An Introduction to
Neural Networks

Satchit Chatterji
MSc Artificial Intelligence
University of Amsterdam

satchit.chatterji@gmail.com

June 24th, 2024

Why you should consider
Neural Networks

Satchit Chatterji
BSc Artificial Intelligence
University of Groningen

satchit.chatterji@gmail.com

An Introduction to
Neural Networks

Satchit Chatterji
MSc Artificial Intelligence
University of Amsterdam

satchit.chatterji@gmail.com

| don't need to convince you to
use Neural Networks

Satchit Chatterji
MSc Artificial Intelligence
University of Amsterdam

satchit.chatterji@gmail.com

The short answer

- They're useful!

The short answer

- They're useful!
- They're fast!

The short answer

- They're useful!
- They're fast!
- They’re (how) easy to implement!

The short answer

- They're useful!

- They're fast!

- They’re (how) easy to implement! ,
https://twitter.com/gdb/status/15125219

- They’re cute! 12064229377

The short answer

- They're useful!

- They're fast!

- They’re (how) easy to implement! ,
https://twitter.com/gdb/status/15125219

- They’re cute! 12064229377

The short answer

- They're useful!

- They're fast!

- They’re (how) easy to implement! ,
https:/ftwitter.com/gdb/status/15125219

- They’re cute! 12064229377
- They’re definitely not going to take over the world!

OpenAl

The short answer

- They’re useful!
- They're fast!
_) 1 |

They re (nOW) easy tO Implement' https.//twitter.com/gdb/status/15125219
- They’re cute! 12064229377

- They’re definitely not going to take over the world!

The long answer

It’s a bit more complicated than that...

OpenAl

Introduction to the introduction

Goals of this lecture:
The whats, hows, whys, whichs and wheres
- Teach you what a neural network is and how it works
- Why you should use them, and why not
- Which neural networks are used today
- Where neural networks are headed next
Along with:
- Ademo in asimulated environment
- A few tips on building and training your own networks

Introduction to the introduction

Goals of this lecture:
The whats, hows, whys, whichs and wheres
- Teach you what a neural network is and how it works
- Why you should use them, and why not
- Which neural networks are used today
- Where neural networks are headed next
Along with:
- Ademo in asimulated environment
- A few tips on building and training your own networks

CAUTION

CONTAINS
MATH

MATURE READERS ONLY

Introduction to Supervised Machine Learning

Given: Input-output examples of the form:

geeey

Introduction to Supervised Machine Learning

Given: Input-output examples of the form:

geeey

Introduction to Supervised Machine Learning
Given: Input-output examples of the form:
S =(X,¥Yi)i=1..T X; € RY y; ¢ RM

Assumption: Data is generated by a “true ” function, with some added noise:

yi = f(xi) + v

Introduction to Supervised Machine Learning
Given: Input-output examples of the form:

S =(X,¥Yi)i=1..T X; € RY y; ¢ RM
Assumption: Data is generated by a “true ” function, with some added noise:
yi = f(x:i) + v
Goal: Learn an approximation f(X)of the generator function to use on new data:

f(x) ~ f(x)

Introduction to Supervised Machine Learning

Given: Input-output examples of the form:

S = (Xi,¥i)i=1..7 Xi € RY y, e RM

Assumption: Data is generated by a “true ” function, with some added noise:
yi = f(x:i) + v
Goal: Learn an approximation f(X)of the generator function to use on new data:
f(x) = f(x)

Loss function: A distance between f(X) and f (x)such that we can say f(x) is “good”
if Lis low across many given instances of S.

Aim: Learn a function with low “risk”

Risk: What we want to minimize

R(f) = E[L(f(X),Y)]

Slide adapted from Jaeger, H. (2022) Neural Networks Lecture Notes,
https://www.ai.rug.nl/minds/uploads/LN_NN_RUG.pdf

Aim: Learn a function with low “risk”

Risk: What we want to minimize
R(f) = E[L(f(X),Y)

Empirical Risk: What we can actually calculate
(for a “candidate” model h, averaged over N training examples)

N
R (h) = 1/NZL(h<Xi)7yi)

Slide adapted from Jaeger, H. (2022) Neural Networks Lecture Notes,
https://www.ai.rug.nl/minds/uploads/LN_NN_RUG.pdf

« inliers
Outhiers

—— Linear regressor

—— RANSAC regressor

Common Approaches

- Linear/Polynomial/Logistic Regression
P(B| A) - P(4)

P(A| B) =

- (Boosted) Decision trees
- Support Vector Machines
- Naive Bayes

- Neural Networks

P(B)

Inputs ¢ RV Hidden Layer € R”) Hidden Layer € R’ Hidden Layer € R Outputs ¢ R

Images of regressions, decision tree, and SVM from scikit-learn.org

you vs the guy she told you not
to worry about:

O

Artificial vs Biological NNs

Inputs Xy

ANNs initially inspired by the brain:)
Alexander Bain (1873), William James (1890)
Electrical connections/flow of neurons result in thought
and movement Source: linkedin.com/company/deeplearningai
McColloch & Pitts (1943)
Modern mathematical “artificial” NN models (not the only neural network model!)
Rosenblatt (1958)
Description of the perceptron
Rumelhart, Hinton & Williams (1986)
Muilti-layer perceptrons and error backpropagation (learning principle)

Modern:
- ANNs used everywhere for everything!
- Simplified, abstracted version of “synaptically”-connected “neurons”

- Biologically implausible

Building a Neural Network
From Scratch (mathematically)

@

®
®
@

®®

Z1

L2

1

Classes are “linearly separable”

L2

>

Uy = wo+ wir1 + wero + ... + wpTy

w; < Coefficients
x; <— Variables

ay

y=r

(wp +w
0+ wir]+woro+... +wpxy,)

ey

y = 7(wy+wix] +woro+... +wpry)

The “Perceptron”

/ Generalized “activation function”

o

_)g

- The modern notion of a single “neuron”

- BUT: Only works on linearly separable classes

I1

Uip)

L1

L1

L2

(0}

Multi-layer Perceptrons (MLPs)

1

>
1
L1 Z o i
L2 2: -
Z g
Ln—1 o
Z o
Ln
>

ay

y = o(wy+wir]+wexro+...+wpry)

WX

L]
L2

wnxn)

[(§ ot N ”n
Activation “Bigs”

: |

y = o(wy

|

‘Activation function”

o (W)

g

Wi

|
E

|

“Weight vector”

WL

S|
|
.8
N

|

“Feature vector”

Wn T,

Activation/

output
of neuron k _ _
l 1

K "hidden” neurons
in layer L

o = |

1 .1
Wy Wy

1

n

= [

|

1 .1
Wy Wy

2 9
Wy Wy

n

2

n

)

o' = [wol wi
0% = [wg w?
oF = [w’g w}

n

2

n

n

)

r,,1 1

B S
wO wl « o o wn

kook k
wo wl e o o wn

ot = W*g*

|
of = W:E’Jr/g/

Most common way of writing out the
activation of a layer of an MLP

L ,,,1 L] r... - 1
k .k k k
wy Wy -- Wy | Ln | W

AN

y = o(wy+wir]+woro+...+wnn)

J =(ofwo+wix] +woxo+ ...+ wpxy)

0o=oc(Wax" +b)

The output of each layer is the product of its weight matrix and the input
vector plus its bias vector, all wrapped in a non-linear activation function.

AN
%

%

N

&&\\ <77

RS,
S X7 T

XN I,

NSO

WO YKL)%
NSRS LT
OB,

N

N %
\\\\B\RQ‘% \%'?';';wy;
NN 07027 N

NSO NS YN —3
XS ORAGAT
XX D
4
S \‘z’é oA 2V S\
X D
1‘{%

: N
g

0’:§‘)¥‘\«'

\' & X
\‘:‘:"Jé < / P
KL Lo . RS

S¥
Y
/
'64
<]

N

'i\\"
0»4
i
A
X%

D

D
A

57

A0\

7 S Q‘r Q“\V Q
S7A A
ZORXRN / [K

VAN Ny,
X ,
SRR
ESRLRRRIXXS
), h“ 4‘#0‘0
% AR &
WaVa\
N
SRELIKKAL D
I REBEKI S
A A VAL
SEARBES
S

XIS

7 <D

s

x 1\\\

SN
RS

\}\\ $>4)’* R\)‘<
RS

e

P
X
S

N
(X

X

&K
R

SKS
AN

W\
SEAB
XL
LXK
?@
s/
Y o

<KD 0

KT ¥ W,

155 (‘w,
Z/‘m}i B LK

PN IV
X AL AN
AT HNRNRIN A ITFDNRIRNRER
7 KA RS \ 1A KA
VAT NS 4\\\\\ LART N 4‘\\\‘\
77 I A XN

M ZA AR

S
NS

2L I

SN

A
/ 777

\
i\

%
b
N

N / g NI
\"/ 4 4 %&‘@)}‘
'Ii qp&g@‘
e ‘ R

> S N

W
% RS
'/ \\“}" A‘v N A "”I[r ‘\&{:\s\"‘v ARV /L =
N 7 Ny 4 Y 7
NSRS KL NS K7
R 080, % NI XSSEZL /7457
RN WAL RN W HA5
ZNN /é,o,;'g,.lzf& AN XX g.ly,;l@;lgﬂ
W7 }%!?;::i / \16“}\%‘} N X 3:,:,@5/}0, "z
R RG] \“oz‘ﬁ g\" ERH RS

-

NKRAEL PRK & s

WAEAAEL 24 RSOETS
EXR %ﬁg@;’é&;g& %A\g;‘;
NSESARSN K 7 NISAXK
NSRS Py

P>
S £
EIRN LRI WAL
WX Z
BB)
0V AT AN X2
ORI gr& % RA

PPN LSRRI LRRAL

KL

Inputs € RN

%
A & N
VANNTAIN 220NN

AR RIS B A RO
ATREININ //"'j"/'j; AN
15798 XY SN L5 R
AR Z NSNS
ST EL SN SEITET X
2 ay A2

L L \é“\\x‘“\
750 SN\
~LL ‘\\\‘\\

Hidden Layer € R”' Hidden Layer € R*> Hidden Layer € R*

Outputs € RY

4
e
;///

7
i
-
()‘1
&
N
\\\\\\\

Z

N N
&%

7

A
X

S XALGH
AN X\ 2L 2
4
v

ll’/;
B 7 7 I; /
Q %
WK ALK
XK BLIA
N 'Jlli
1177
&

) \
RIS V"‘Illl;l';;% ’ 4\: 7/
7 N T N J 3
NS KA NS KA AN
N REL AL NI 257
RN SR 55 NN A %5 N\
/7 ZENNNVE07N . RN EALL AN . AN\
X SO K X S N N %X —
S K "0‘0/ B RXRHHH K 4'0’0/ SR
\‘AQ €X >§«"' ‘/\ /\“\ XN XD ‘l'\
&K KX NV ; 2\ N\
SIVREEA N TAD S
> NEHAR SRAZIRI &2 / IHAZXN
A BRARX 2&\& \ éog}; o K r& =X EXK S
A 0 R SN X XS X3
CH BTN 7 BA LR —
T AN IAS27)) A S g

0 LR KD ‘\‘\\\\‘“ 'o//’/» LA LSRR
FENN AR
TR A ZARR ‘ 1P IR

W
N\

Inputs € RY

jele
«W‘
AN

S
NSSE

7
D < ’ lililil

DT KL
NSK XA VST
o 'Y e Y
% 7 57 A 7 XX N K
IT N\ s NN KT
77 L7 NV NGV N\ N0
2 3 PO A NZANT D754 7 SONY WX \7 "'I){ N4 X
N e 4 %‘}%“\\;“a\(YA N
N DN SO AVZ 7 / \ o AN AV T 0, o /
X7 7 XX WRHHH KA R XRIEKH ALK
RS «J' SRS KBTET RSN EREET8 TR
NS L7~ . EX ‘;g% Jo,!\@f:;?& . EXRRUNTA KRN — S OXNXXZ
O Y v’ A K% ’(RN 7 XX—F ‘v X
:'l‘lﬁ (ﬂ\“ \ //“:'2".? I WL @;’?& %‘:’105 XN / (‘)’}’%‘?’
T ‘ > A5 S W& ZB> AN ‘)
RS ‘ ST S ‘ IR . <L
N "$«§‘\ \.'i'q’eézvzﬁ‘;-wu‘v\“:‘/ N2 m%‘ XN 4 2
SR R BRI R R ISR 7
oNANNRY. Y 5N A
Za 2 W N ANV NN
SRS\ S NERINRRNYY

4
I AL AN S NSNS
T TANER RS TN NREL
SR\ NESERRN
A ZA XN Z NN
1057 XN
\Y

a\

AL 7> ‘\\\‘\ / /’[»/" ‘\:\‘\ \
777 ’ ‘ OOy

§ =1/
N

R \>

Inputs € RY Hidden Layer € R¥1

Inputs € RY

NI A N YA A —_— NS
RRIYZIET WAL HL RIS WEL PR 2t
PR PREREH PRIIISEN KGRI AR, SRR
L 4 WX Z LR WK R X
< 1KV NEPESKES SR NEDRASIEN / £
N o\ NNy

772 SR T2 XN
12O SNN L2\
S e\ . £ N\
“ / ‘

\
A\\\\\\‘v v’llll’? ‘\\\\
NS/ =\ e

RS K420/ RIS X

OXUNSK S, ‘ MK 5
\

N

77
=\ f—
RN S SRS K7 5
RSP XKAH L 7% RS KA1 555 \\\
NNV 007 ‘z/.t\m\& CALY NN
7 S '

&\

Hidden Layer € Rf* Hidden Layer € R??

N Z])
o R LT AZTI, R
NS = 2NN
X % /’,!l/ || s ¢
7 RN K453 XINKSEH 7]
N4 4 NN 0 RS YLK
N — NNV ROV o NSO K754
NEAL L Ny AR NV 07
L I, NISCK BAZ B NI YA
> BRI FIAE XN %%
2N ’:;%’2’(01’1'* ‘ %\&‘i‘: ! e <
X X7

~ DA S
N 5 0 ’ NRHEEK IR
X 75 X KRN RPDR
£ AALA:\\ X 7 Y";'
X AR . KA IRALBOK 2\
(S

”

()

()
&
SN
X7
X/

7}
D 7,
\\\\\‘?‘\’ "i lil V%

KX

3%

W
X
X

Inputs € RY

N\ < & /
A NZRH KS—
IX B NK7% X
7> ;' 2 % S\ KL BN €Y \“\/ K
R XX AN DRGBRIIARIN RS L5495
2L BRI 0TS NN ‘ <2
/’».,,{,/; Vh@«‘, OIS AP RN L7 77N
2l 7 KOOI 22070 T SN /7

A BRI DIARFEXNRR L
///m:l/ AR RN //,f:a. BRI \
STV O S A\ NN A/li»il/i\‘»"\ X “\\

SN NSOSNY
S

A‘ RN \

Hidden L i Hi
ayer € R™1 Hidden Layer € R”> Hidden Layer € R

—\ \\\\”lllll/
N>

N\~

R

PN "" 14 N
NSt NG N\l) 7
e/ NS5

X L7 Y RS 1 [5%4
AR BRI AR BB,
X R W A

N \
NANNTANLY 72 VAN
NSRS KRS X XA
3§ A\ 4\\0 N "I> &2/ (B A v QAR5 4 (5
eSO AVZ 70 W74 A A Ay
R XL KALSS SRS DAL K
RRIIENT WIFAK KK R 2002w
X XPKS ll& ¥ X
£\ P i V,A VAl
Wi o (XS
’o”' NS &6Q¢~ 8K NS . >
A A SN R &L XNE , 4
7 K7 X 2% N\ / ROy REL R EEXA
XASRALBL Z‘(";vk\ é;op_};\’ ALK
OO 7 X
X e o
755 A A
% L R 2 X

RS XREL XD
GATBRIREIRN RTINS
V 250 % L ORI S R
AT N4 NS00 A SN
road Vo 85 % RAX 2 NSALL YT RO
AR FEXNUR TR

W e
/;/,,,3’,,4.{ S . PRI

\ S ‘
T 2 A AR Z) VNN
"~

SAEL NN SEAT <7 AR
135 SN 17325/
e\ O e\
N\ =/ /}
) \\ “/

\
Za

Inputs € RY Hidden Layer € R Hidden Layer € R#2 Hidden Layer ¢ R Outputs € RY

A multi-layer perceptronis a series of
affine transformations of an input
vector, each of which is wrapped in a
non-linear activation function.

N - RY 5 rM
N.M €N

(Translation: an MLP is a fancy function)

A Note on Nonlinearity

Without a non-linear activation function, a series of linear transformations would
result in just a linear transformation of the input to the output.

We would still be stuck in the land of linear separability!

Loss functions

Depends on the task!
Mean Squared Error N
A : L — 1 Z(y. — §;)?
Used for e.g. regression tasks MSE = "7 g L
i=1

Cross Entropy

Used for e.g. classification tasks Locr = —— Z Z Yi,c 10g(Ti.c)

=1 c=1

Define your own!

Note: Must be differentiable for gradient descent based methods

Common nonlinear functions
1
1 : ’

e Sigmoid: o(x) = T
// e £

0.5¢ ex B e_x

Hyperbolic tangent: tanh(x) = —

p | Hyp g () pr—
Jal _ Rectified Linear Unit;:

ReLU(x) = maz(0,x)

Sigmoid Tabh Step Fuhction Softplus

— f /f ﬁ"

1 \a . 0, NN
o s Y = o (x) T
ReLU Softsign ELO
3 (&) 3%
0, %<0 ale-1) 2O
ko %, %30 M= L . . Rl %30 1
o
buNsh ginc Leaky ReLU Mish

y= rmax(04%. %) 7 =% (+ounha (sOFtpILS ()

Implementing learning: Gradient Descent

Given:
Family of parameters © (e.g. possible weights of a NN)
Differentiable risk function R(0)

Goal: Oopt = argmin R(0)
fcO

Backprop: Gradient descent

A

R(6)

\4

“Learning rate”

R(6) 9

00,

0, =0, — « R(Qi)

R(6)

0, =0, — « R(ei)

00,

R(0)
(9‘," — 01 — X

R(6,
96, 0

61 0o 63

R(6) 9

(9,' — 91 —
| "o,

R(0;)

Converges to local minima

Backprop: Efficient NN GD

- Goal: change optimization from O (|6]*) to O(|6])
- Recallan MLP:

N(@)=a'ohloa oh ™ o.. . calohlx

e ™~

LN (z),y) — OLNz).) > Wy — w; — naE(N(x)’y)

- Use the chain rule to compute the derivatives from output to input
“Backpropagation of errors”

dL dL dhy dh, - d. dL dh
dw, dh; dh;,_; T dw, dw; dh; dw,

Gradient of loss w.r.t. the module output Gradient of a module w.r.t. its parameters

Apologies for different notation

Backprop: Efficient NN GD

- Goal: change optimization from O (|6]*) to O(|4

- Recall an MLP:

N(z) = a'ohfoa™ oh o . catohl

T~
E(N(:U), y) OLN (z),y) OLN (z),y)

> > W; <— W; — 11N

- Use the chain rule to compute the derivatives from output to input
“Backpropagation of errors”

A “real” loss landscape:
- Many (many many) local minima
- Saddle points

........

http.//www.telesens.co/2019/01/16/neural-network-loss-visualization/

Optimizers

Stochastic/Mini-batch GD: Speed improvement!
Perform backprop on errors of batches of training samples instead of all at once
- Reduces the number of expensive backward passes
- Helps with getting out of local minima (due to higher gradient noise)

Optimizers determine exactly how backpropagation is implemented
- Stochastic Gradient Descent (most common)
- RMSProp
- Adaptive Momentum Estimation (“Adam”)

Optimizers

Stochastic/Mini-batch GD: Speed improvement!
Perform backprop on errors of batches of training samples instead of all at once
- Reduces the number of expensive backward passes
- Helps with getting out of local minima (due to higher gradient noise)

Optimizers determine exactly how backpropagation is implemented
- Stochastic Gradient Descent (most common)
- RMSProp

- Adaptive Momentum Estimation ("A'dam”) «_
~

ML Training paradigms (a selection)

Supervised
- Train a model with explicit input-output pairs
Unsupervised
- Learns “patterns” from unlabelled data
Semi-supervised learning
- Learnafew things with input-output pairs, relate them to patterns learnt
unsupervised
Reinforcement Learning
- Learn an optimal “policy” that gives you the best action to take at any given state
space by taking random actions and learning through positive or negative
reinforcement.
Evolution
- Optimize parameters through (Darwinian) evolution; e.g. genetic algorithms.

Types of Neural Networks

Multi-layer Perceptrons

Useful for static input-output
relations

N

N v)
\\?‘\&’ S RS ‘vilﬁ/
NSK FL NN F 7 DN
AR K ‘A @ s' N
X/ =
7% " KR /

/A
4 X
L 7
More hidden layers ~ better 2 S
approximation of more 73§g§‘y.§. RS\ LAY
complicated functions NN LSS
N\ =</ S

Quick to design and implement

SN SN
LRI Vo 0‘ SANK
077754\ VPSS

\

| SN\
A\ S =\
— - - - -
Inputs € RY Hidden Layer € R¥”' Hidden Layer € R> Hidden Layer € R# Qutputs € RM

Convolutional Neural Networks

Learn “kernels’ i.e. ‘tensors’ (multi-dimensional
arrays) that convolve over n-dimensional data to
extract abstract, lower-dimensional features.

Used often in image and signal processing tasks
such as object detection and segmentation.

Accounts for translational variance: the object
can be anywhere in the image and still be found

10 output units 1 [g
fully connected

~ 300 links

layer H3

30 hidden units fully connected

~ 6000 links

layer H2
12 x 16=192 , ,

hidden units ~ 40,000 links
from 12 kernels
5x5x8

layer H1

12 x 64 = 768

hidden units

H1.1
B ~20,000 links

from 12 kernels
5x5

256 input units

LeNet’s architecture: One of the first CNNs
https://doi.org/10.1162/neco.1989.1.4.541

Recurrent Neural Networks

Outputs go back and forth between neurons (loops exist in

the graphs)

Approximates dynamical systems

- Any time-based function

- Any data that can be modelled as being “ordered”

Used often in time-series tasks like signal processing,

natural language processing

Several types: Fully-connected, LSTMs, GRUs, reservoirs

111
o 100

LSTM cell A

Xt
An LSTM cell schematic. Adapted from:
doi.org/10.4233/uuid:dc73e1ff-0496-459a-9
86f-de37f7f250c9

B

. N ,
O % 7 \ o 05
input signal] . output (or

dynamical T te-’aChf 0
\MWWMWV reservoir M’\MWL

Echo state network schematic. Adapted from
www.scholarpedia.org/article/Echo_state_network

Graph Neural Networks

Models any system that can be modelled as a graph

Learns relations between nodes,
ed ges, gl O ba I p ro pe r-t i es Input Graph GNN blocks Transformed Graph Classification layer Prediction

Accounts for relational inductive bias, node
invariance, others

U sed in e.g. im age segme nt atio n, Image adapted from this excellent intro to GNNSs: https://distill.pub/2021/gnn-introy

chemistry and pharmacy models,
NLP, hierarchically-related data

Geometric DL Models

Models or uses ‘manifold embeddings’ on non-Euclidean domains like graphs, meshes
and manifolds - geometric inductive bias

Captures various forms of invariance and equivariance (e.g. Grids, Groups, Graphs,
Geodesics, and Gauges)

Used in e.g. 3D object recognition, protein structures, medical imagine, etc.

What NNs can and can't do

Universal Approximation Theorem

Theorem (schematic). Let F be a certain class of functions f : RE — RM,
Then for any f € F and any € > 0 there exists an multilayer perceptron N with
one hidden layer such that ||f — N|| < €.

= We can approximate any function we want with a one-layer MLP!
More effective with more layers than just one (“deeper” networks)
Easier said than done in practice

Collection of proofs:
https://ai.stackexchange.com/questions/13317/where-can-i-find-the-
proof-of-the-universal-approximation-theorem

Schematic borrowed from Jaeger, H. (2022) Neural Networks Lecture
Notes, https://www.ai.rug.nl/minds/uploads/LN_NN_RUG.pdf

Where NNs thrive

> Statistical/correlation inference needed

> There exists a lot of good quality (labelled) training data
> Parallelizable training and deployment

> Tasks without expansion (input-output fixed)

> Specialized tasks

> Good in-range performance IRL

MOARDAT 99

https://lasp.colorado.edu/home/minxss/2016/07
/12/minimum-mission-success-criteria-met/

Limits of NNs

> No causal relations possible (yet)
> Very data hungry - “Garbage in, garbage out”
> Often expensive to train (depending on size)

> Nonextensible and specialized to a range and task
- Add one more neuron — needs fine-tuning
- Undefined behaviour on out-of-domain test examples

Note on specialization: rf. ‘Foundation Models’

https://knowyourmeme.com/memes
/grumpy-cat

Training tips

Overfitting & Underfitting

The real troublemakers in ML in general!

Underfitting: When the model fits the training data not well enough
- Empirical risk is high, actual risk is high
- Training loss is high, testing loss is not optimal

Overfitting: When the model fits the training data too closely (incl. noise)
- Empirical risk is low, actual risk is high
- Training loss is low, testing loss is not optimal
- e.g. An D-degree polynomial can fit D-1 training points with zero error

Overfitting & Underfitting

v

Underfitting % Balanced Overfitting

More complex models (e.g. more layers, neurons per layer) -> higher likelihood of overfitting

Image source: https://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html

Validation

Split your training set into two!
- New train set
- Unseen-by-the-model “validation”set

Test Set (unseen)

Validation

Split your training set into two!
- New train set
- Unseen-by-the-model “validation”set

- e.g. 80-20 split (Note: split ratio depends on the model, task and data)

80%

20%

Test Set (unseen)

k-fold Cross-validation

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- “Gold standard” for evaluating generality of neural network models

k-fold Cross-validation

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- “Gold standard” for evaluating generality of neural network models

e.g. k=5 (5-fold cross-validation)

k-fold Cross-validation

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- “Gold standard” for evaluating generality of neural network models

e.g. k=5 (5-fold cross-validation)

k-fold Cross-validation

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- “Gold standard” for evaluating generality of neural network models

e.g. k=5 (5-fold cross-validation)

k-fold Cross-validation

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- “Gold standard” for evaluating generality of neural network models

e.g. k=5 (5-fold cross-validation)

k-fold Cross-validation

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- “Gold standard” for evaluating generality of neural network models

e.g. k=5 (5-fold cross-validation)

k-fold Cross-validation

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- “Gold standard” for evaluating generality of neural network models

e.g. k=5 (5-fold cross-validation)

Result = average over all validation passes

Training curves

Important to plot!

0.9

0.8

0.7

0.6

0.5

04

Loss curves

—— train loss
—— val loss

0.725 A

0.700 1

0.675 A

0.650 A

0.625 1

0.600 A

0.575 1

0.550 A

Accuracy curves

— val acc
—— train acc

T T T T T

0 2 4 6 8

Training curves

Important to plot!(!!!!)

0.9

0.8

0.7

0.6

0.5

04

Loss curves

—— train loss
—— val loss

0.725 A

0.700 1

0.675 A

0.650 A

0.625 1

0.600 A

0.575 1

0.550 A

Accuracy curves

— val acc
—— train acc

0 2 4 6 8

Accuracy curves

Loss curves

—— train loss 0.725 4

—— val loss
0.9

0.700 1

08 0.675 A

Training curves

0.7

0.625 1

0.6
0.600 A

Important to plot!(!!!! —

0.550 4 — val acc
04— . 7 " —— train acc

; ; ; ; ;
Shows if and how fast your model is learning on task-relevant metrics

- e.g. loss, accuracy, AUC, F1 score
- Plot scores over training epochs

Accuracy curves

Loss curves

- ‘VZ‘TO‘S"SSS 0.725

* 0.700

. = 08 0.675 1

Training curves

0.625

° 0.600 -

Important to plot!(!!!! —
o 0.550 4 : :al.acc

Shows if and how fast your model is learning on task-relevant metrics

- e.g. loss, accuracy, AUC, F1 score
- Plot scores over training epochs

May indicate potential over and underfitting

-- Training Loss

-- Validation loss

Reading training curves

If

0 5 10 15

validation loss > training loss

then often the model is good!

Low loss == Better

\ Training Loss

\

-- Validation loss

Reading training curves

If

validation loss >> training loss

then often the model is overfitting

Low loss == Better

—10.

-- Training Loss
-- Validation loss

Reading training curves

If

0 5 10 15

validation loss ~ training loss

then often the model is underfitting

Low loss == Better

10

-- Training Loss

-- Validation loss

Reading training curves

If

validation loss < training loss

then something is very wrong, or totally expected!

Low loss == Better

Regularization

e L1/L2 Regularization

Added losses:
d
)\- E |-w,l-_
1=1

e Dropout (on when training, off when testing/deploying)
e Earlystopping

)\ -

-2
w i
1

.

[

d

Parallelization:
Speeding up NNs

Main math operation in NNs:
- Matrix-vector multiplications

MLPO

MLP1

LSTMO

LSTM1

CNNO

CNN1

W CPU

2.5 B GPU
W TPU

‘_n

(=)
)

- Element-wise nonlinear activation functions

Parallelization can be used to massively speed up learning and deployment!

- Multi-core CPUs

- Graphics processing units (GPUs)
- Tensor processing units (TPUs)

- FPGAs

Image from

https://cloud.google.com/blog/products/ai-machine-learning/
an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

Frontiers

Deep learning
- Models with hundreds of layers, billions of weights
- Transformers, generative adversarial networks, autoencoders
- Foundation models, self-supervised learning
- AutoMLs: a tool to automatically generate good ML models for a task

Explainable Al (XAl)

- Explainable+interpretable+controllable models

- Human-like and human-understandable reasoning

- Neurosymbolic:

Semantic losses, logic tensors, symbolic regression, conceptors...

Others: Physics Informed NNs

Neural ODEs, PDEs

Quantum, Geometric DL

Frontiers

Deep learning
- Models with hundreds of layers, billions of weights
- Transformers, generative adversarial networks, autoencoders
- Foundation models, self-supervised learning
- AutoMLs: a tool to automatically generate good ML models for a task

Explainable Al (XAl)

- Explainable+interpretable+controllable models

- Human-like and human-understandable reasoning

- Neurosymbolic:

Semantic losses, logic tensors, symbolic regression, conceptors...

Others: Physics Informed NNs

Neural ODEs, PDEs

Quantum, Geometric DL

Reference Material

- Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The elements of statistical learning

- Bishop, C. M. (2006). Pattern recognition and machine learning

- LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning

- Goodfellow, 1., Bengio, Y., & Courville, A. (2016). Deep learning

- Chollet, F. (2021). Deep learning with Python

- Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow

- Erdmann, M., Glombitza, J., Kasieczka, G., & Klemradt, U. (2021). Deep learning for physics research.

- Bronstein, M. M., Bruna, J., Cohen, T., & Veli¢kovic, P. (2021). Geometric deep learning

- Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear partial differential equations

- Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks

- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need
- Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.

- UvA Deep Learning 1 (Graduate) Tutorials https://uvadlc-notebooks.readthedocs.io/en/latest/ (see also the DL2 lectures)

- University of Groningen ML and NN lecture notes https://www.ai.rug.nl/minds/teaching/In/

- ...many many more

https://uvadlc-notebooks.readthedocs.io/en/latest/
https://www.ai.rug.nl/minds/teaching/ln/

