
An Introduction to
Neural Networks
Satchit Chatterji
MSc Artificial Intelligence
University of Amsterdam

satchit.chatterji@gmail.com

June 24th, 2024

Why you should consider
Neural Networks

Satchit Chatterji
BSc Artificial Intelligence
University of Groningen

satchit.chatterji@gmail.com

2022

An Introduction to
Neural Networks
Satchit Chatterji
MSc Artificial Intelligence
University of Amsterdam

satchit.chatterji@gmail.com

2023

I don’t need to convince you to
use Neural Networks

Satchit Chatterji
MSc Artificial Intelligence
University of Amsterdam

satchit.chatterji@gmail.com

2024

The short answer

- They’re useful!

The short answer

- They’re useful!

- They’re fast!

The short answer

- They’re useful!

- They’re fast!

- They’re (now) easy to implement!

The short answer

- They’re useful!

- They’re fast!

- They’re (now) easy to implement!

- They’re cute!
https://twitter.com/gdb/status/15125219
12064229377

The short answer

- They’re useful!

- They’re fast!

- They’re (now) easy to implement!

- They’re cute!
https://twitter.com/gdb/status/15125219
12064229377

SOTA 2022

The short answer

- They’re useful!

- They’re fast!

- They’re (now) easy to implement!

- They’re cute!

- They’re definitely not going to take over the world!

OpenAI

https://twitter.com/gdb/status/15125219
12064229377

The short answer

- They’re useful!

- They’re fast!

- They’re (now) easy to implement!

- They’re cute!

- They’re definitely not going to take over the world!

https://twitter.com/gdb/status/15125219
12064229377

The long answer
It’s a bit more complicated than that…

OpenAI

Introduction to the introduction

Goals of this lecture:
The whats, hows, whys, whichs and wheres
- Teach you what a neural network is and how it works

- Why you should use them, and why not

- Which neural networks are used today

- Where neural networks are headed next

Along with:
- A demo in a simulated environment

- A few tips on building and training your own networks

Introduction to the introduction

Goals of this lecture:
The whats, hows, whys, whichs and wheres
- Teach you what a neural network is and how it works

- Why you should use them, and why not

- Which neural networks are used today

- Where neural networks are headed next

Along with:
- A demo in a simulated environment

- A few tips on building and training your own networks

Given: Input-output examples of the form:

Introduction to Supervised Machine Learning

Given: Input-output examples of the form:

Introduction to Supervised Machine Learning

Given: Input-output examples of the form:

Assumption: Data is generated by a “true ” function, with some added noise:

Introduction to Supervised Machine Learning

Given: Input-output examples of the form:

Assumption: Data is generated by a “true ” function, with some added noise:

Goal: Learn an approximation of the generator function to use on new data:

Introduction to Supervised Machine Learning

Given: Input-output examples of the form:

Assumption: Data is generated by a “true ” function, with some added noise:

Goal: Learn an approximation of the generator function to use on new data:

Loss function: A distance between and such that we can say is “good”

if L is low across many given instances of S.

Introduction to Supervised Machine Learning

Aim: Learn a function with low “risk”

Risk: What we want to minimize

Slide adapted from Jaeger, H. (2022) Neural Networks Lecture Notes,
https://www.ai.rug.nl/minds/uploads/LN_NN_RUG.pdf

Aim: Learn a function with low “risk”

Risk: What we want to minimize

Empirical Risk: What we can actually calculate

 (for a “candidate” model h, averaged over N training examples)

Slide adapted from Jaeger, H. (2022) Neural Networks Lecture Notes,
https://www.ai.rug.nl/minds/uploads/LN_NN_RUG.pdf

Common Approaches

- Linear/Polynomial/Logistic Regression

- (Boosted) Decision trees

- Support Vector Machines

- Naive Bayes

- Neural Networks

- …

Images of regressions, decision tree, and SVM from scikit-learn.org

Artificial vs Biological NNs

ANNs initially inspired by the brain:
Alexander Bain (1873), William James (1890)

Electrical connections/flow of neurons result in thought
and movement

McColloch & Pitts (1943)
Modern mathematical “artificial” NN models (not the only neural network model!)

Rosenblatt (1958)
Description of the perceptron

Rumelhart, Hinton & Williams (1986)
Multi-layer perceptrons and error backpropagation (learning principle)

Modern:
- ANNs used everywhere for everything!
- Simplified, abstracted version of “synaptically”-connected “neurons”
- Biologically implausible

Source: linkedin.com/company/deeplearningai

Building a Neural Network
From Scratch (mathematically)

Classes are “linearly separable”

The “Perceptron”

- The modern notion of a single “neuron”
- BUT: Only works on linearly separable classes

Generalized “activation function”

…

Multi-layer Perceptrons (MLPs)

“Weight vector” “Feature vector”

“Bias”

“Activation function”

“Activation”

Activation/
output

of neuron k

K "hidden” neurons
in layer L

Most common way of writing out the
activation of a layer of an MLP

The output of each layer is the product of its weight matrix and the input
vector plus its bias vector, all wrapped in a non-linear activation function.

⇒
Inputs

⇒
Outputs

A multi-layer perceptron is a series of

affine transformations of an input
vector, each of which is wrapped in a

non-linear activation function.

(Translation: an MLP is a fancy function)

A Note on Nonlinearity

Without a non-linear activation function, a series of linear transformations would

result in just a linear transformation of the input to the output.

We would still be stuck in the land of linear separability!

Loss functions

Depends on the task!

Mean Squared Error
Used for e.g. regression tasks

Cross Entropy
Used for e.g. classification tasks

Define your own!

Note: Must be differentiable for gradient descent based methods

Common nonlinear functions

Implementing learning: Gradient Descent

Given:
- Family of parameters (e.g. possible weights of a NN)
- Differentiable risk function

Goal:

Backprop: Gradient descent

“Guess”

“Learning rate”

Converges to local minima

Backprop: Efficient NN GD

- Goal: change optimization from to
- Recall an MLP:

- Use the chain rule to compute the derivatives from output to input
“Backpropagation of errors”

Backprop: Efficient NN GD

- Goal: change optimization from to
- Recall an MLP:

- Use the chain rule to compute the derivatives from output to input
“Backpropagation of errors”

Apologies for different notation

 A “real” loss landscape:
- Many (many many) local minima
- Saddle points

http://www.telesens.co/2019/01/16/neural-network-loss-visualization/

Optimizers

Stochastic/Mini-batch GD: Speed improvement!

Perform backprop on errors of batches of training samples instead of all at once

- Reduces the number of expensive backward passes

- Helps with getting out of local minima (due to higher gradient noise)

Optimizers determine exactly how backpropagation is implemented

- Stochastic Gradient Descent (most common)

- RMSProp

- Adaptive Momentum Estimation (“Adam”)

Optimizers

Stochastic/Mini-batch GD: Speed improvement!

Perform backprop on errors of batches of training samples instead of all at once

- Reduces the number of expensive backward passes

- Helps with getting out of local minima (due to higher gradient noise)

Optimizers determine exactly how backpropagation is implemented

- Stochastic Gradient Descent (most common)

- RMSProp

- Adaptive Momentum Estimation (“A’dam”)

ML Training paradigms (a selection)
- Supervised

- Train a model with explicit input-output pairs
- Unsupervised

- Learns “patterns” from unlabelled data
- Semi-supervised learning

- Learn a few things with input-output pairs, relate them to patterns learnt
unsupervised

- Reinforcement Learning
- Learn an optimal “policy” that gives you the best action to take at any given state

space by taking random actions and learning through positive or negative
reinforcement.

- Evolution
- Optimize parameters through (Darwinian) evolution; e.g. genetic algorithms.

Types of Neural Networks

Multi-layer Perceptrons

Useful for static input-output

relations

More hidden layers ~ better
approximation of more

complicated functions

Quick to design and implement

Convolutional Neural Networks

Learn “kernels”, i.e. ‘tensors’ (multi-dimensional

arrays) that convolve over n-dimensional data to

extract abstract, lower-dimensional features.

Used often in image and signal processing tasks

such as object detection and segmentation.

Accounts for translational variance: the object

can be anywhere in the image and still be found

LeNet’s architecture: One of the first CNNs
https://doi.org/10.1162/neco.1989.1.4.541

Recurrent Neural Networks

Outputs go back and forth between neurons (loops exist in

the graphs)

Approximates dynamical systems
- Any time-based function

- Any data that can be modelled as being “ordered”

Used often in time-series tasks like signal processing,

natural language processing

Several types: Fully-connected, LSTMs, GRUs, reservoirs

An LSTM cell schematic. Adapted from:
doi.org/10.4233/uuid:dc73e1ff-0496-459a-9
86f-de37f7f250c9

Echo state network schematic. Adapted from
www.scholarpedia.org/article/Echo_state_network

Graph Neural Networks

Models any system that can be modelled as a graph

Learns relations between nodes,
edges, global properties

Accounts for relational inductive bias, node
invariance, others

Used in e.g. image segmentation,
chemistry and pharmacy models,
NLP, hierarchically-related data

Image adapted from this excellent intro to GNNs: https://distill.pub/2021/gnn-intro/

Models or uses ‘manifold embeddings’ on non-Euclidean domains like graphs, meshes

and manifolds - geometric inductive bias

Captures various forms of invariance and equivariance (e.g. Grids, Groups, Graphs,

Geodesics, and Gauges)

Used in e.g. 3D object recognition, protein structures, medical imagine, etc.

Geometric DL Models

What NNs can and can’t do

Universal Approximation Theorem

⇒ We can approximate any function we want with a one-layer MLP!
More effective with more layers than just one (“deeper” networks)
Easier said than done in practice

Collection of proofs:
https://ai.stackexchange.com/questions/13317/where-can-i-find-the-
proof-of-the-universal-approximation-theorem

Schematic borrowed from Jaeger, H. (2022) Neural Networks Lecture
Notes, https://www.ai.rug.nl/minds/uploads/LN_NN_RUG.pdf

Where NNs thrive
> Statistical/correlation inference needed

> There exists a lot of good quality (labelled) training data

> Parallelizable training and deployment

> Tasks without expansion (input-output fixed)

> Specialized tasks

> Good in-range performance IRL https://lasp.colorado.edu/home/minxss/2016/07
/12/minimum-mission-success-criteria-met/

Limits of NNs
> No causal relations possible (yet)

> Very data hungry - “Garbage in, garbage out”

> Often expensive to train (depending on size)

> Nonextensible and specialized to a range and task

- Add one more neuron → needs fine-tuning

- Undefined behaviour on out-of-domain test examples

Note on specialization: rf. ‘Foundation Models’

NO MOAR DATA.
https://knowyourmeme.com/memes
/grumpy-cat

NO.

Training tips

Overfitting & Underfitting

The real troublemakers in ML in general!

Underfitting: When the model fits the training data not well enough

- Empirical risk is high, actual risk is high

- Training loss is high, testing loss is not optimal

Overfitting: When the model fits the training data too closely (incl. noise)

- Empirical risk is low, actual risk is high

- Training loss is low, testing loss is not optimal

- e.g. An D-degree polynomial can fit D-1 training points with zero error

Overfitting & Underfitting

Image source: https://docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.html

More complex models (e.g. more layers, neurons per layer) -> higher likelihood of overfitting

Split your training set into two!

- New train set

- Unseen-by-the-model “validation”set

Train Set Test Set (unseen)

Validation

Split your training set into two!

- New train set

- Unseen-by-the-model “validation”set

- e.g. 80-20 split (Note: split ratio depends on the model, task and data)

Train Set Test Set (unseen)

Validation

Validation Set

80% 20%

k-fold Cross-validation

Train Set

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set

- “Gold standard” for evaluating generality of neural network models

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set

- “Gold standard” for evaluating generality of neural network models

e.g. k=5 (5-fold cross-validation)

k-fold Cross-validation

Train Set Train Set Train Set Train Set Train Set

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set

- “Gold standard” for evaluating generality of neural network models

e.g. k=5 (5-fold cross-validation)

k-fold Cross-validation

Validation Set Train Set Train Set Train Set Train Set

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set

- “Gold standard” for evaluating generality of neural network models

e.g. k=5 (5-fold cross-validation)

k-fold Cross-validation

Train Set Validation Set Train Set Train Set Train Set

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set

- “Gold standard” for evaluating generality of neural network models

e.g. k=5 (5-fold cross-validation)

k-fold Cross-validation

Train Set Train Set Validation Set Train Set Train Set

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set

- “Gold standard” for evaluating generality of neural network models

e.g. k=5 (5-fold cross-validation)

k-fold Cross-validation

Train Set Train Set Train Set Validation Set Train Set

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set

- “Gold standard” for evaluating generality of neural network models

e.g. k=5 (5-fold cross-validation)

Result = average over all validation passes

k-fold Cross-validation

Train Set Train Set Train Set Train Set Validation Set

Training curves

Important to plot!

Training curves

Important to plot!(!!!!)

Training curves

Important to plot!(!!!!)

Shows if and how fast your model is learning on task-relevant metrics

- e.g. loss, accuracy, AUC, F1 score

- Plot scores over training epochs

Training curves

Important to plot!(!!!!)

Shows if and how fast your model is learning on task-relevant metrics

- e.g. loss, accuracy, AUC, F1 score

- Plot scores over training epochs

May indicate potential over and underfitting

Reading training curves

 If

 validation loss > training loss

then often the model is good!
Low loss == Better

Reading training curves

 If

 validation loss >> training loss

then often the model is overfitting
Low loss == Better

Reading training curves

 If

 validation loss ~ training loss

then often the model is underfitting
Low loss == Better

Reading training curves

 If

 validation loss < training loss

then something is very wrong, or totally expected!
Low loss == Better

Regularization

● L1/L2 Regularization

Added losses:

● Dropout (on when training, off when testing/deploying)

● Early stopping

Parallelization:
Speeding up NNs

Main math operation in NNs:
- Matrix-vector multiplications
- Element-wise nonlinear activation functions

Parallelization can be used to massively speed up learning and deployment!
- Multi-core CPUs
- Graphics processing units (GPUs)
- Tensor processing units (TPUs)
- FPGAs

Image from
https://cloud.google.com/blog/products/ai-machine-learning/
an-in-depth-look-at-googles-first-tensor-processing-unit-tpu

Frontiers

Deep learning
- Models with hundreds of layers, billions of weights
- Transformers, generative adversarial networks, autoencoders
- Foundation models, self-supervised learning
- AutoMLs: a tool to automatically generate good ML models for a task

Explainable AI (XAI)
- Explainable+interpretable+controllable models
- Human-like and human-understandable reasoning
- Neurosymbolic:

Semantic losses, logic tensors, symbolic regression, conceptors…
Others: Physics Informed NNs

Neural ODEs, PDEs
Quantum, Geometric DL

Frontiers

Deep learning
- Models with hundreds of layers, billions of weights
- Transformers, generative adversarial networks, autoencoders
- Foundation models, self-supervised learning
- AutoMLs: a tool to automatically generate good ML models for a task

Explainable AI (XAI)
- Explainable+interpretable+controllable models
- Human-like and human-understandable reasoning
- Neurosymbolic:

Semantic losses, logic tensors, symbolic regression, conceptors…
Others: Physics Informed NNs

Neural ODEs, PDEs
Quantum, Geometric DL

Me: Neurosymbolic-constrained

multi-agent reinforcement learning

Reference Material

- Hastie, T., Tibshirani, R., Friedman, J. H., & Friedman, J. H. (2009). The elements of statistical learning
- Bishop, C. M. (2006). Pattern recognition and machine learning
- LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning
- Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning
- Chollet, F. (2021). Deep learning with Python
- Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow
- Erdmann, M., Glombitza, J., Kasieczka, G., & Klemradt, U. (2021). Deep learning for physics research.
- Bronstein, M. M., Bruna, J., Cohen, T., & Veličković, P. (2021). Geometric deep learning
- Raissi, M., Perdikaris, P., & Karniadakis, G. E. (2019). Physics-informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear partial differential equations
- Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need
- Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.
- UvA Deep Learning 1 (Graduate) Tutorials https://uvadlc-notebooks.readthedocs.io/en/latest/ (see also the DL2 lectures)
- University of Groningen ML and NN lecture notes https://www.ai.rug.nl/minds/teaching/ln/
- …many many more

https://uvadlc-notebooks.readthedocs.io/en/latest/
https://www.ai.rug.nl/minds/teaching/ln/

