression, conceptors...

Others: Physics Informed NNs

- Neural ODEs, PDEs
- Quantum, Geometric DL

Frontiers

Deep learning

- Models with hundreds of layers, billions of weights
- Transformers, generative adversarial networks, autoencoders
- Foundation models, self-supervised learning
- AutoMLs: a tool to automatically generate good ML models for a task

Explainable AI (XAI)

- Explainable+interpretable+controllable models
- Human-like and human-understandable reasoning
- Neurosymbolic:

Semantic losses, logic tensors, symbolic regression, conceptors...

Others: Physics Informed NNs

Neural ODEs, PDEs Quantum, Geometric DL

Reference Material

- Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The elements of statistical learning
- Bishop, C. M. (2006). Pattern recognition and machine learning
- LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning
- Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning
- Chollet, F. (2021). Deep learning with Python
- Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow
- Erdmann, M., Glombitza, J., Kasieczka, G., & Klemradt, U. (2021). Deep learning for physics research.
- Bronstein, M. M., Bruna, J., Cohen, T., & Veličković, P. (2021). Geometric deep learning
- Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
- Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need
- Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.
- UvA Deep Learning 1 (Graduate) Tutorials <u>https://uvadlc-notebooks.readthedocs.io/en/latest/</u> (see also the DL2 lectures)
- University of Groningen ML and NN lecture notes https://www.ai.rug.nl/minds/teaching/ln/
- ...many many more