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The short answer

- They'’re useful!

- They're fast!

- They're (how) easy to implement!

- They're cute!

- They're definitely not going to take over the world!

https://twitter.com/gdb/status/15125219
12064229377

The long answer

It's a bit more complicated than that...

OpenAl



Introduction to the introduction

Goals of this lecture:
The whats, hows, whys, whichs and wheres
- Teach you what a neural network is and how it works
- Why you should use them, and why not
- Which neural networks are used today
- Where neural networks are headed next
Along with:
- A demo in a simulated environment
- A few tips on building and training your own networks
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Introduction to Supervised Machine Learning

Given: Input-output examples of the form:
N M
S = (x, Yi)z'zl,...,T x; ER7,y;, €R

Assumption: Data is generated by a “true ” function, with some added noise:

y: = f(x:) + v

Goal: Learn an approximation f(X) of the generator function to use on new data:

f(x) = f(x)
Loss function: A distance betweenf(X) alﬁx) such that we canfz{é&)
“good” if L is low across many given instances of S.

L:RM «RM s 20
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Aim: Learn a function with low “risk”

Risk: What we want to minimize

R(f) = E[L(f(X),Y)]

Slide adapted from Jaeger, H. (2022) Neural Networks Lecture Notes,
https://www.ai.rug.nl/minds/uploads/LN_NN_RUG.pdf



Aim: Learn a function with low “risk”

Risk: What we want to minimize
R(f) = E[L(f(X),Y)

Empirical Risk: What we can actually calculate
(for a “candidate” model h, averaged over N training

N
R™(h) = 1/N Z L(h(xi),y:)

examples)

Slide adapted from Jaeger, H. (2022) Neural Networks Lecture Notes,
https://www.ai.rug.nl/minds/uploads/LN_NN_RUG.pdf



Common Approaches

- Linear/Polynomial/Logistic Regression

- (Boosted) Decision trees
- Support Vector Machines
- Naive Bayes

- Neural Networks

Inputs = ®¥  Hidden Layer € B¥' Hidden Layer € R Hidden Layer ¢ B¥'  Outputs ¢ BM

Images of regressions, decision tree, and SVM from scikit-learn.org



you vs the guy she told you not
to worry about:

—
ANN:s initially inspired by the brain:
Alexander Bain (1873), William James (1890)
Electrical connections/flow of neurons result in thought
and movement
McColloch & Pitts (1943)
Modern mathematical “artificial” NN models (not the only neural

Artificial vs Biological NNs

Inputs Xz

X3
X5
Xs

Source: linkedin.com/company/deeplearningai

network model!)
Rosenblatt (1958)
Description of the perceptron
Rumelhart, Hinton & Williams (1986)
Multi-layer perceptrons and error backpropagation (learning principle)

Modern:
- ANNs used everywhere for everything!
- Simplified, abstracted version of “synaptically”-connected “neurons”
- Biologically implausible



Building a Neural Network
From Scratch (mathematically)
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Classes are “linearly separable”
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x; <— Variables
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The “Perceptron”

/ Generalized “activation function”

o

_)Q

- The modern notion of a single “neuron”

- BUT: Only works on linearly separable classes
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Multi-layer Perceptrons (MLPs)
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Activation “Bigs”

A l
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y = o(wy

T

“Activation function”

o(w'x)
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“Weight vector”
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“Feature vector”
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Activation/

output
of neuron k _ _
l 1
k [k .k SRR
0O = [wo ’lUl < wn] _
Tn

K "hidden” neurons
in layer L
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Most common way of writing out the
activation of a layer of an MLP
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A

y = o(wy+wir]+woro+...+wnn)



y =(ofwo+w1x]+woxo+ ...+ wpxy)



0o=o(Wzx'" +b)

The output of each layer is the product of its weight matrix and the input
vector plus its bias vector, all wrapped in a non-linear activation function.
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A multi-layer perceptron is a series of
affine transformations of an input
vector, each of which is wrapped in a
non-linear activation function.

N RY 5 RM
N,M eN

(Translation: an MLP is a fancy function)




A Note on Nonlinearity

Without a non-linear activation function, a series of linear transformations would
result in just a linear transformation of the input to the output.

We would still be stuck in the land of linear separability!



Loss functions

Depends on the task!
Mean S dE N
ean Squared Error | Coron — i Z(y )
Used for e.g. regression tasks N : :
i=1
Cross Entropy 1 £
Used for e.g. classification tasks ~ LocE = N Z Yi,c log(¥i.c)
i=1 c=1

Define your own!
Note: Must be differentiable for gradient descent based methods



Common nonlinear functions

1

0.5F
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. . 1
Sigmoid: o(x) = ———
I +e™"
et — e
Hvperbolic taneent: tanh(x) = ——
yp g () e

Rectified Linear Unit:
ReLU(x) = max(0, x)
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Implementing learning: Gradient Descent

Given:
Family of parameters © (e.g. possible weights of a NN)
Differentiable risk function R(0)

Goal 0oyt = argmin R(6)
0eo



Backprop: Gradient descent

A

R(6)

\4



“Learning rate”

Y

00,

R(6)

R(6,)

01

“Guess” J 0
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R0,
R(6)

9:1 7 65



R(6)

96, 0

Converges to local minima




Backprop: Efficient NN GD

Goal: change optimization from O (]9/?)

Recall an MLP:
N(:L‘) —alohloa™

S

\ 4

LN (2),y)— EELRY

W

@y|o])
oht lo. . oa'ohlx
™~
P - (E

Use the chain rule to compute the derivatives from output to input

“Backpropagation of errors”



d.  dL dhy dh, > d. _dL dh
dw, dh, dh;,_; 7 dw, dw, dh, dw,

Gradient of loss w.r.t. the module output Gradient of a module w.r.t. its parameters

Apologies for different notation

Backprop: Efficient NN GD

- Goal: change optimization from O (|6%)
- Recall an MLP:

\
ey PN @).0)

o
=
5
<
S—

3
5
=
=
S

- Use the chain rule to compute the derivatives from output to input
“Backpropagation of errors”



A “real” loss landscape:
- Many (many many) local
minima
- Saddle points
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http://www.telesens.co/2019/01/16/neural-network-loss-visualization/



Optimizers

Stochastic/Mini-batch GD: Speed improvement!
Perform backprop on errors of batches of training samples instead of all at
once
- Reduces the number of expensive backward passes
- Helps with getting out of local minima (due to higher gradient noise)

Optimizers determine exactly how backpropagation is implemented
- Stochastic Gradient Descent (most common)
- RMSProp
- Adaptive Momentum Estimation (“Adam”)



Optimizers

Stochastic/Mini-batch GD: Speed improvement!
Perform backprop on errors of batches of training samples instead of all at
once
- Reduces the number of expensive backward passes
- Helps with getting out of local minima (due to higher gradient noise)

Optimizers determine exactly how backpropagation is implemented
- Stochastic Gradient Descent (most common)
- RMSProp o,
- Adaptive Momentum Estimation (“A’c.ﬁ )



ML Training paradigms (a selection)

Supervised
- Train a model with explicit input-output pairs
- Unsupervised
- Learns “patterns” from unlabelled data
- Semi-supervised learning
- Learn a few things with input-output pairs, relate them to patterns learnt
unsupervised
- Reinforcement Learning
- Learn an optimal “policy” that gives you the best action to take at any given state
space by taking random actions and learning through positive or negative
reinforcement.
- Evolution
- Optimize parameters through (Darwinian) evolution; e.g. genetic algorithms.



Types of Neural Networks



Multi-layer Perceptrons

Useful for static input-output
relations

More hidden layers ~ better
approximation of more
complicated functions

Quick to design and implement

Inputs € RY Hidden Layer € R' Hidden Layer € R** Hidden Layer € R"  Outputs ¢ RM



Convolutional Neural Networks

Learn “kernels”,; i.e. ‘tensors’ (multi-dimensional
arrays) that convolve over n-dimensional data to
extract abstract, lower-dimensional features.

Used often in image and signal processing tasks
such as object detection and segmentation.

Accounts for translational variance: the object
can be anywhere in the image and still be found

10 output units B). oz g
fully connected

~ 300 links

layer H3

30 hidden units fully connected

~ 6000 links

layer H2 .
12 x 16=192 , ,
hidden units ~ 40,000 links
from 12 kernels
X 5x8
layer H1
12 x 64 = 768
hidden units
H1.1
R ~20,000 links

from 12 kernels

5x5

256 input units

!
F

= pisit 4
JENENEEEEEE

LeNet’s architecture: One of the first CNNs
https://doi.org/10.1162/neco.1989.1.4.541



LSTM cell A

“l o o l S
f, 8 ) O ()
Recurrent Neural Networks 5‘5 E‘E
het _h):
Outputs go back and forth between neurons (loops exist An L;TM cell schematic. Adapted from:

doi.org/10.4233/uuid:dc73e1ff-0496-459a-
986f-de37f7f250c9

in the graphs)

Approximates dynamical systems b, :_J""\W i
- Any time-based function ]
- Any data that can be modelled as being T i ”"H
“ordered” m ° "'l \H l"l"M
nput signal ) vt o
Used often in time-series tasks like signal processing, M e [N sl

natural language processing

Echo state network schematic. Adapted from

Several types: Fully-connected, LSTMs, GRUs, reservoirs www.scholarpedia.org/article/Echo_state_network



Graph Neural Networks

Models any system that can be modelled as a graph

Learns relations between nodes,
ed ges g I O ba I p ro p e rti es Input Graph GNN blocks Transformed Graph Classification layer Prediction

Accounts for relational inductive bias, node - | I = >
invariance, others w5

Lidd
sse0
v

It

Used in e.g. image Segmentation, Image adapted from this excellent intro to GNNs: https://distill.pub/2021/gnn-intro;
chemistry and pharmacy models,
NLP, hierarchically-related data



Geometric DL Models

Models or uses ‘manifold embeddings’ on non-Euclidean domains like graphs, meshes
and manifolds - geometric inductive bias

Captures various forms of invariance and equivariance (e.g. Grids, Groups, Graphs,
Geodesics, and Gauges)

Used in e.g. 3D object recognition, protein structures, medical imagine, etc.



What NNs can and can’t do



Universal Approximation Theorem

Theorem (schematic). Let F be a certain class of functions f : RE — RM,
Then for any f € F and any € > 0 there exists an multilayer perceptron N with
one hidden layer such that || f — N|| < .

= We can approximate any function we want with a one-layer MLP!
More effective with more layers than just one (“deeper” networks)
Easier said than done in practice

Collection of proofs:
https://ai.stackexchange.com/questions/13317/where-can-i-find-
the-proof-of-the-universal-approximation-theorem

Schematic borrowed from Jaeger, H. (2022) Neural Networks Lecture
Notes, https://www.ai.rug.nl/minds/uploads/LN_NN_RUG.pdf



Where NNs thrive

> Statistical/correlation inference needed

> There exists a lot of good quality (labelled) training data
> Parallelizable training and deployment

> Tasks without expansion (input-output fixed)

> Specialized tasks

> Good in-range performance IRL

https://lasp.colorado.edu/home/minxss/2016/0
7/12/minimum-mission-success-criteria-met/



Limits of NNs

> No causal relations possible (yet)
> Very data hungry - “Garbage in, garbage out”
> Often expensive to train (depending on size)

> Nonextensible and specialized to a range and task
- Add one more neuron = needs fine-tuning
- Undefined behaviour on out-of-domain test
examples

Note on specialization: rf. ‘Foundation Models’

https://knowyourmeme.com/memes
/grumpy-cat



Training tips



Overfitting & Underfitting

The real troublemakers in ML in general!

Underfitting: When the model fits the training data not well enough
- Empirical risk is high, actual risk is high
- Training loss is high, testing loss is not optimal

Overfitting: When the model fits the training data too closely (incl. noise)
- Empirical risk is low, actual risk is high
- Training loss is low, testing loss is not optimal
- e.g. An D-degree polynomial can fit D-1 training points with zero error



Overfitting & Underfitting

y

Underfitting " Balanced " Overfitting

More complex models (e.g. more layers, neurons per layer) -> higher likelihood of overfitting

Image source: https.//docs.aws.amazon.com/machine-learning/latest/dg/model-fit-underfitting-vs-overfitting.htmil



Validation

Split your training set into two!
- New train set
- Unseen-by-the-model “validation”set

Test Set (unseen)




Validation

Split your training set into two!
- New train set
- Unseen-by-the-model “validation”set
- e.g. 80-20 split (Note: split ratio depends on the model, task and data)

80% 20%



k-fold Cross-validation

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- “Gold standard” for evaluating generality of neural network models
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k-fold Cross-validation

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- “Gold standard” for evaluating generality of neural network models
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k-fold Cross-validation

Split training set into k-segments, iteratively train and validate with each segment.

- Accounts for irregularities in training set
- “Gold standard” for evaluating generality of neural network models

e.g. k=5 (5-fold cross-validation)

Result = average over all validation passes



Training curves

Important to plot!
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Training curves

Important to plot!(!!!!)
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Loss curves

—— train loss
—— val loss
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Accuracy curves

Loss curves

\ —— train loss 0.725 4

\ — val loss
09

0.700 1

o8 0.675 1

Training curves

0.650 1
07

0.625 1

0.6
0.600

Important to plot!(!!!!

0.575 1

0.550 — val acc
04 —— train acc

T T T T T
0 2 4 6 8

Shows if and how fast your model is learning on task-relevant metrics
- e.g. loss, accuracy, AUC, F1 score
- Plot scores over training epochs



Training curves

ACCUFECY curves
Loss curves
—— train loss 0.725 4
\ — val loss
09 \
\ 0.700
\
0.8 \\\ 0.675
0.7
0.6
Important to plot!(!!!!

0.650

0.4

0.625 1

0.600
2

0.550
- e.g. loss, accuracy, AUC, F1 score
- Plot scores over training epochs

T
0

— val acc
T
4

—— train acc

Shows if and how fast your model is learning on task-relevant metrics

T
8

May indicate potential over and underfitting



-- Training Loss

--Validation loss

Reading training curves

If

0 5 10 15

validation loss > training loss

then often the model is good!

Low loss == Better




\ Training Loss

idation loss

Reading training curves

If 0 5 10 15

validation loss >> training loss

then often the model is overfitting
Low loss == Better
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-- Training Loss

-- Validation loss

Reading training curves

If

validation loss ~ training loss

then often the model is underfitting

Low loss == Better
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-- Training Loss

-- Validation loss

Reading training curves

If

0 5 10 15

validation loss < training loss

then something is very wrong, or totally expected!
Low loss == Better




Regularization

e L|1/L2 Regularization

Added losses: d
Al A wy
1=1 '

e Dropout (on when training, off when testing/deploying)
e Early stopping



Parallelization:
Speeding up NNs

Main math operation in NNs:
- Matrix-vector multiplications

B CPU

1
MLPO = 2.5 B GPU

Wy
B TPU

1
MLPT 0.3
. 18.5

1
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- Element-wise nonlinear activation functions

Parallelization can be used to massively speed up learning and deployment!

- Multi-core CPUs

- Graphics processing units (GPUs)
- Tensor processing units (TPUs)

- FPGAs

Image from https://cloud.google.com/blog/products/ai-

machine-learning/an-in-depth-look-at-googles-first-tensor-

processing-unit-tpu



Frontiers

Deep learning
- Models with hundreds of layers, billions of weights
- Transformers, generative adversarial networks, autoencoders
- Foundation models, self-supervised learning
- AutoMLs: a tool to automatically generate good ML models for a task

Explainable Al (XAl)
- Explainable+interpretable+controllable models
- Human-like and human-understandable reasoning
- Neurosymbolic:
Semantic losses, logic tensors, symbolic regression, conceptors...
Others: Physics Informed NNs
Neural ODEs, PDEs
Quantum, Geometric DL
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