

Overview

• Aim of this lecture is

– Give an overview of a medium-size DAQ

– Analyze its components

– Introduce the main concepts of DAQ software

• As “bricks” to build larger system

• … with the help of some pseudo-code …

– Give more technical basis

• For the implementation of larger systems

Jun. 21, 2024 1E. Pasqualucci, ISOTDAQ 2024

Trigger
G. Ünel, D. Rabady, …

A multi-crate system

C
P
U

A
D
C

A
D
C

T
D
C

T
D
C

T
r
i
g
g
e
r

Configuration

Trigger

Readout

Trigger Detector 1

C
P
U

A
D
C

A
D
C

T
D
C

T
D
C

T
r
i
g
g
e
r

Configuration

Trigger

Readout

Trigger Detector N

E
B
(1)

E
B
(M)

. . .

. . .
Online monitoring

Run Control
Event Flow Manager

Jun. 21, 2024 2E. Pasqualucci, ISOTDAQ 2024

VME (or…) crate
See M. Joos

Modular electronics
See V. Izzo, M. Joos

Monitoring system
See S. Kolos

Network
See P. Zejdl

Detector readout
G. Ünel

Storage
See E. Gamberini

Software components

• Trigger management

• Data read-out

• Event framing and buffering

• Data transmission

• Event building and data storage

• System control and monitoring

• Data sampling and monitoring

Jun. 21, 2024 3E. Pasqualucci, ISOTDAQ 2024

A multi-crate system

C
P
U

A
D
C

A
D
C

T
D
C

T
D
C

T
r
i
g
g
e
r

Configuration

Trigger

Readout

Trigger Detector 1

C
P
U

A
D
C

A
D
C

T
D
C

T
D
C

T
r
i
g
g
e
r

Configuration

Trigger

Readout

Trigger Detector N

E
B
(1)

E
B
(M)

. . .

. . .
Online monitoring

Run Control
Event Flow Manager

Jun. 21, 2024 4E. Pasqualucci, ISOTDAQ 2024

Data readout (a simple example)

• Data digitized by VME modules (ADC and TDC)
• Trigger signal received by a trigger module

– I/O register or interrupt generator

• Data read-out by a Single Board Computer (SBC)

C
P
U

A
D
C

A
D
C

T
D
C

T
D
C

T
r
i
g
g
e
r

Configuration

Trigger

Readout

Trigger Detector

Jun. 21, 2024 5E. Pasqualucci, ISOTDAQ 2024

Trigger management

• How to know that new data is available?
– Interrupt

• An interrupt is sent by a hardware device
• The interrupt is

– Transformed into a software signal
– Caught by a data acquisition program

» Undetermined latency is a potential problem!
» Data readout starts

– Polling
• Some register in a module is continuously read out
• Data readout happens when register “signals” new data

• In a synchronous system (the simplest one…)
– Trigger must also set a busy
– The reader must reset the busy after read-out completion

Jun. 21, 2024 6E. Pasqualucci, ISOTDAQ 2024

Managing interrupts

irq_list.list_of_items[i].vector = 0x77;

irq_list.list_of_items[i].level = 5;

irq_list.list_of_items[i].type = VME_INT_ROAK;

signum = 42;

ret = VME_InterruptLink(&irq_list, &int_handle);

ret = VME_InterruptWait(int_handle, timeout, &ir_info);

ret = VME_InterruptRegisterSignal(int_handle, signum);

ret = VME_InterruptUnlink(int_handle);

Jun. 21, 2024 7E. Pasqualucci, ISOTDAQ 2024

Real time programming

• Must meet operational deadlines from events to
system response
– Implies taking control of typical OS tasks

• For instance, task scheduling

– Real time OSs offer that features

• Most important feature is predictability
– Performance is less important than predictability!

• It typically applies when requirements are
– Reaction time to an interrupt within a certain time interval

– Complete control of the interplay between applications

Jun. 21, 2024 8E. Pasqualucci, ISOTDAQ 2024

Is real-time needed?
• Can be essential in some case

– May be critical for accelerator control or plasma control
• Wherever event reaction times are critical
• And possibly complex calculation is needed

• Not commonly used for data acquisition now
– Large systems are normally asynchronous

• Either events are buffered and de-randomized in the HW
– Performance is usually improved by DMA readout (see M. Joos)

• Or the main dataflow does not pass through the bus

– In a small system dead time is normally small

• Drawbacks
– We loose complete dead time control

• Event reaction time and process scheduling are left to the OS

– Increase of latency due to event buffering
• Affects the buffer size at event building level
• Normally not a problem in modern DAQ systems

Jun. 21, 2024 9E. Pasqualucci, ISOTDAQ 2024

Polling modules

• Loop reading a register containing the latched trigger

while (end_loop == 0)

{

uint16_t *pointer;

volatile uint16_t trigger;

pointer = (uint16_t *) (base + 0x80);

trigger = *pointer;

if (trigger & 0x200) // look for a bit in the trigger mask

{

... Read event ...

... Remove busy ...

}

else

sched_yield (); // if in a multi-process/thread environment

}

Jun. 21, 2024 10E. Pasqualucci, ISOTDAQ 2024

Polling or interrupt?

• Which method is convenient?
• It depends on the event rate

– Interrupt
• Is expensive in terms of response time

– Typically (O (1 ms))

• Convenient for events at low rate
– Avoid continuous checks
– A board can signal internal errors via interrupts

– Polling
• Convenient for events at high rate

– When the probability of finding an event ready is high

• Does not affect others if scheduler is properly released
• Can be “calibrated” dynamically with event rate

– If the input is de-randomized…

Jun. 21, 2024 11E. Pasqualucci, ISOTDAQ 2024

The simplest DAQ

• Synchronous readout:
– The trigger is

• Auto-vetoed (a busy is asserted by trigger itself)
• Explicitly re-enabled after data readout

• Additional dead time is generated by the output

// VME interrupt is mapped to SYSUSR1

static int event = FALSE;

const int event_available = SIGUSR1;

// Signal Handler

void sig_handler (int s)

{

if (s == event_available)

event = TRUE;

}

event_loop ()

{

while (end_loop == 0) {

if (event) {

size += read_data (*p);

write (fd, ptr, size);

busy_reset ();

event = FALSE;

}

}

}

Jun. 21, 2024 12E. Pasqualucci, ISOTDAQ 2024

Fragment buffering

• Why buffering?
– Triggers are uncorrelated

– Create internal de-randomizers
• Minimize dead time

– See Andrea’s lecture

• Optimize the usage of output channels
– Disk

– Network

• Avoid back-pressure due to bursts in data rate

– Warning!
• Avoid copies as much as possible

– Copying memory chunks is an expensive operation

– Only move pointers!

Jun. 21, 2024 13E. Pasqualucci, ISOTDAQ 2024

A simple example…

• Ring buffers emulate FIFO
– A buffer is created in memory

• Shared memory can be requested to the operating system

• A “master” creates/destroys the memory and a semaphore

• A “slave” attaches/detaches the memory

– Packets (“events”) are
• Written to the buffer by a writer

• Read-out by a reader

– Works in multi-process and multi-thread environment

– Essential point
• Avoid multiple copies!

• If possible, build events directly in buffer memory

Jun. 21, 2024 14E. Pasqualucci, ISOTDAQ 2024

• The two processes/threads can run concurrently
– Header protection is enough to insure event protection
– A library can take care of buffer management

• A simple API is important

– We introduced
• Shared memories provided by OS
• Buffer protection (semaphores or mutexes)
• Buffer and packed headers (managed by the library)

Writer:
Reserve a chunk of memory:

Build event frame and calculate (max) size
Protect pointers
Move the head
Write the packet header
Set the packet as FILLING
Unprotect pointers

Writer:
Validate the event:

Protect the buffer
Set the packet as READY
(Move the head to correct value)
Unprotect the buffer

Reader:
Release

Protect pointers
Move tail
Unprotect pointers

Reader:
Locate next available buffer:

Protect pointers
Get oldest event (if any)
Set event status to EMPTYING
Unprotect pointers

Writer:
Build the event fragment in memory:

Prepare event header
Write data to the buffer
Complete the event frame

Ring buffer

struct header

{

int head;

int tail;

int ceiling;

…

}

tail head ceilingheadhead head headhead ceiling

Reader:
Work on data

tail

Jun. 21, 2024 15E. Pasqualucci, ISOTDAQ 2024

Release the scheduler
Write to the output and release the buffer

Find next event

Read data and put them directly into the bufferPrepare the headerReserve the buffer (maximum event size)Set TRUE by a signal handler upon trigger arrivalOpen the buffer in master mode

Event buffering example
• Data collector • Data writer

int cid = CircOpen (NULL, Circ_key, size));

while (end_loop == 0) {

if (event) {

int maxsize = 512;

char *ptr; uint32_t *p; uint32_t *words;

int number = 0, size = 0;

while ((ptr = CircReserve (cid, number,

maxsize)) == (char *) -1)

sched_yield ();

p = (int *) ptr;

*p++ = crate_number; ++size;

*p++; words = p; ++size;

size += read_data (*p);

*words = size;

CircValidate (cid, number, ptr,

size * sizeof (uint32_t));

++number;

busy_reset ();

event = FALSE;

}

sched_yield ();

}

CircClose (cid);

int fd, cid;

fd = open (pathname, O_WRONLY | O_CREAT);

cid = CircOpen (NULL, key, 0));

while (end_loop == 0)

{

char *ptr;

if ((ptr = CircLocate (cid, &number,

&evtsize)) > (char *) 0)

{

write (fd, ptr, evtsize);

CircRelease (cid);

}

sched_yield ();

}

CircClose (cid);

close (fd);

Validate the buffer
Reset the busyRelease the schedulerClose the buffer

Jun. 21, 2024 16E. Pasqualucci, ISOTDAQ 2024

By the way…
• In these examples we were

– Polling for events in a buffer
– Polling for buffer descriptor pointers in a queue
– We could have used

• Signals to communicate that events were available
• Handlers to catch signals and start buffer readout

• If a buffer gets full
– Because:

• The output link throughput is too small
• There is a large peak in data rate

The buffer gets “busy” and generates back-pressure
Thresholds must be set to accommodate events generated during

busy transmission when redirecting data flow

• These concepts are very general…

Jun. 21, 2024 17E. Pasqualucci, ISOTDAQ 2024

Event framing
• Fragment header/trailer

• Identify fragments and characteristics
– Useful for subsequent DAQ processes

• Event builder and online monitoring tasks

– Fragment origin is easily identified
• Can help in identifying sources of problems

– Can (should) contain a trigger ID for event building

– Can (should) contain a status word

• Global event frame
– Give global information on the event

• Very important in networking
• Though you do not see that

• See networking lecture

Jun. 21, 2024 18E. Pasqualucci, ISOTDAQ 2024

Framing example

typedef struct
{

u_int startOfHeaderMarker;
u_int totalFragmentsize;
u_int headerSize;
u_int formatVersionNumber;
u_int sourceIdentifier;
u_int numberOfStatusElements;

} GenericHeader;
Event

Payload

Header

Status words

Jun. 21, 2024 19E. Pasqualucci, ISOTDAQ 2024

What can we do now….

• We are now able to

– Build a readout (set of) application(s) with

• An input thread (process)

• An output thread (process)

• A de-randomizing buffer

– Let’s elaborate a bit…

Jun. 21, 2024 E. Pasqualucci, ISOTDAQ 2024 20

A more general buffer manager

• Same basic idea
– Use a pre-allocated memory pool to pass “events”

• Paged memory
– Can be used to minimize pointer arithmetic

– Convenient if event sizes are comparable

• At the price of some memory

• Buffer descriptors
– Built in an on-purpose pre-allocate memory

– Pointers to descriptors are queued

• Allows any number of input and output threads

Jun. 21, 2024 21E. Pasqualucci, ISOTDAQ 2024

A paged memory pool

Writer Reader

Reserve memory

Queue (or vector)

Jun. 21, 2024 22E. Pasqualucci, ISOTDAQ 2024

Generic readout application

Input Handler

Module

Jun. 21, 2024 23E. Pasqualucci, ISOTDAQ 2024

Configurable applications
• Ambitious idea

– Support all the systems with a single application
• Through plug-in mechanism
• Requires a configuration mechanism
• You will (not) see an example in exercise 4

Jun. 21, 2024 24E. Pasqualucci, ISOTDAQ 2024

Some basic components

• We introduced basic elements of IPC…
– Signals and signal catching

– Shared memories

– Semaphores (or mutexes)

– Message queues

• …and some standard DAQ concepts
– Trigger management, busy, back-pressure

– Synchronous vs asynchronous systems

– Polling vs interrupts

– Real time programming

– Event framing

– Memory management

Jun. 21, 2024 25E. Pasqualucci, ISOTDAQ 2024

What will you find in the lab?

• Theory at work…

• Exercise 4
– Simple DAQ with

• VME crate controller

• CORBO module
– Upon trigger reception

» Sets busy

» Sends a VME interrupt

» Latches the trigger in a register

• QDC

• TDC

Jun. 21, 2024 26E. Pasqualucci, ISOTDAQ 2024

A multi-crate system again…

C
P
U

A
D
C

A
D
C

T
D
C

T
D
C

T
r
i
g
g
e
r

Configuration

Trigger

Readout

Trigger Detector 1

C
P
U

A
D
C

A
D
C

T
D
C

T
D
C

T
r
i
g
g
e
r

Configuration

Trigger

Readout

Trigger Detector N

E
B
(1)

E
B
(M)

. . .

. . .
Online monitoring

Run Control
Event Flow Manager

Jun. 21, 2024 27E. Pasqualucci, ISOTDAQ 2024

Event building

Readout

Systems

Filter

Systems

Event

Manager

Detector Frontend

Level 1

Trigger

Controls

Computing Services

Builder Networks

• Large detectors
– Sub-detectors data are collected

independently
• Readout network
• Fast data links

– Events assembled by event builders
• From corresponding fragments

– Custom devices used
• In FEE
• In low-level triggers

– COTS used
• In high-level triggers
• In event builder network

• DAQ system
– data flow & control
– distributed & asynchronous

Jun. 21, 2024 28E. Pasqualucci, ISOTDAQ 2024

Data networks and protocols
• Data transmission

– Fragments need to be sent to the event builders
• One or more…

– Usually done via switched networks

• User-level protocols

– Provide an abstract layer for data transmission
• … so you can ignore the hardware you are using …

• … and the optimizations made in the OS (well, that’s not always true) …

– See the lecture and exercise on networking

• Most commonly used

– TCP/IP suite
• UDP (User Datagram Protocol)

– Connection-less

• TCP (Transmission Control Protocol)

– Connection-based protocol

– Implements acknowledgment and re-transmission

Jun. 21, 2024 29E. Pasqualucci, ISOTDAQ 2024

TCP client/server example
struct sockaddr_in sinhim;

sinhim.sin_family = AF_INET;

sinhim.sin_addr.s_addr = inet_addr (this_host);

sinhim.sin_port = htons (port);

if (fd = socket (AF_INET, SOCK_STREAM, 0) < 0)

{ ; // Error ! }

if (connect (fd, (struct sockaddr *)&sinhim,

sizeof (sinhim)) < 0)

{ ; // Error ! }

while (running) {

memcpy ((char *) &wait, (char *) &timeout,

sizeof (struct timeval));

if ((nsel = select (nfds, 0, &wfds,

0, &wait)) < 0)

{ ; // Error ! }

else if (nsel) {

if ((BIT_ISSET (destination, wfds))) {

count = write (destination, buf, buflen);

// test count…

// > 0 (has everything been sent ?)

// == 0 (error)

// < 0 we had an interrupt or

// peer closed connection

}

}

}

close (fd);

struct sockaddr_in sinme;

sinme.sin_family = AF_INET;

sinme.sin_addr.s_addr = INADDR_ANY;

sinme.sin_port = htons(ask_var->port);

fd = socket (AF_INET, SOCK_STREAM, 0);

bind (fd0, (struct sockaddr *) &sinme,

sizeof(sinme));

listen (fd0, 5);

while (n < ns) { // we expect ns connections

int val = sizeof(this->sinhim);

if ((fd = accept (fd0,

(struct sockaddr *) &sinhim, &val)) >0) {

FD_SET (fd, &fds);

++ns;

}

}

while (running) {

if ((nsel = select(nfds, (fd_set *) &fds,

0, 0, &wait)) [

count = read (fd, buf_ptr, buflen);

if (count == 0) {

close (fd);

// set FD bit to 0

}

}

}

close (fd0);

Jun. 21, 2024 30E. Pasqualucci, ISOTDAQ 2024

Data transmission optimization

• When you “send” data they are copied to a system buffer
– Data are sent in fixed-size chunks

• At system level
– Each endpoint has a buffer to store data that is transmitted over the

network

– TCP stops to send data when available buffer size is 0

• Back-pressure

– With UDP we get data loss

– If buffer space is too small:

• Increase system buffer (in general possible up to 8 MB)

– Too large buffers can lead to performance problems

• You will play in lab. 9 with
– Data transmission

– Network control

Jun. 21, 2024 31E. Pasqualucci, ISOTDAQ 2024

Controlling the data flow

• Throughput optimization
• Avoid dead-time due to back-pressure

– By avoiding fixed sequences of data destinations
– Requires knowledge of the EB input buffer state

• EB architectures
– Push

• Events are sent as soon as data are available to the sender
– The sender knows where to send data
– The simplest algorithm for distribution is the round-robin

– Pull
• Events are required by a given destination processes

– Needs an event manager
» Though in principle we could build a pull system without manager

Jun. 21, 2024 32E. Pasqualucci, ISOTDAQ 2024

Pull example

Event
Manager Builder network

Sender Sender SenderTrigger

Jun. 21, 2024 33E. Pasqualucci, ISOTDAQ 2024

Push example

Event
Manager Builder network

Sender Sender SenderTrigger

Jun. 21, 2024 34E. Pasqualucci, ISOTDAQ 2024

System monitoring

• Two main aspects

– System operational monitoring

• Sharing variables through the system

– Data monitoring

• Sampling data for monitoring processes

• Sharing histogram through the system

• Histogram browsing
– See also S. Kolos’ lecture

Jun. 21, 2024 35E. Pasqualucci, ISOTDAQ 2024

Event sampling examples

• Spying from buffers • Sampling on input or output

Writer Spy

Reader

To monitoring
process

Writer

Reader

To monitoring
process

Sampling is always on the “best effort” basis and cannot affect data taking

Jun. 21, 2024 36E. Pasqualucci, ISOTDAQ 2024

Histogram and variable distribution

Sampler

DAQ
process

Monitoring
process

Histo
Service

Info
Service

Jun. 21, 2024 37E. Pasqualucci, ISOTDAQ 2024

Histogram browser

Jun. 21, 2024 38E. Pasqualucci, ISOTDAQ 2024

Controlling the system

• Each DAQ component must have
– A set of well defined states
– A set of rules to pass from one state to another
Finite State Machine

• A central process controls the system
– Run control

• Implements the state machine
• Triggers state changes and takes track of components’ states

– Trees of controllers can be used to improve scalability

• A GUI interfaces the user to the Run control
– …and various system services…

Jun. 21, 2024 39E. Pasqualucci, ISOTDAQ 2024

GUI example
• From lab 4…

– … and Atlas!

Jun. 21, 2024 40E. Pasqualucci, ISOTDAQ 2024

Finite State Machines

• Models of the behaviors of a system or a complex object, with a
limited number of defined conditions or modes

• Finite state machines consist of 4 main elements:
– States which define behavior and may produce actions
– State transitions which are movements from one state to another
– Rules or conditions which must be met to allow a state transition
– Input events which are either externally or internally generated, which

may possibly trigger rules and lead to state transitions

BOOTED

CONFIGURED

RUNNING

NONE ERROR
Recover

Boot

Configure

Start Stop

Unconfigure

Reset

Jun. 21, 2024 41E. Pasqualucci, ISOTDAQ 2024

Propagating transitions

• Each component or sub-system is modeled as a FSM
– The state transition of a component is completed only if all

its sub-components completed their own transition

– State transitions are triggered by commands sent through
a message system

Subsystem
Control

Final
Process

BOOTED

CONFIGURED

RUNNING

NONE ERROR

Run
Control

BOOTED

CONFIGURED

RUNNING

NONE ERROR

BOOTED

CONFIGURED

RUNNING

NONE ERRORBOOTED

BOOTED BOOTED

CONFIGUREDCONFIGURED

CONFIGURED

Jun. 21, 2024 42E. Pasqualucci, ISOTDAQ 2024

FSM implementation

• State concept maps on object state concept

– OO programming is convenient to implement SM

• State transition

– Usually implemented as callbacks
• In response to messages

• Remember:

– Each state MUST be well-defined

– Variables defining the state must have the same values
• Independently of the state transition

Jun. 21, 2024 43E. Pasqualucci, ISOTDAQ 2024

Message system

• Networked IPC
• I will not describe it

– You see a message system at work in exercise 12

• Many possible implementations
– From simple TCP packets…
– … through (rather exotic) SNMP …

• (that’s the way many printers are configured…)
• Very convenient for “economic” implementation

– Used in the KLOE experiment

– … to Object Request Browsers (ORB)
• Used f.i. by ATLAS

Jun. 21, 2024 44E. Pasqualucci, ISOTDAQ 2024

A final remark
• There is no absolute truth

– Different systems require different optimizations
– Different requirements imply different design

• System parameters must drive the SW design
– Examples:

• An EB may use dynamic buffering
– Though it is expensive
– If bandwidth is limited by network throughput

• React to signals or poll
– Depends on expected event rate

• Event framing is important
– But must no be exaggerated

• Keep it as simple as possible !!!!

Jun. 21, 2024 45E. Pasqualucci, ISOTDAQ 2024

Jun. 21, 2024 46E. Pasqualucci, ISOTDAQ 2024

Thanks for your attention!

