

ISOTDAQ

International School of Trigger and Data Acquisition

Storage systems for DAQ

Enrico Gamberini (CERN)

ISOTDAQ 2024

19-28 June 2024 (Hefei, China)

Storage Examples in Bytes

CERN vs. YouTube

Who's storing more data?

Storage Examples in Bytes

YouTube to storage

(~ 240-10³ PB/year)

YouTube

YouTube to storage (~ 8-50 GB/s)

"700'000 hours of content uploaded every day"

4K video stream (~ 4 MB/s)					
kilo 10 ³	mega 10 ⁶	giga 10 ⁹	tera 10 ¹²	peta 10 ¹⁵	exa 10 ¹⁸

Storage Examples in Bytes

Outline

- Why are storage systems relevant for DAQ?
- Storage concepts
- Technology overview
 - HDD, SSD, NVM and DRAM
- Performance benchmarking
- Redundant and Distributed systems
- Storage challenges for the future
 - Storage system for the DUNE-DAQ
- Conclusion

Why are storage systems relevant for DAQ? TDAQ pipeline

- Not all the data can be stored:
 - Lack of storage resources
 - Not enough (offline) processing power

Why are storage systems relevant for DAQ? TDAQ pipeline

• Hardware based selection using custom electronics and FPGAs

Why are storage systems relevant for DAQ? TDAQ pipeline

• Software based filtering using a local server farm

Why are storage systems relevant for DAQ? TDAQ pipeline and physics analysis

• Analysis runs global algorithms on distributed (remote) compute resources

Why are storage systems relevant for DAQ? TDAQ pipeline - Online data taking ("DAQ")

Focus on the storage systems **for DAQ**

- Storage systems ensure that data is stored and physics results can be produced!
- DAQ requirements are different from offline analysis:
 - Storage used to buffer data:
 Absorbs rate fluctuations from the rest of the system
 - Access pattern: Continuous stream of data flow in and out the storage system
 - Throughput and latency constraints
 - Technology choice affected by **total exaffpected data**

- Storage systems ensure that data is stored and physics results can be produced!
- DAQ requirements are different from offline analysis:
 - Storage used to buffer data: Absorbs rate fluctuations from the rest of the system
 - Access pattern: continuous stream of data flow in and out the storage system
 - Throughput and latency constraints
 - Technology choice affected by total expected data

- Storage systems ensure that data is stored and physics results can be produced!
- DAQ requirements are different from offline analysis:
 - Storage used to buffer data:
 Absorbs rate fluctuations from the rest of the system
 - Access pattern: continuous stream of data flow in and out the storage system
 - Throughput and latency constraints
 - Technology choice affected by **total expected data**

- Storage systems ensure that data is stored and physics results can be produced!
- DAQ requirements are different from offline analysis:
 - Storage used to buffer data:
 Absorbs rate fluctuations from the rest of the system
 - Access pattern: continuous stream of data flow in and out the storage system
 - Throughput and latency constraints
 - Technology choice affected by **total expected data**

and cost!

Storage concepts and Technology overview

Storage concepts Some definitions

- I/O: input/output operation
- Access pattern: sequential/random read or write
- Latency: time taken to respond to an I/O. Usually measured in ms or in μ s
- Rate: number of I/O per second to a storage location (IOPS)
- Blocksize: size in bytes of an I/O request
- Bandwidth: product of I/O block size and IOPS

Bandwidth = [I/O block size] x [IOPS]

Hard drives (HDD) Quick introduction

- Electromechanical device
- Circular rotating platter divided into millions of magnetic components where data is stored
- Typical rotational speed of HDDs:
 - 5400 rpm, **7200 rpm**, 10k rpm and 15k rpm
- Seek time: time required to adjust the read-write head on the platter. Typical values: from 3 ms to 15 ms
- Rotational latency: time needed by the platter to rotate and position the data under the read-write head. Typical values: from 7 ms to 2 ms. $IOPS = \frac{1}{\text{Avg. seek + Avg. latency}}$

Solid state drives (SSD) Quick introduction

Floating gate transistors

- Architecture:
 - NAND flash chipset: store data
 - Controller: caching, load balancing and error handling
- Capacity limited to number of NAND chipsets a manufacturer is able to insert into a device
- (Typically) better performance compared to HDDs
 - There is no mechanical component
 - Reduced latency and no seek time
- Optimized controller and communication technology for higher bandwidth devices
 - NVM Express (NVMe) SSD

DRAM and Non-Volatile Memory Quick introduction

- DRAM (Dynamic Random Access Memory)
 - Semiconductor memory technology
 - Data is not persisted, only temporary storage cells (capacitors and transistors)
 - \circ Low latency (0.1 μs)
- Non-volatile memory (NVM)
 - Hold data even if device is turned off
 - Higher storage capacity than DRAM
 - Latency (1 μs)
 - 3D XPoint technology (Intel and Micron, 2015)

Latency and Bandwidth

Technology overview

Bandwidth

Latency and Bandwidth

Technology overview

Bandwidth

Storage systems for DAQ - 19/06/2024 - Enrico Gamberini

Latency and Bandwidth

Technology overview

Bandwidth

Storage systems for DAQ - 19/06/2024 - Enrico Gamberini

Storage systems for DAQ - 19/06/2024 - Enrico Gamberini

Storage systems for DAQ - 19/06/2024 - Enrico Gamberini

Market trend for storage technologies Price per GB for HDD, SSD, Flash and RAM

Data collected by John C. McCallum. Data collected by Adam Abed Abud since 2018

Storage benchmarking

- Linux tool to copy data at the block level
- Usage:
 - o dd if=/path/to/input/file of=/path/to/output/file bs=block_size count=amount_blocks
- Avoid operating system cache by adding oflag=direct option

```
[student@storage_lecture]$ dd if=/dev/zero of=deleteme bs=1M count=1000
1000+0 records in
1000+0 records out
1048576000 bytes (1.0 GB, 1000 MiB) copied, 3.67626 s, 285 MB/s
```

Storage benchmarking Flexible I/O (FIO)

- Advanced tool for characterizing I/O devices
- Usage:
 - o fio --rw=<opt1> --bs==<opt2> --size=<opt3> --filename=<opt4>
 --direct=<opt5> --ioengine=libaio --name=isotdaq

```
[student@storage_lecture]$ fio --rw=write --bs=1M --size=1G --filename=deleteme
--direct=0 --ioengine=libaio --name=isotdaq
fio-3.12
Starting 1 process
isotdaq : Laying out IO file (1 file / 1024MiB)
... ... ...
Run status group 0 (all jobs):
    WRITE: bw=276MiB/s (282MB/s), 276MiB/s-276MiB/s (282MB/s-282MB/s), io=1024MiB
(1074MB), run=4424-4424msec
```

Redundant Array of Inexpensive Disks (RAID) Redundancy and fault tolerance

- Multiple physical disk drives are logically grouped into one or more units to increase data performance and/or data redundancy
- Invented in 1987 by researchers from the University of California
- Most common RAID types: RAID 0, RAID 1, RAID 5, RAID 10
- Fault tolerance guaranteed by using parity as an error protection scheme
 - Based on the XOR logic operation
 - For series of XOR operations, count the number of occurrences of 1:
 - If result is <u>even</u> then bit parity is 0
 - If result is <u>odd</u> then bit parity is 1

RAID 0 - Striping

typically O(10) kB

- Data divided in blocks and <u>striped</u> across multiple disks
- Not fault tolerant because data is not duplicated
- Speed advantage
 - Two disk controllers allow to access data much faster

RAID 1 - Mirroring and Duplexing

- Data divided in blocks and <u>copied</u> across multiple disks
- Fault tolerant because of data mirroring
 - Each disk has the same data
- **Disadvantage**: usable capacity is half of the total

A

Redundant Array of Inexpensive Disks (RAID) Redundancy and fault tolerance

- Multiple physical disk drives are logically grouped into one or more units to increase data performance and/or data redundancy
- Invented in 1987 by researchers from the University of California
- Most common RAID types: RAID 0, RAID 1, RAID 5, RAID 10
- Fault tolerance guaranteed by using parity as an error protection scheme
 - Based on the XOR logic operation
 - For series of XOR operations, count the number of occurrences of 1:
 - If result is <u>even</u> then bit parity is 0
 - If result is <u>odd</u> then bit parity is 1

A crash course on bit parity Disk failure

RAID 5 - Striping with parity

- Requires 3 or more disks
- Data is not duplicated but **striped** across multiple disks
- Fault tolerant because **parity** is also striped with the data blocks
- Larger capacity provided compared to RAID 1
- Disadvantage: an entire disk is used to store parity

Redundant Array of Inexpensive Disks (RAID) RAID 10 = RAID 1 + RAID 0

- Requires a minimum of 4 disks
- Data is striped (RAID 0)
- Data is duplicated across multiple disks (RAID 1)
- Advantage: fault tolerance and higher speed
- **Disadvantage**: only half of the available capacity is usable

A

Redundant Array of Inexpensive Disks (**RAID**) HW, SW

- Hardware implementation:
 - $\circ \quad \text{Use of RAID controllers}$
 - Manage system independently of OS
 - Offload I/O operation and parity computation
 - Cost usually high
- **Software** implementation:
 - OS used to manage RAID configuration
 - Impact on CPU usage can be high
- **Disadvantage**: scaling to multiple servers is not possible

Redundant Array of Inexpensive Disks (**RAID**) HW, SW

- Hardware implementation:
 - $\circ \quad \text{Use of RAID controllers}$
 - Manage system independently of OS
 - Offload I/O operation and parity computation
 - Cost usually high
- **Software** implementation:
 - OS used to manage RAID configuration
 - Impact on CPU usage can be high
- Disadvantage: scaling to multiple servers is not possible

Distributed storage systems

- **Distributed storage system**: files are shared and distributed between multiple nodes
 - Active communities (Red Hat, IBM, Apache, Intel)
 - Example: Ceph, Gluster, Hadoop, Lustre
 - Used by some experiments (CMS)
 - Interesting features:
 - load balancing
 - data replication
 - smart placement policies
 - scaling up to O(1000) nodes

#145075_GLUSTER_1.0_334434_041

- Application in DAQ: implementation of the event builder:
 - **Physical event building (traditional approach)**: data fragments are fetched explicitly over a network from temporary buffers at the readout nodes to a single physical location

- Application in DAQ: implementation of the event builder:
 - **Physical event building (traditional approach)**: data fragments are fetched explicitly over a network from temporary buffers at the readout nodes to a single physical location

- Application in DAQ: implementation of the event builder:
 - **Logical event building**: fragments are stored in a large distributed system and events are built by computing the location of the fragments (metadata operation)
- **R&D** for future DAQ systems: ATLAS (Phase-II), DUNE, etc.

В

- Application in DAQ: implementation of the event builder:
 - **Logical event building**: fragments are stored in a large distributed system and events are built by computing the location of the fragments (metadata operation)
- **R&D** for future DAQ systems: ATLAS (Phase-II), DUNE, etc.

DAQ takeaway Storage technologies

- Different storage media available on the market for different use cases
 - \circ Long term storage, mostly sequential access \rightarrow HDD
 - \circ $\;$ Low latency and large capacity \rightarrow SSD
 - \circ High rate and persistent \rightarrow Non-Volatile memory
 - \circ Fast and temporary \rightarrow DRAM
- Keep in mind that **price/GB** changes a lot for different storage media
- When designing a DAQ system always keep an eye on the target throughput and required latency for your application
- **Data safety** and **reliability** is an important factor!
 - RAID and Distributed systems

Storage challenges for the next generation DAQ systems

- Physics signals are rare!
 - Higher intensity beams are needed
 - More granular detectors
 - <u>Consequence</u>: more data to store
- HL-LHC: Data rates and data bandwidths will increase by ~ 1 order of magnitude
 - <u>Consequence</u>: scale up DAQ systems
 - Use commercial off-the-shelf technology as much as possible

Storage systems in HEP

Source: CDS

DUNE experiment Quick overview

- Neutrino experiment located at Sanford Underground Research Facility in South Dakota
- Far detector located 1300 km away from source and approximately 1.5 km underground
- 4 modules of 17 kton LAr time projection chamber
 - Each module can be split in ~150 identical components
- Prototypes available at CERN in the North Area (ProtoDUNE)

• Modular nature of the apparatus allows splitting a cryostat in ~150 identical components

• Modular nature of the apparatus allows splitting a cryostat in ~150 identical components

DUNE uses a continuous readout for the LArTPC

- 2 MHz sampling rate, 384k channels, 14 bit ADC
 - Throughput: ~1.5 TB/s
- Adding up all the TDAQ from the four cryostats leads to ~6 TB/s = 1000 movies in 4K per second
 - Similar rate expected for HL-LHC experiments !

• Modular nature of the apparatus allows splitting a cryostat in ~150 identical components

Readout system interfaces the detector front-end with the DAQ processing units

- Commercial-off-the-shelf server with multiple uses:
 - Detector interface: handle the data input from the front-end electronics of the detector
 - Low-level data selection system (*Trigger Primitive Generation*): identify time periods with signal
 - Local storage buffer: temporary store the data while waiting for a trigger decision
- Data throughput for each readout unit: approximately 10 GB/s
 - 150 identical readout units —> total of ~1.5 TB/s for each cryostat

• Modular nature of the apparatus allows splitting a cryostat in ~150 identical components

Trigger combines a subset of readout (TPs) data into time windows of interesting signals:

- Time "window" can vary from < 1 ms to ~100 s;
- Data size ranging from few MB to ~150 TB

Dataflow moves the data fragments (identified by the trigger) from the Readout nodes to a large storage buffer

• Total storage size is **1 PB** (approximately one week of data taking) = 150k movies in 4K

• Modular nature of the apparatus allows splitting a cryostat in ~150 identical components

Transfer recorded data to Fermilab computing infrastructure

• Total transfer of ~30 PB/year (across all detector modules)

Physics constraints on the DUNE DAQ

The physics goals of the DUNE experiment heavily drive the DAQ design

- Wide physics program results in the study of many **different types of events**
 - Support data taking over a wide energy spectrum
 - Trigger system will need both a self-triggering mechanism for the many low-energy deposits as well as a triggering system for the high energy (> 100 MeV) interactions
 - DAQ must support a very wide range of readout windows
 - Data size can vary several orders of magnitude (from MB to TB)

Storage system and buffering becomes crucial to support all data taking operations

Supernova Neutrino Burst

- Supernova Neutrino Burst (SNB) detection
 - One of the physics goals of DUNE
 - Detection of rare and low energy event
- Data taking of SNB events is **complex**:
 - Long trigger latency
 - Physics event distributed over time
 - Critical data: avoid any potential loss
- Requirements:
 - A single detector module generates O(10) GB/s
 - On supernova trigger: **persist O(100) seconds** (i.e. 150 TB per cryostat)

Supernova Neutrino buffer Persistent memory

- Critical data and high bandwidth:
 - Take advantage of storage adapters
 - Connect multiple SSD drives together: up to 4 x PCIe 4.0 devices
 - Use of Non-Volatile Memory technology (3D XPoint)
- Successful prototypes capable of buffering data from the readout system
 - Store for over 100 seconds
 - Sustained target throughput of 10 GB/s
- Successfully tested and integrated the devices within the DUNE DAQ

Conclusions

- Storage system is crucial for physics results
- Online data taking has different requirements from offline analysis
- Design of a storage system:
 - Focus on **throughput** to support the system
 - Latency constraints
 - Access pattern
 - Several storage media for different use-cases (HDD, SSD, NVM, DRAM)
 - Take into account redundancy and **fault tolerance**
- Benchmark performance of devices. Tools: DD and FIO (and many others)

ISOTDAQ

International School of Trigger and Data Acquisition

Thank you ! Questions ?

enrico.gamberini@cern.ch