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What's on the (trigger) menu today?

Trigger architectures and hardware
● From simple, home-made trigger systems… to highly complex, multi-level triggers
● Dead time
● First-level trigger systems
● High-level trigger systems
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Reminder

Trigger basic requirements
● Need high efficiency for selecting processes for physics analysis
● Need large reduction of rate from unwanted high-rate processes
● Robustness is essential
● Highly flexible, to react to changing conditions
● System must be affordable
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The simplest trigger systems
Source: Use the signals from the detector front-ends
● Binary: Tracking detectors (pixels, strips)
● Analog: Tracking detectors, time of flight detectors, calorimeters, ...

Front-end Pre-amplifier Amplifier

Discriminator

Accept

Reject
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The simplest trigger systems
Source: Use the signals from the detector front-ends
● Binary: Tracking detectors (pixels, strips)
● Analog: Tracking detectors, time of flight detectors, calorimeters, …

● Most trivial trigger algorithm: Signal > Threshold
○ Apply the lowest possible threshold
○ Find best compromise between hit efficiency and noise rate

Front-end Pre-amplifier Amplifier

Discriminator

Accept

Reject
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Detector signals characteristics
Pulse width
● Limits the effective hit rate
● Must be adapted to the desired trigger rate

Time walk
● The threshold-crossing time depends on the signal amplitude

● Must be minimal in good trigger systems
Time walk can be suppressed by triggering on the total signal fraction
● Applicable on same-shape input signals with different amplitude

○ Scintillator detectors and photomultipliers
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The constant fraction discriminator

If delay too short, the unit works as a normal discriminator 
because the output of the normal discriminator fires later 
than the CFD part.
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Trigger logic implementation

In digital domain, any decision logic can be expressed as 
sequence of boolean operations
● Combinatorial

○ Summing, decoders, multiplexers, …
○ Data propagates as a wave through the logic

● Sequential
○ Flip-flops, registers, counters, …
○ Operations happen at well defined times and in a 

well defined order
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Building your own trigger system
A simple trigger system can start with a NIM crate

● Common support for electronic modules
● Standard impedance, connections, logic levels (negative!)
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Back to trigger 
requirements:

High efficiency
Low dead-time
Fast decision
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A simple trigger system

Incoming event rate can temporarily exceed processing rate
Trigger signals are rejected if "busy" signal is high
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Deadtime
The key parameter in high speed TDAQ systems design
● The fraction of the acquisition time when no events can be recorded.

○ Typically of the order of few %

● Reduces the overall system efficiency

Arises when a given processing step takes a finite amount of time 
● Readout dead-time
● Trigger dead-time
● Operational dead-time

Example: Sending data from some detector modules requires a certain time. If an
event is being read out no others can be accepted, even if they are interesting.
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Maximising data-recording rate

          For high efficiency: Rin· Td ≪ 1
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Deadtime in our simple trigger system
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Deadtime in our simple trigger system

If ADC is a critical step for deadtime, 
this is not a good idea!
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Deadtime in our simple trigger system

Now digitising in parallel!
(This can be very expensive… )

● Independent readout and trigger 
paths, one for each sensor element

● Digitisation and DAQ processed in 
parallel (as much as affordable!)
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Latency in our simple trigger system

Latency: Time to form the trigger decision 
and distribute to the digitisers
● Signals must be delayed until the 

trigger decision is available
● The more complex the selection, the 

longer the latency

But analogue delays may make us a 
bit nervous… 
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Pre-trigger in our simple trigger system

Assuming that the digitization time is 
longer than the trigger latency!

Pre-trigger stage: Very fast indicator of 
minimal activity in the detector
● Used to start digitizers with no delay
● Complex trigger decisions come later
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Pre-trigger in our simple trigger system

Can store the result of each digitisation in 
RAM until trigger decides!
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Our simple trigger system with bunched colliders

We have an authoritative clock, the collisions themselves!
No need for a dedicated pre-trigger.
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Our simple digital trigger system
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A trigger system with multiple layers
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Multilayer triggers

● Each stage reduces the rate, so later stages can have longer latency
● Complexity of algorithms increases at each level

Dead-time is the sum of the trigger dead-time, summed over the trigger levels, 
and the readout dead-time.
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Multilayer triggers
Adopted in large experiments
● More and more complex algorithms are applied on lower and lower data rates

○ Earlier levels with short latency, working at higher rates
○ Higher levels with more complex algorithms, but longer latency
○ Efficiency for the desired physics must be kept high at all levels, since rejected events are lost forever

Level-1 Level-2 Level-3 Analysis

Exp #Levels

ATLAS 3

CMS 2

LHCb 3

ALICE 4

LHC experiments in Run-1
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A trigger system with multiple layers

If your input rate is low enough…
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A trigger system with multiple layers

Hardware trigger 
domain

Software trigger
domain

This may have seemed familiar to people with 
knowledge of e.g. the CMS trigger… 
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But "low enough rate" is always relative…

Hardware trigger 
domain

Software trigger
domain
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Synchronous or asynchronous?
Synchronous: operates phase-locked with authoritative clock 
● Data move in lockstep with the clock through the trigger chain: Fixed latency
● The data, held in storage pipelines, are either sent forward or discarded 
● Used for triggers in collider experiments, exploiting the accelerator bunch crossing clock 

Pros: dead-time free (just few clock cycles to protect buffers)

Cons: cost (high frequency stable electronics,
sometimes needs to be custom made);
maintain synchronicity throughout the entire
system, complicated alignment procedures if
the system is large (software, hardware,
human…)
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Synchronous or asynchronous?
Asynchronous: operations start at certain conditions (e.g. data is ready)
● Used for larger time windows
● Latency known on average (with large buffers to absorb fluctuations)
● If buffer size ≠ dead-time → lost events
● Used also for “software filters”

Pros: more resilient to data burst; running on conventional CPUs

Cons: needs a timing signal synchronised to
the FE to latch the data, needs time-marker
stored in the data (data transfer protocol is
more complex)

30D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024



Timescales

● At LEP, bunch crossing interval 22 µs: 
complex trigger processing was possible between 
bunch crossings (BXs)
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Timescales

● At LEP, bunch crossing interval 22 µs: 
complex trigger processing was possible between 
bunch crossings (BXs)

● Modern colliders chasing statistics
○ High Luminosity by high rate of BX
○ BX spacing too short for final trigger decision!
○ No mechanism to throttle data
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Timescales

● At LEP, bunch crossing interval 22 µs: 
complex trigger processing was possible between 
bunch crossings (BXs)

● Modern colliders chasing statistics
○ High Luminosity by high rate of BX
○ BX spacing too short for final trigger decision!
○ No mechanism to throttle data

● Need to pipeline our logic!
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19:00 20:00 21:00 22:00 23:00 00:00 01:00 02:00 03:00 04:00

Pipelined processing
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19:00 20:00 21:00 22:00 23:00 00:00 01:00 02:00 03:00 04:00

Pipelined processing
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19:00 20:00 21:00 22:00 23:00 00:00 01:00 02:00 03:00 04:00

Pipelined processing

Clearly not optimal!
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19:00 20:00 21:00 22:00 23:00 00:00 01:00 02:00 03:00 04:00

Pipelined processing
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The CMS Global Muon Trigger
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Timescales

● At 40 MHz BX rate, a 4 GHz CPU could 
perform 100 CPU operations (not enough to be 
useful) before having to pass to the next core

● What can we use instead?
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Programmable devices

Application-specific integrated circuits (ASICs): 
optimised for fast processing,
design encoded into silicon

Field-programmable gate arrays (FPGAs):
“Programmable ASICs”
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Field-programmable gate arrays

● Programmable Logic Blocks
● Massive Fabric of Programmable Interconnects

See:
Introduction to FPGAs, Hannes Sakulin
Advanced FPGA programming, Mauricio Feo
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https://indico.cern.ch/event/1337180/contributions/5629312/attachments/2881345/5048028/2024_06_20_FPGA_Lecture_HS_mq.pdf
https://indico.cern.ch/event/1337180/contributions/5629282/attachments/2882918/5051554/ISOTDAQ2024_Advanced_FPGA_Design.pdf


Configurable logic blocks

● Registers at output of every cell
○ Perfect for pipelined logic!
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Digital signal processing slices
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Example: Xilinx Ultrascale+ FPGAs

● Upwards of 2 million logic cells
● All can be clocked at up to 500 MHz
● Up to O(1015) operations per second
● Upwards of 6000 DSPs
● All pipelined
● Fully programmable
● All good?
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Caveats

● Very hard to program efficiently
○ Thinking in a parallel, pipelined-fashion is not intuitive for most people
○ A handful of real experts in CMS

● Efficient use depends on efficiently structured data
● The chip is just the start – needs to be attached to something
● You are also responsible for the infrastructure
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High-level synthesis

● High-level synthesis (HLS) allows you to write your algorithm in (a version of) C++ and 
"compiles" this to gateware
○ Very complex algorithms now possible in FPGAs, e.g. machine learning
○ Prototyping of ideas significantly easier

● Still requires some knowledge of the underlying chip resources
○ Asking an FPGA to do lots of floating point operations will not get you far

● First production-ready systems appearing in e.g. the CMS L1 trigger
○ Barrel track finder using a Kalman filter for track reconstruction
○ Phase-2 upgrades benefitting heavily from it
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Generic hardware
● Once outside interfaces are fixed, all FPGA boards 

"look the same"
○ Data streamed in
○ Data processed in large FPGA
○ Data streamed out

● Reusable infrastructure firmware
○ Virtually all boards for upcoming LHC upgrades 

not provided "empty" anymore
○ Huge advantage as it allows board users to 

concentrate on trigger algos
■ And debugging of the infrastructure 

benefits all… 
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The future…
Next generation FPGAs aren't necessarily sold as "FPGAs" 
anymore: e.g. Adaptive Compute Acceleration Platform (ACAP)

● Huge devices with large areas of dedicated silicon:
○ ARM Cortex CPU(s)
○ AI and DSP engines

■ With support for floating point computations!
○ "Adaptable engines" (i.e. the "original" FPGA)
○ …

● Example above for Xilinx (now AMD), however similar 
devices are also available from Intel
○ Though still marketed as FPGAs

● Currently not part of the mainstream LHC upgrades
○ but no reason to doubt their appearance for the next round…

● May require new usage paradigms to exploit fully…
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Trigger system 
architectures
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Conventional architecture

● Each subsystem is regionally segmented
● Each region must talk to its neighbour or data 

must be duplicated
○ To avoid inefficiency at the borders

● Each region of each processing layer compresses, 
suppresses, summarizes or otherwise reduces its 
data and passes it on to the next level which is less 
regionally segmented
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Time-multiplexed architecture

● Buffer data and stream it out optimized for 
processing

● Spread processing over time
○ Stream-processing rather than combinatorial-logic
○ Maximise reuse of logic resources
○ Easiest for FPGA design tools to route and meet 

timing
● Costs you latency, bought back by more efficient 

processing
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High-level trigger architecture

LEP: 40 Mbyte/s, so VME bus sufficient for bandwidth needs
LHC: cutting-edge processors, high-speed network interfaces, high speed optical links 

Different approaches possible
● Network-based event building (LHC example: CMS) 
● Seeded reconstruction (LHC example: ATLAS)

Levels L1 rate Event size Readout bandwidth HLT rate

LEP 2/3 1 kHz 100 kB few 100 kB/s ~5 Hz

ATLAS 2/3
100 kHz 

(L2: 10 kHz)
1.5 MB

30 GB/s
(incremental event building)

~1 kHz

CMS 2 100 kHz 1.5 MB 100 GB/s ~1 kHz
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High-level trigger design principles
Offline reconstruction too slow to be used directly
● Takes >10s per event but HLT usually needs ≪1s

Instead: Step-wise processing with early rejection
1. Fast reconstruction & L1-guided regional reconstruction

○ Trigger-specific or special configurations of offline algorithms
○ L1-guided regional reconstruction

2. Precision reconstruction as full detector data becomes available
○ Offline (or very close to) algorithms
○ Full detector data available

Stop processing as soon as one step fails!
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High-level trigger design principles
Early rejection reduce data and resources (CPU, 
memory, etc.)

Event-level parallelism
● Process more events in parallel
● Multi-processing or/and multi-threading

Algorithm-level parallelism
● GPUs effective whenever large amount of data 

can be processed concurrently (although 
bandwidth can be a limiting factor)
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Conclusions

● Triggers have been around for some time
○ … but they are constantly evolving
○ Keeping up-to-date on developments in industry is mandatory!

● FPGAs are the key tool in the Level-1 trigger
○ Lots of challenges even with modular firmware and the help of HLS

● Working on the trigger can be fun and filled with learning opportunities!
○ Electronics, networking, (heterogeneous) computing, system design, … 

55D. Rabady (CERN) ISOTDAQ 2024. Hefei, China. 24 June 2024


