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What is a Field Programmable Gate Array ?
... a quick answer for the impatient

� An FPGA is an integrated circuit

� Mostly digital electronics

� An FPGA is programmable in the in the field (=outside the factory), 
hence the name “field programmable”

� Circuit design is specified with a hardware description language
or schematics

� Tools compute a programming file for the FPGA (bitstream)

� The FPGA is configured with the design (gateware / firmware)

� Your electronic circuit is ready to use

With an FPGA you can build electronic circuits … 
… without using a bread board or soldering iron
… without plugging together NIM modules
… without having a chip produced at a factory
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Outline

� Quick look at digital electronics

� FPGAs and their features

� Programming techniques

� Design flow

� Example Applications in the Trigger and DAQ domain
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The basic elements of
digital electronics
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The building blocks: logic gates

AND gate

OR gate

Exclusive OR gate 
XOR gate

Truth table C equivalent

q = a && b;

q = a || b;

q = a != b;A
B

Q

…

5



Combinatorial logic (asynchronous)

Outputs are determined 
by Inputs, only

Example: Full adder with carry-in, carry-out

Combinatorial logic may 
be implemented using
Look-Up Tables (LUTs)

LUT = small memory

A B Cin S Cout

0 0 0 0 0

1 0 0 1 0

0 1 0 1 0

1 1 0 0 1

0 0 1 1 0

1 0 1 0 1

0 1 1 0 1

1 1 1 1 1 6



(Synchronous) sequential logic
Outputs are determined 

by Inputs and their history

(Sequence)

The logic has an internal state

clock

data Output 

Inverted output

set

reset

D Flip-flop (D=data, delay) : 

samples the data at the rising 

(or falling) edge of the clock

The output will be equal to

the last sampled input until the 

next rising (or falling) clock edge 

Example: 2-bit binary counter

https://www.zeepedia.com/read.php?b=9&c=32&d_flip-flop_based_implementation_digital_logic_design
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Element that keeps the state: Flip-flop



(Synchronous) sequential logic
Outputs are determined 
by Inputs and their history
(Sequence)
The logic has an internal state

Example: 2-bit binary counter
https://www.zeepedia.com/read.php?b=9&c=32&d_flip-flop_based_implementation_digital_logic_design
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Flip-flop 1 Flip-flop 2

time D Q Q’ D=Q0 xor Q1 Q Q1 Q0

Before clock edge 1 1 0 1 0 0 0 0

after clock edge 1 0 1 0 1 0 0 1

after clock edge 2 1 0 1 1 1 1 0

after clock edge 3 0 1 0 0 1 1 1

after clock edge 4 1 0 1 0 0 0 0



Synchronous sequential logic

+ =

Using Look-Up-Tables and Flip-Flops
any kind of digital electronics may be implemented

Of course electronics design is an art in itself … 9

Signal processor

Trigger logic

Data compression logic

Network Interface Card

Neural net classifier

…



What is inside an FPGA?
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Basic elements of an FPGA

Programmable Input / Output pinsFine-grained: 10.000’s
up to millions of logic blocks

extremely flexible:
can connect any block
output to any input
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LUT-based Fabrics
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Typical LUT-based Logic Cell

Xilinx: logic cell,
Altera: logic element

� LUT may implement any function of the inputs 

� Flip-Flop registers the LUT output

� May use only the LUT or only the Flip-flop

� LUT may alternatively be configured a shift register

� Additional elements (not shown): fast carry logic 13



General-Purpose Input/Output (GPIO)

Today: Up to >1000 user I/O pins
Input and / or output
Voltages from (1.0), 1.2 .. 3.3 V
Many IO standards
Single-ended: LVTTL, LVCMOS, … 
Differential pairs: LVDS, … 14



A toy example
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Toy example: trigger on energy cluster
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7 8 9

Say, we have a 3x3 pixel detector
Each pixel can measure deposited energy with 2 bit resolution
Trigger condition: the sum of energies deposited in a 2x2 pixel area exceeds 5 counts. 
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Toy example: VHDL code
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We describe the trigger logic in the VHDL(*) hardware description language:

(*) Very High-Speed Integrated Circuit Hardware Description Language

types.vhd

top.vhd



Toy example: constraints

18

1 2 3

4 5 6

7 8 9

e1
e2
e3
e4
e5
e6
e7
e8
e9

accept

2

2

2

2

2

2

2

2

2

FPGA

We define which FPGA pins our signals are connected to:



Toy example: timing and floorplan
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We let the design tool compute the configuration for our FPGA …
… some minutes later we get the the utilization report

… and can look at the floor plan



Toy example: floorplan
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Toy example: floorplan
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Toy example: Register Transfer Level (RTL) design
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The design tool can also display the schematics of the circuit:



Toy example: Full example, 4 possible clusters
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Let’s do the full example:

(*) Very High-Speed Integrated Circuit Hardware Description Language

top.vhd

check all 4 possible 
2x2 regions

1 2 3

4 5 6

7 8 9



Toy example: resource usage and floorplan 

24

1 2 3

4 5 6

7 8 9

e1
e2
e3
e4
e5
e6
e7
e8
e9

accept

2

2

2

2

2

2

2

2

2

FPGA

We let the design tool compute the configuration for our FPGA

utilization report



Toy example: floorplan
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We let the design tool compute the configuration for our FPGA

utilization report



Toy example: RTL design
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Again, we can look at the generated schematics:

If we look closely, we can see that adders that are shared between adjacent 2x2 areas, are only implemented once. 



Toy example: Timing
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Timing:

Input-to-output delay: ~ 10 ns 

In this example asynchronous design using a Xilinx Artix 7
(note that asynchronous designs are not how we typically use  FPGAs)



Toy example: Timing
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Timing:

Input-to-output delay: ~ 10 ns 

In this example asynchronous design using a Xilinx Artix 7
(note that asynchronous designs are not how we typically use  FPGAs)

With an FPGA we can construct 
fast electronic circuits by describing them
with a hardware description language. 



Doing the same with a microcontroller
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Doing the same with a microcontroller
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We write code that is executed by a processor

Probably about ~50-100 
instructions at 20 MHz

Input to output
delay: 2-5 µs 



Microcontroller vs FPGA
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µC / CPU FPGA

Principle of 
operation

Source code is translated 
to machine instructions 
and executed by CPU 

Hardware Description Language 
is translated to configuration of 
FPGA, defining an electronic 
circuit

Processing 
time

Microseconds 10’s of nanoseconds



A closer look at FPGAs

32



Additional elements in an FPGA
� Besides logic cells and interconnect (distributed logic) 

we have additional elements in an FPGA:
� Either to provide functions that cannot be implemented 

with distributed logic (because the logic would be too slow)
� Clock resources, clock Managers

� Gigabit transceivers

� …

� Or to provide functionality that could also be implemented 
with distributed logic, but is more efficiently(*) 
implemented as a hard macro (in silicon)
� Multipliers, DSPs

� RAM

� Processors

33(*) smaller chip area, smaller power consumption, faster



Clock Trees

Typical FPGA designs use one or multiple clocks
Clock trees guarantee that the clock arrives at the same time at all flip-flops
Typical fabric clock 10’s to 100’s of MHz up to ~ 1 GHz 34



Clock Managers

Daughter clocks 
may have multiple 
or fraction 
of the frequency

35



Our toy example
with clock

36



Adding a clock and flip-flops

37
We transform our design into a pipeline with 3 processing stages



Adding a clock and flip-flops

38

Clock Manager and global clocking resources

100 MHz 
clock in

200 MHz 
clock in



Adding a clock and flip-flops

39
We transform our design into a pipeline with 3 processing stages



Adding a clock and flip-flops

40
We transform our design into a pipeline with 3 processing stages



Resource usage & floorplan
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Floorplan: clock resources
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1. Clock capable 
input pin

2. Clock manager

3. Global Clock 
buffer

4. Global Clock 
lines



Floorplan: flip-flops
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1. Input flip-flop
near pad

2. Flip-flops after first adder stage 3. Flip-flops after second adder stage

4. Output flip-flops near pad
after comparator stage



VHDL code
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3) Instantiate cluster energy
check module

1) Instantiate clocking logic
- Customized firmware block 

produced by FPGA design tool
- Also called IP (Intellectual Property) Core

2) Clocked process: register inputs

4) Clocked process: 
register OR of
Cluster checks



VHDL code – cluster energy check
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Outside process: asynchronous logic

Inside clocked process:
<= assignment creates flip-flop



Constraints

46

Assign clock pin
Use input/output flip-flops



Timing
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100 MHz clock at pin

200 MHz internal clock
(we set this as a 
parameter to the clock 
manager)

Design can check for clusters at 200 MHz (every 5 ns),
but needs 4 clock cycles (20 ns) to compute the trigger decision



Other elements in FPGAs
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Embedded RAM blocks

Today: Up to ~500 Mbit of RAM49

Can be used in many ways:
Look-up of mathematical function
Buffer memory
…



Embedded Multipliers & DSPs
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Digital Signal Processor (DSP)

DSP block (Xilinx 7-series)
Up to several 1000 per chip

51



Soft and Hard Processor Cores

� Soft core
� Design implemented with 

the programmable 
resources (logic cells) in 
the chip

� Hard core
� Processor core that is 

available in addition to the 
programmable resources

� E.g.: Power PC, ARM

52



High-Speed Serial Interconnect

� Using differential pairs

� Standard I/O pins limited to 
about 1 Gbit/s

� Latest serial transceivers:
typically 25 Gb/s 
� up to 112 Gb/s with

Pulse Amplitude Modulation 
(PAM)

� FPGAs with multi-Tbit/s IO 
bandwidth

(SERDES)

53



Components in a modern FPGA
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Programming techniques
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Fusible Links (not used in FPGAs)
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Antifuse Technology
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EPROM Technology

Intel, 1971

Erasable Programmable Read Only Memory
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EEPROM and FLASH Technology
Electrically Erasable Programmable Read Only Memory

59

EEPROM: erasable word by word
FLASH: erasable by block or by device

Erasure by “Fowler-Nordheim” Tunneling



SRAM-Based Devices

Multi-transistor SRAM cell

60



Programming a 3-bit wide LUT 
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Summary of Technologies

Used in most 
FPGAs

Rad-tolerant
(e.g. Alice)

Rad-tolerant
secure
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Major Manufacturers
� AMD Xilinx (formerly Xilinx) 

� First company to produce FPGAs in 1985

� About 55% market share, today

� SRAM based CMOS devices

� Intel FPGA (formerly Altera)

� About 35% market share

� SRAM based CMOS devices

� Microchip (Microsemi, Actel)

� Anti-fuse FPGAs

� Flash based FPGAs

� Mixed Signal

� Lattice Semiconductor

� SRAM based with integrated Flash PROM

� low power

(Formerly                 )

63

(Formerly                    )

Bought by AMD in 2022

Altera bought by Intel in 2015



Trends
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Ever-decreasing feature size

28 nm Xilinx Virtex-7 / Altera Stratix V

130 nm Xilinx Virtex-2
Widely used at LHC startup

� Higher capacity

� Higher speed

� Lower power 
consumption

16 nm Xilinx UltraScale +

7 nm Xilinx Versal ACAP(*)

14 nm Intel Stratix 10

7nm (2019)

(*) Adaptive Compute Acceleration Platform
65

Technology nodes < 28 nm are commercial names and do not represent any geometry of transistors.   



Trends
� Speed of logic keeps increasing

� Look-up-tables with more inputs (5 or 6)

� Speed of serial links increasing (multiple Gb/s)

� More integrated memory
� Integrated High Bandwidth Memory (HBM) in-package

� 10x faster than DDR4 (Xilinx: up to 8 GB, Intel: up to 16GB)

� More and more hard macro cores on the FPGA
� PCI Express

� Gen2: 5 Gb/s per lane
� Gen3: 8 Gb/s per lane    (typically up to 16 lanes)
� Gen4: 16 Gb/s per lane 

� 10 Gb/s, 40 Gb/s, 100 Gb/s Ethernet, 150 Gb/s Interlaken

� Sophisticated soft macros
� CPUs
� Gb/s MACs
� Memory interfaces (DDR2/3/4)

� Processor-centric architectures – see next slide
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System-On-a-Chip (SoC) FPGAs

Xlinix Zynq

Intel Stratix 10 SoC

CPU(s) + Peripherals + FPGA in one package 67



Adaptive Compute Acceleration Platform 
(ACAP)

Xlinix Versal

CPU(s) + Peripherals + FPGA + AI (Adaptable 
Intelligence)  Engines in one package 68

https://www.electronicdesign.com/markets/automation/video/21234012/electronic-design-versal-card-streamlines-acap-fpga-ai-development

Vector processor
(GPU like) 

FPGA
CPU



FPGA – ASIC comparison
FPGA

� A chip (the FPGA) is configured to
represent a digital circuit

� May be reprogrammed in the field 
(gateware upgrade)

� New features

� Bug fixes

� Rapid development cycle (minutes / 
hours)

� Only digital designs are possible

� Low development cost

� You can get started with a 
development board (< $100) and 
free software

� High-end FPGAs 
rather expensive

ASIC(*)
� A chip is produced in a foundry for a 

specific purpose 

� Design cannot be changed once it is 
produced

� Long development cycle (weeks / months)

� Analog designs possible

� Higher performance
� Speed, Area, Power

� Better radiation hardness

� Extremely high development cost
� ASICs are produced at a semiconductor 

fabrication facility (“fab”) according to your 
design

� Lower cost per device compared to FPGA, 
when large quantities are needed

69(*) Application Specific Integrated Circuit



FPGA design flow
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Design entry

� Graphical overview
� Can draw entire design
� Use pre-defined blocks

� Can generate blocks using loops
� Can synthesize algorithms
� Independent of design tool
� May use tools used in SW 

development (SVN, git …)

entity DelayLine is

generic (
n_halfcycles : integer := 2);

port (
x : in std_logic_vector;
x_delayed : out std_logic_vector;
clk : in std_logic);

end entity DelayLine;

Schematics Hardware description language
VHDL, Verilog

rarely used today
71



Hardware Description Language
� Looks similar to a programming language

� BUT be aware of the difference
� Programming language => translated into machine 

instructions that are executed by a CPU

� HDL => translated into gateware (logic gates & flip-flops)

� Common HDLs
� VHDL

� Verilog
� AHDL ( Altera specific )

� Newer trends
� C-like languages (handle-C, System C)

� Labview
� High Level Synthesis (HLS) from C/C++ 72



Example: VHDL
� Looks like a

programming
language

� All statements
executed in
parallel, except 
inside 
processes

Asynchronous logic
All signals in sensitivity list

Synchronous logic
Only clock (and reset) in sensitivity list

73



Schematics & HDL combined
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Design flow

Synthesis

Implementation
Map
Place & Route

Timing
Simulation

Behavioral 
Simulation

constraints Schematics

Programming file

Pins 
Timing
Area
…

IP Integrator
VHDL / Verilog

Counters
FIFOs
RAM …

Static Timing
Analysis

Commercial Intellectual 
Property cores

Processors
Interfaces
Controllers
…

State 
Machines
etc.

Register Transfer Level (RTL) model(*)

C/C++

High Level 
Synthesis

Net list

VHDL/Verilog

Always do this !

Always check this !

Specify timing 
constraints !

Very heavy, not often done.
(*) asynchronous logic + registers (=flip-flops)



Floorplan
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Manual Floor planning

� For large designs, manual 
floor planning may be necessary

Routing congestion
Xilinx Virtex 7 (Vivado)

77



Simulation
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Embedded Logic Analyzers

A great tool for debugging your design

79



FPGA applications
in the Trigger & DAQ domain
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First-Level Trigger at Collider

Delay
FIFO

De-
randomizer
FIFO

Full data
(fine grain)

Coarse grain data

First Level Trigger

Pipelined 
Logic

Trigger decision YES / NO
(for every beam crossing )

Fixed Latency
(= processing time
of the first 
level trigger)

N beam crossings

Timing: beam crossings

Latency should be short
In order to limit the length 
of the delay FIFOS

detector
LHC: 25 ns

81



Pipelined Logic

Combinatorial logic

Flip flop
Clocked with same clock as collider

1

Trigger 
decision
for beam
crossing

. . .

Processing
data from
beam
crossing

2

Processing
data from
beam
crossing

3

Processing
data from
beam
crossing

4

82



Pipelined Logic – a clock cycle later

Combinatorial logic

Flip flop
Clocked with same clock as collider

2

Trigger 
decision
for beam
crossing

. . .

Processing
data from
beam
crossing

3

Processing
data from
beam
crossing

4

Processing
data from
beam
crossing

5
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Why are FPGAs ideal for First-Level Triggers ?

� They are fast
� Much faster than discrete electronics

(shorter connections)

� Many inputs
� Data from many parts of the detector

has to be combined

� All operations are performed in parallel
� Can build pipelined logic

� They can be re-programmed
� Trigger algorithms can be optimized

Low latency

High 
performance

84



Trigger algorithms implemented in FPGAs
� Trigger

� Peak finding

� Pattern Recognition

� Track Finding

� Clustering / Energy summing

� Topological Algorithms (invariant mass)

� Vertex Finding

� Particle flow (reconstruction jets, etc. from individual particle tracks)

� Inference with Neural Networks

� Many more …

� Trigger Control system
� Fast (busy) signal merging & monitoring

� Generation of random triggers

� Generation of calibration sequences

� Automatic recovery sequences

� Monitoring (dead times, rates, …) 85



Neural Networks in Trigger

� Principle
� Node is assigned a value based 

on the weighted sum of nodes in 
the previous layer

� Maps well to DSP resources in 
FPGA (multiplier + adder)

� Applications:
� Jet classification
� Assignment of transverse 

momentum based on many 
measurements

� Topological trigger

� …

� Tools
� Many commercial tools 
� hls4ml (optimized for latency)

� Firmware generation from 
high-level model using Vivado
HLS

By Glosser.ca - Own work, Derivative of File:Artificial neural network.svg, CC 
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=24913461

One or many hidden layers
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CMS Global Muon Trigger

� The CMS Global Muon trigger received 16 muon 
candidates from the three muon systems of CMS

� It merged different measurements for the same muon 
and found the best 4 over-all muon candidates 

� VME card (9U)

� Input: ~1000 bits 
@ 40 and 80 MHz

� Output: ~50 bits @ 80MHz

� Processing time: 250 ns

� Pipelined logic
one new result every 25 ns

� 10 Xilinx Virtex-II FPGAs

� up to 500 user I/Os per chip

� Up to 25000 LUTs per chip 
used

� Up to 96 x 18kbit RAM used

� In use in the CMS trigger  
2008-2015

87



CMS Global Muon Trigger main FPGA

88



µTCA board for Run 2&3 
CMS trigger based on Virtex 7

Virtex 7 with 690k logic cells
80 x 10 Gb/s transceivers bi-directional
72 of them as optical links on front panel

0.75 + 0.75 Tb/s
Being used in the CMS trigger since 2015

MP7, Imperial College

360 Gb/s
36 x

10 Gb/s

Rx
Tx

Rx
Tx

Input/output: 
up to 14k bits per 40 MHz clock

Same board used for different functions 
(different gateware)
Separation of framework + algorithm fw89



CMS ATCA Trigger boards for HL-LHC (2029+)

� Few types of generic boards, ATCA standard

� Xilinx Virtex/Kintex Ultrascale+ FPGAs (> 3 million logic cells / FPGA)

� 25-28 Gb/s optical links
� SoC FPGAs used for board control (on some boards)

� Advanced firmware algorithms
� Vertex finding
� Particle flow 
� Neural network classifiers

Serenity, UK

90

120 x
25 Gb/s

APX, US



FPGAs in Data Acquisition
� Frontend Electronics

� Pedestal subtraction

� Zero suppression

� Compression

� Buffering …

� Custom data links

� E.g. SLINK-64 over copper
� Several serial LVDS links in parallel

� Up to 400 MB/s

� SLINK/SLINK-express over optical

� Interface from custom hardware to commercial electronics

� PCI/PCIe, VME bus, Myrinet, 10/40/100 Gb/s Ethernet etc.
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C-RORC (Alice) / Robin NP (ATLAS) for Run-2

Xilinx Virtex-6 FPGA

SLINK (ATLAS)
DDL (ALICE)

92

Custom data 
link in

Commercial PCIe 
link out (DMA to host memory)



CMS Front-end Readout Link (Run-1)

� Front-end Readout Link Card
� 1 main FPGA (Altera)
� 1 FPGA as PCI interface
� Custom Compact PCI card
� Receives 1 or 2 SLINK64
� 2nd CRC check
� Monitoring, Histogramming
� Event spy

Commercial Myrinet Network 
Interface Card on internal PCI bus

� SLINK Sender Mezzanine 
Card: 400 MB / s
� 1 FPGA (Altera)
� CRC check
� Automatic link test

93

Custom 
data 
link in

Interface to 
commercial 
HW

Custom 
data 
link out

Custom 
interface to
backend 
electronics 



CMS Readout Link for Run-2&3 in use 
since 2015

Myrinet NIC 
replaced by 
custom-built
card 
(“FEROL”)

FEROL  (Front End Readout Optical Link)
Input: 1x or 2x SLINK (copper)

1x or 2x 5Gb/s optical
1x 10Gb/s optical 

10 Gb/s TCP/IP

Output:  10 Gb/s Ethernet optical
TCP/IP sender in FPGA

Cost effective solution 
(need many boards)
Rather inexpensive FPGA
+ commercial chip to combine
3 Gb/s links to 10 Gb/s SLINK-64 input

LVDS / copper 
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FEROL  (Front End Readout Optical Link)
Input: 1x or 2x SLINK (copper)

1x or 2x 5Gb/s optical
1x 10Gb/s optical 

10 Gb/s TCP/IP

10 Gb/s SLINK Express
5 Gb/s SLINK Express
5 Gb/s SLINK Express

Output:  10 Gb/s Ethernet optical
TCP/IP sender in FPGA

SLINK-64 input
LVDS / copper 
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CMS Readout Link for Run-2&3 in use 
since 2015

Custom data 
link in

Commercial 
data link out



PCIe40 – LHCb and ALICE Run-3

J.P. Cachemiche, ACES 2018
96

Custom data 
link in

Direct Memory Access
transfer to host memory

Clock, 
control



CMS DTH (DAQ and Timing Hub) for HL-LHC (2029+)

� ATCA board using Xilinx Virtex Ultrascale + FPGAs

� One or two DAQ units per board
� Up to 24 inputs at 25 Gb/s
� 5x 100 Gb/s Ethernet to commercial network
� TCP/IP in FPGA

� Board contains switch for control network 97

DTH prototype 2
Main board

Rear 
transition 
module

Custom data 
link in

Commercial 
data link 
(TCP/IP) out

Clock & control distribution 
via backplane

Clock & control 
uplink

Zynq SoC FPGA 
for control

DAQ FPGA



FPGAs in other domains
� Machine Learning 

Inferencing

� Automotive Driver Assist 
(Image Processing)

� 5G Wireless

� Medical imaging

� Speech recognition

� Cryptography

� Bioinformatics 
(Genome sequencing)

� Aerospace / Defense

� ( Bitcoin mining )

� ASIC Prototyping

� Compute accelerators
� Accelerator cards

� Server processors w. FPGA
� Financial
� Video transcoding
� …
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Lab Session 5: Programming an FPGA

You are going to design the digital electronics inside this FPGA !
99



Lab Session 13: System-on-a-chip FPGA

Design the digital electronics and software in this SoC FPGA!
100

PYNQ-Z2 board
Xilinx Zynq w. dual-core ARM



Thank you
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Reference Material
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Top-of-the-line Xilinx devices 
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FPGA count  in CMS trigger for HL-LHC
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History
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Long long time ago …
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Simple Programmable Logic Devices (sPLDs)
a) Programmable Read Only Memory (PROMs)

Unprogrammed PROM (Fixed AND Array, Programmable OR Array)

Late 60’s
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Programmable AND array

1975Most flexible
but slower

Unprogrammed PLA (Programmable AND and OR Arrays)

Simple Programmable Logic Devices (sPLDs)
b) Programmable Logic Arrays (PLAs)

113



Unprogrammed PAL (Programmable AND Array, Fixed OR Array)

Simple Programmable Logic Devices (sPLDs)
c) Programmable Array Logic (PAL)
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Complex PLDs (CPLDs)

Coarse grained
100’s of blocks, restrictive structure
(EE)PROM based 

and flip-flops
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FPGAs …
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Timing
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Design Considerations (SRAM Config.)
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Configuration at power-up

FPGA
( SRAM based )

Flash
PROM

Serial bit-stream
(may be encrypted)

stores
single or 
multiple 
designs

Typical FPGA configuration time: milliseconds
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Programming via JTAG 

FPGA
( SRAM based )

Flash
PROM

JTAG
connector

JTAG is a serial bus that can be used to
- Program Flash PROMs
- Program FPGAs
- Read / write the status of all FPGA I/Os

( = Boundary scan )
...

Joint Test Action Group
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Remote programming

FPGA
( SRAM based )

Flash
PROM

...

FPGA PCI, VME

The JTAG bus may be driven by an FPGA
which contains an interface to a host PC 
via PCI or VME

gateware can then be updated remotely

JTAG bus
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Timing

122



Timing
� Timing in FPGA design is critical
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Data paths must respect setup and hold times

� Setup time is the amount of time required for the input 
to a Flip-Flop to be stable before a clock edge. Hold 
time is similar to setup time, but it deals with events 
after a clock edge occurs.

Manoel Barros Marin, ISOTDAQ, https://indico.cern.ch/event/828931/ 
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Timing
� Timing in FPGA design is critical

Manoel Barros Marin, ISOTDAQ, https://indico.cern.ch/event/828931/ 
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Timing
� Timing in FPGA design is critical

� If signals do not arrive at destination on time
� Catastrophic consequences 126



Timing
� Always use dedicated clock networks to distribute clocks

� Assures that clock is seen at all FFs at same time

� Other clocking resources
� Clock capable pins

� Clock buffers

� Clock Multiplexers

� Phase Locked Loops

� Digital Clock Managers

� Do not gate or derive clocks

Manoel Barros Marin, ISOTDAQ, https://indico.cern.ch/event/828931/ 
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Meeting timing closure

� Place & route step will try to position registers (flip-flops) and logic so that data path delays 
respect setup and hold times

� Options to meet timing

� Instruct Place & route to use higher effort level

� Add register stages & reduce amount of logic in data path (increases latency)

� Choose location of inputs and outputs (at board design, or through optical patch panel)

� Placement (area) constraints (give hints to the place & route step)

� Good practice
� Whenever possible use I/O flip –flops (i.e FFs inside input/output cells)

� Ensures timing with respect to external components is respected 128


