

Introduction to Field Programmable Gate Arrays

Hannes Sakulin CERN / EP-CMD

International School of Trigger and Data Acquisition 2024

USTC Hefei, China, 20 June 2024

What is a Field Programmable Gate Array? ... a quick answer for the impatient

- An FPGA is an integrated circuit
 - Mostly digital electronics
- An FPGA is programmable in the in the field (=outside the factory), hence the name "field programmable"
 - Circuit design is specified with a hardware description language or schematics
 - Tools compute a programming file for the FPGA (bitstream)
 - The FPGA is configured with the design (gateware / firmware)
 - Your electronic circuit is ready to use

With an FPGA you can build electronic circuits without using a bread board or soldering iron ... without plugging together NIM modules ... without having a chip produced at a factory

Outline

- Quick look at digital electronics
- FPGAs and their features
- Programming techniques
- Design flow
- Example Applications in the Trigger and DAQ domain

The basic elements of digital electronics

The building blocks: logic gates

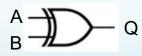
Truth table

C equivalent

AND gate

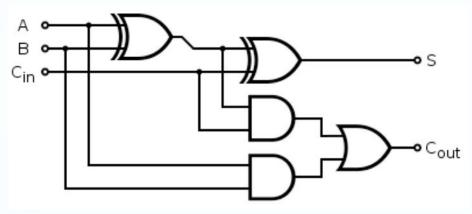
INPUT		OUTPUT	
Α	В	A AND B	
0	0	0	
0	1	0	
1	0	0	
1	1	11	

q = a && b;


OR gate

INPUT A B		OUTPUT A+B
0	0	0
0	1	1
1	0	1
1	1	1

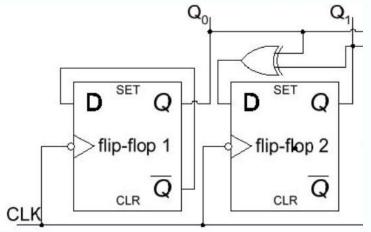
 $q = a \parallel b$;


Exclusive OR gate XOR gate

INP A		OUTPUT A XOR B		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

q = a != b;

Combinatorial logic (asynchronous)

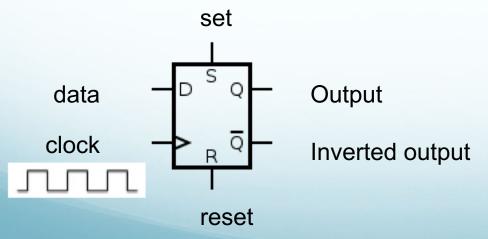

Outputs are determined by Inputs, only

Example: Full adder with carry-in, carry-out

A	В	Cin	S	Cout
0	0	0	0	0
1	0	0	1	0
0	1	0	1	0
1	1	0	0	1
0	0	1	1	0
1	0	1	0	1
0	1	1	0	1
1	1	1	1	1

Combinatorial logic may be implemented using Look-Up Tables (LUTs)

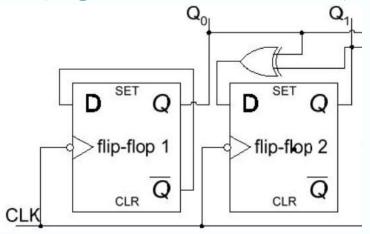
(Synchronous) sequential logic



Outputs are determined by Inputs and their history (Sequence) The logic has an internal state

Example: 2-bit binary counter

https://www.zeepedia.com/read.php?b=9&c=32&d_flip-flop_based_implementation_digital_logic_design


Element that keeps the state: Flip-flop

D Flip-flop (D=data, delay): samples the data at the rising (or falling) edge of the clock

The output will be equal to the last sampled input until the next rising (or falling) clock edge

(Synchronous) sequential logic


Outputs are determined by Inputs and their history (Sequence) The logic has an internal state

Example: 2-bit binary counter

https://www.zeepedia.com/read.php?b=9&c=32&d_flip-flop_based_implementation_digital_logic_design

	Flip-flop 1		1	Flip-flop 2			
time	D	Q	Q'	$D=Q_0 \text{ xor } Q_1$	Q	Q ₁	Q_0
Before clock edge 1	1	0	1	0	0	0	0
after clock edge 1	0	1	0	1	0	0	1
after clock edge 2	1	0	1	1	1	1	0
after clock edge 3	0	1	0	0	1	1	1
after clock edge 4	1	0	1	0	0	0	0

Synchronous sequential logic

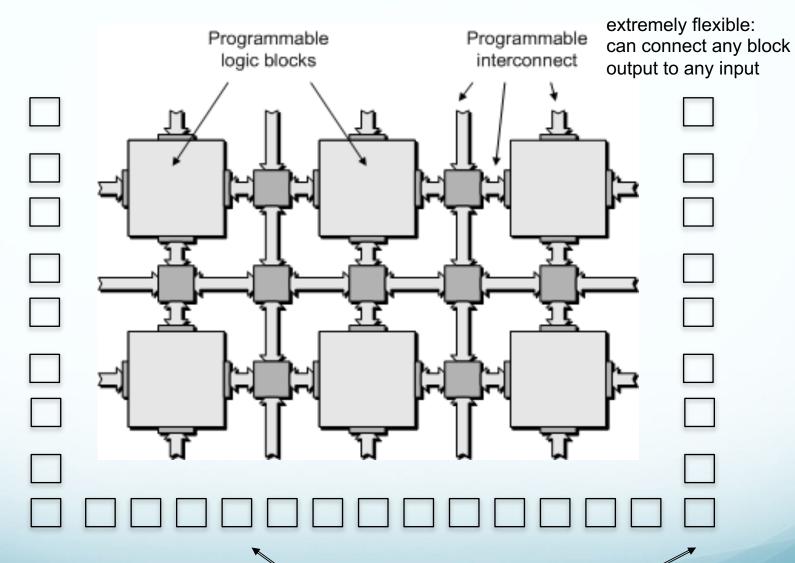
Signal processor

Trigger logic

Data compression logic

Network Interface Card

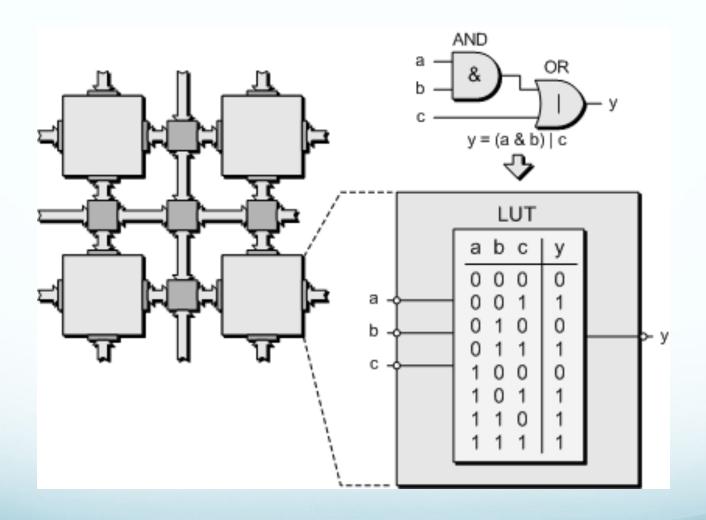
Neural net classifier

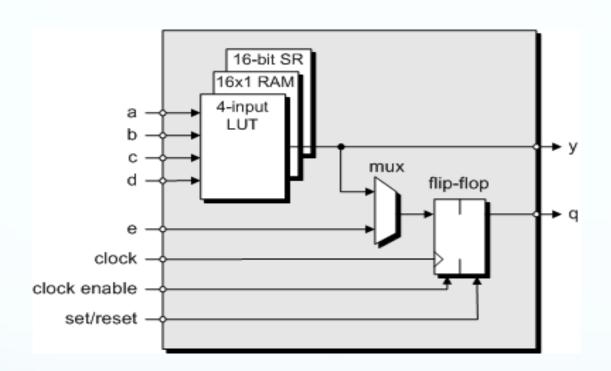


Using Look-Up-Tables and Flip-Flops any kind of digital electronics may be implemented

Of course electronics design is an art in itself ...

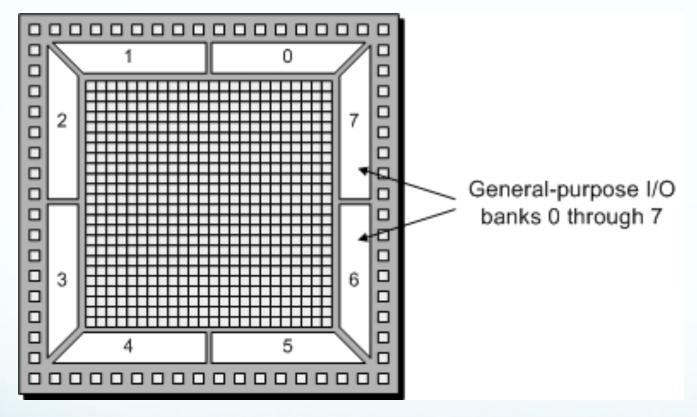
What is inside an FPGA?


Basic elements of an FPGA


Fine-grained: 10.000's up to millions of logic blocks

Programmable Input / Output pins

LUT-based Fabrics

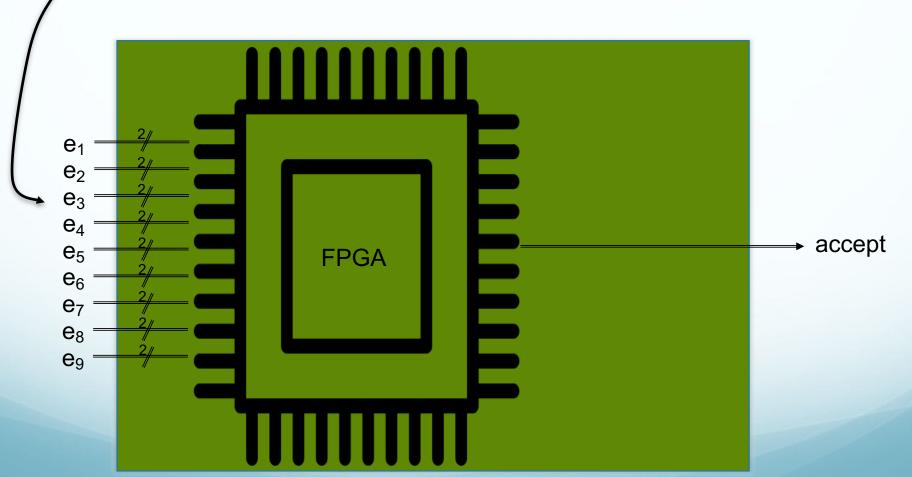

Typical LUT-based Logic Cell

Xilinx: logic cell, Altera: logic element

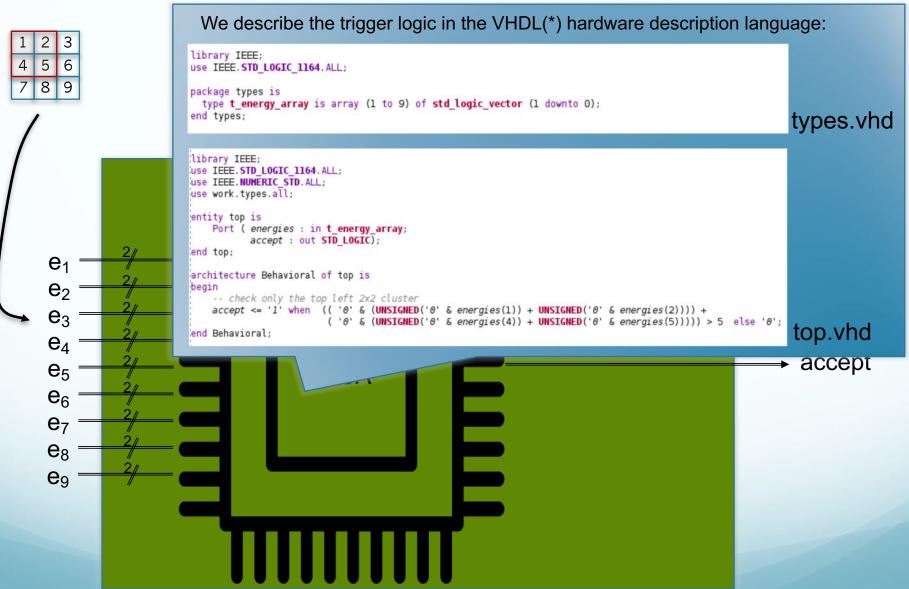
- LUT may implement any function of the inputs
- Flip-Flop registers the LUT output
- May use only the LUT or only the Flip-flop
 LUT may alternatively be configured a shift register
 Additional elements (not shown): fast carry logic

General-Purpose Input/Output (GPIO)

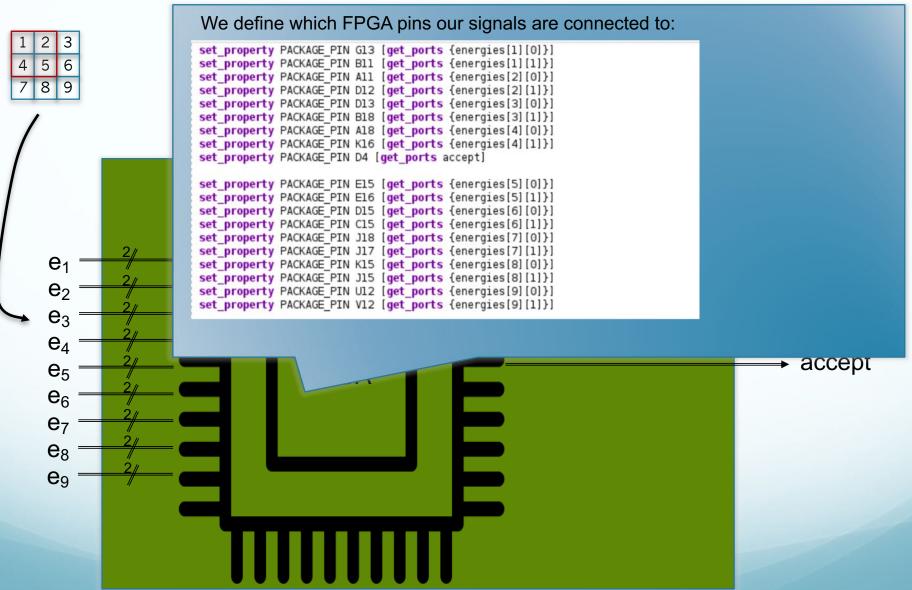
Today: Up to >1000 user I/O pins Input and / or output Voltages from (1.0), 1.2 .. 3.3 V Many IO standards

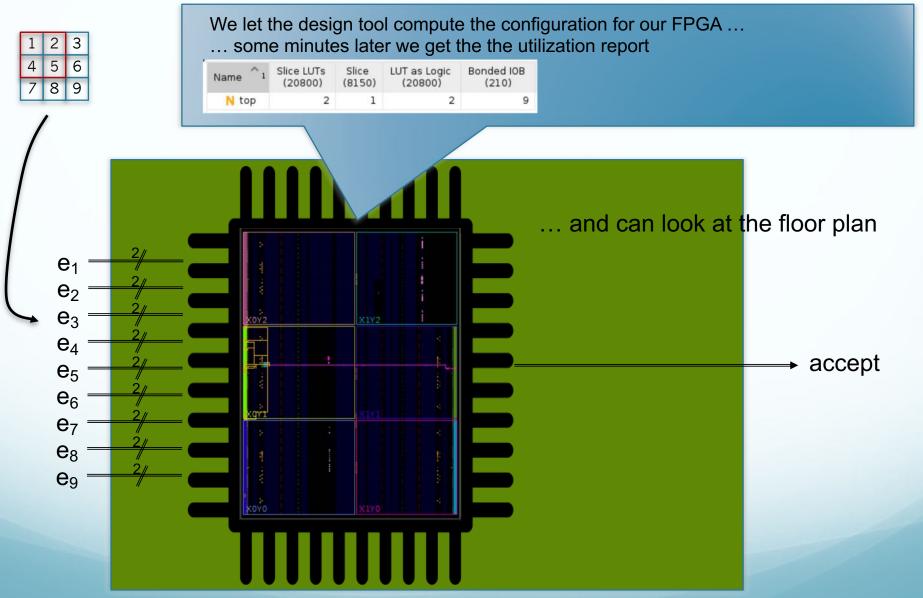

Single-ended: LVTTL, LVCMOS, ... 14

Differential pairs: LVDS, ...

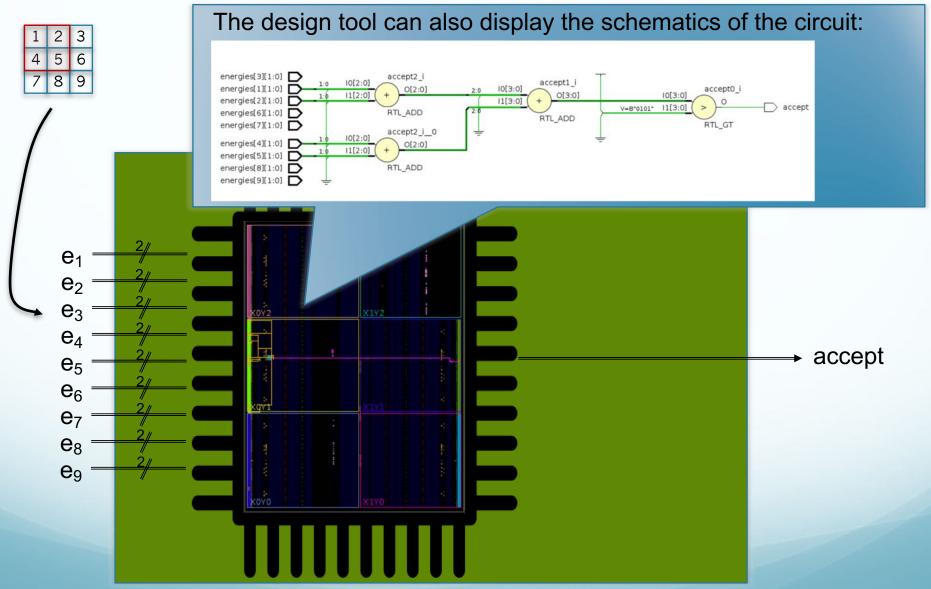

A toy example

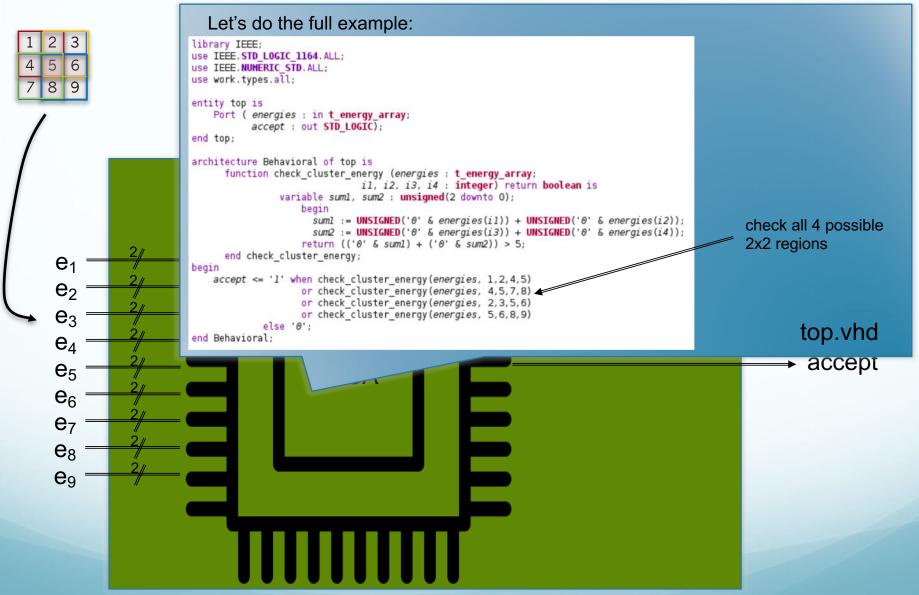
Toy example: trigger on energy cluster


1 2 3 4 5 6 7 8 9 Say, we have a 3x3 pixel detector Each pixel can measure deposited energy with 2 bit resolution Trigger condition: the sum of energies deposited in a 2x2 pixel area exceeds 5 counts.

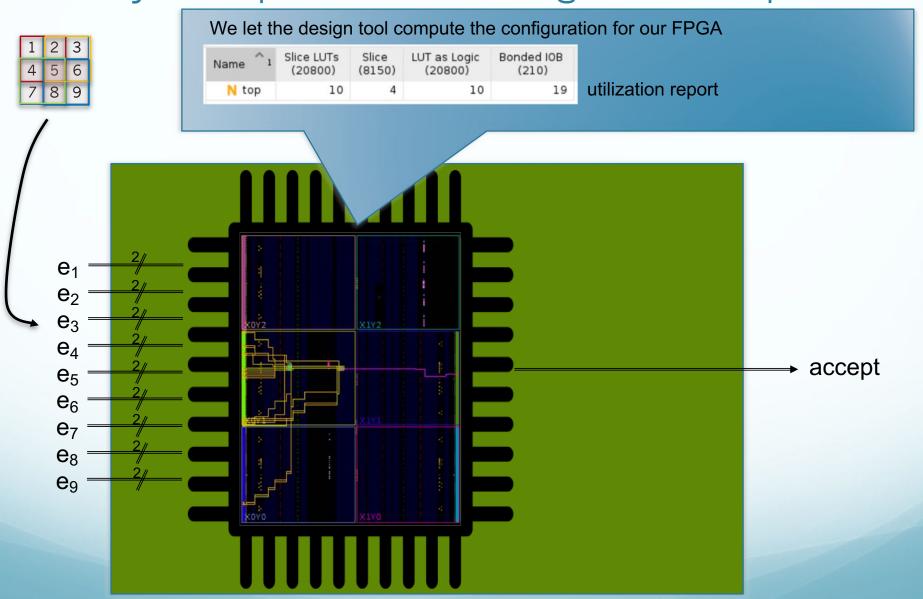

Toy example: VHDL code

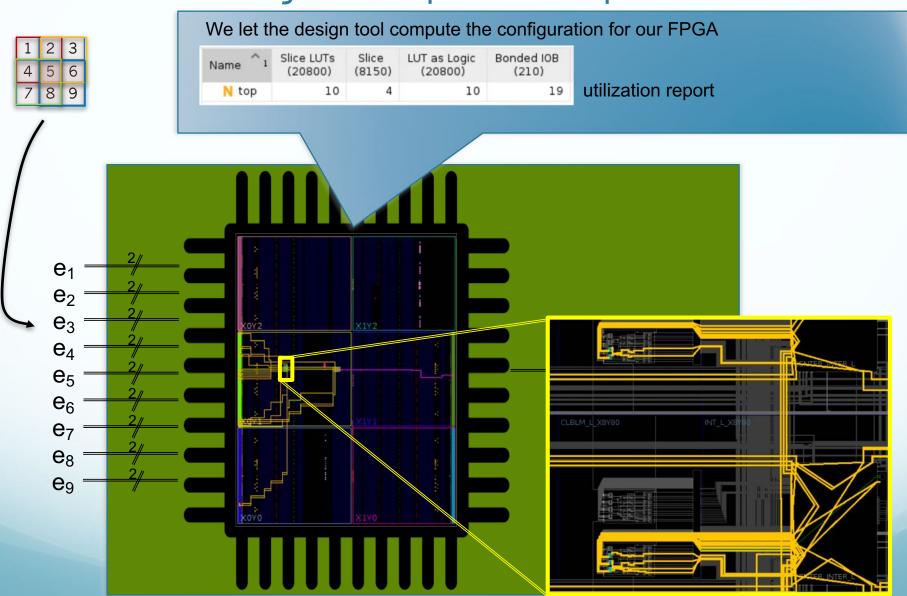
Toy example: constraints

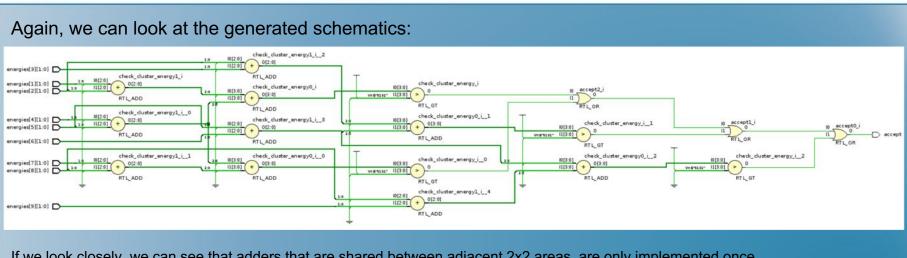

Toy example: timing and floorplan

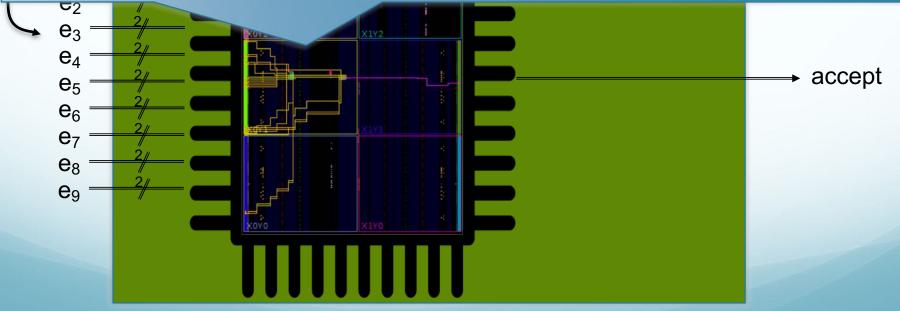

Toy example: floorplan 5 8 m e_1 e_2 e_3 e_4 e_5 e_6 e_7 e₈ **e**₉

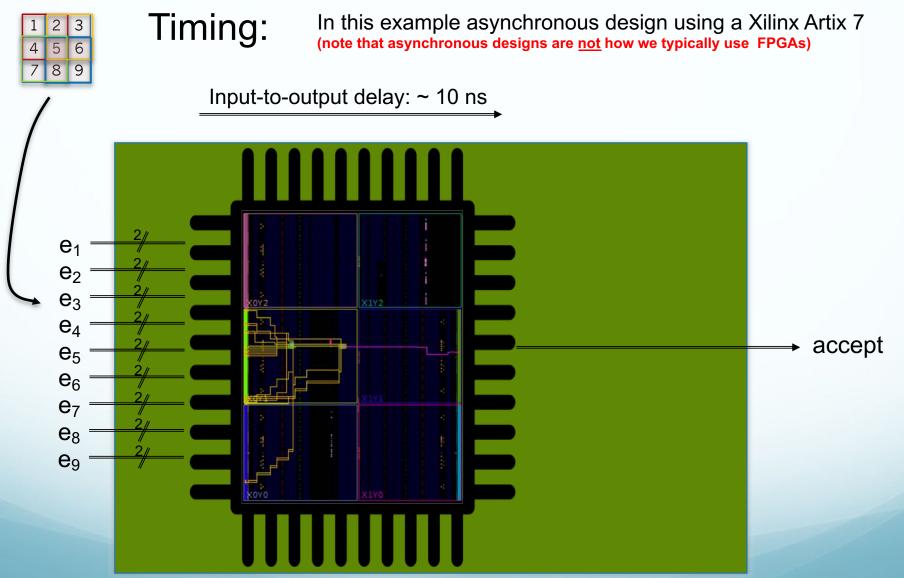
Toy example: floorplan 5 8 e_1 e_2 e_3 e_4 e_5 e_6 e_7 e₈ **e**₉ SLICE_X0Y79 (SLICEL)

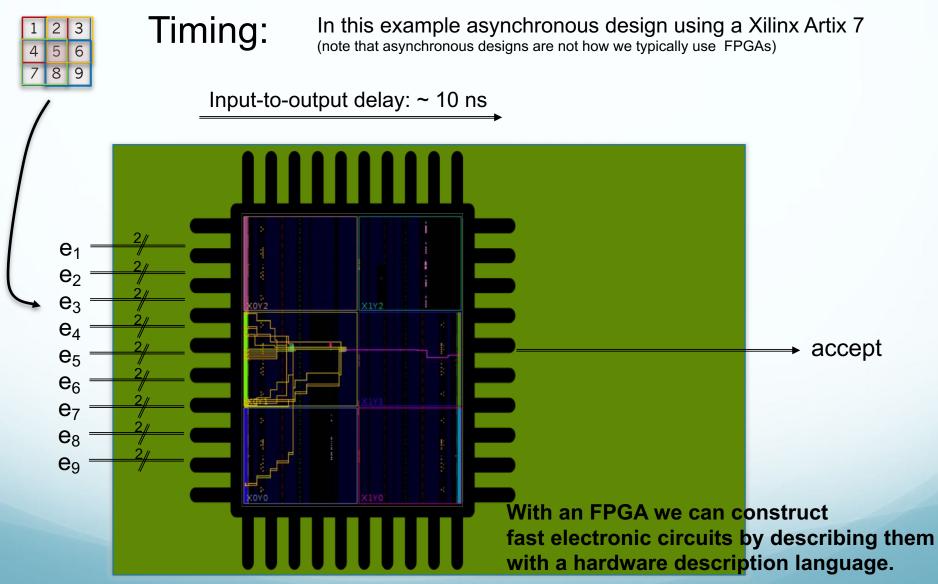

Toy example: Register Transfer Level (RTL) design

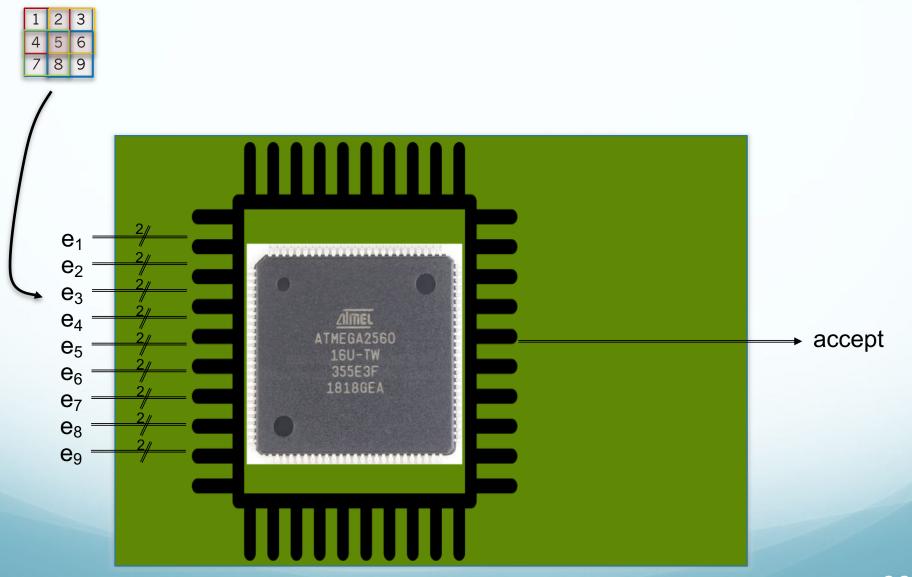

Toy example: Full example, 4 possible clusters

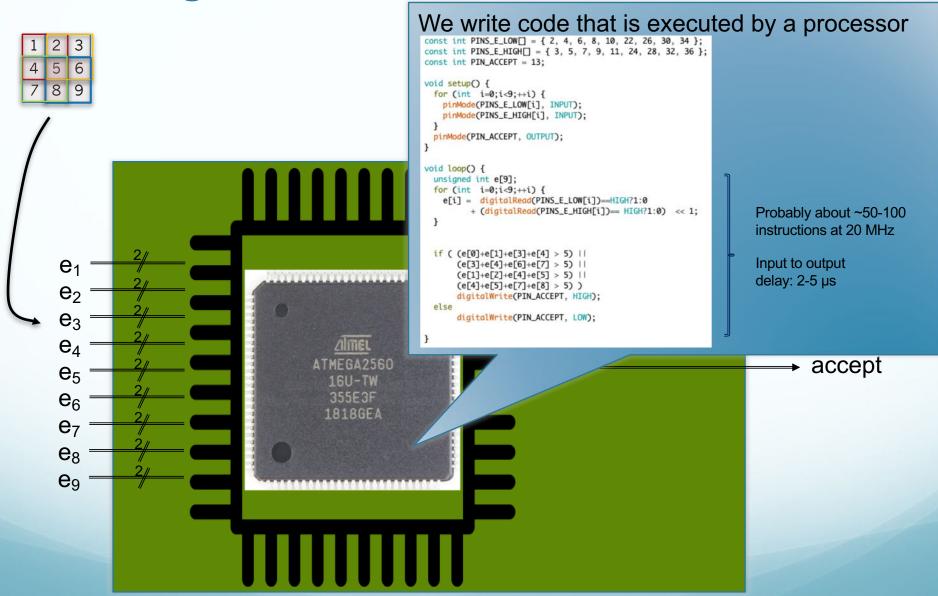

Toy example: resource usage and floorplan


Toy example: floorplan


Toy example: RTL design


If we look closely, we can see that adders that are shared between adjacent 2x2 areas, are only implemented once.

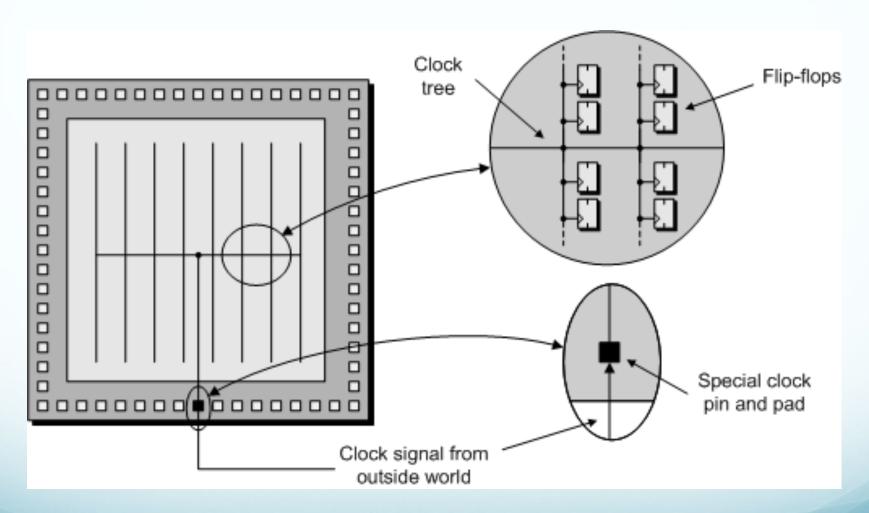

Toy example: Timing


Toy example: Timing

Doing the same with a microcontroller

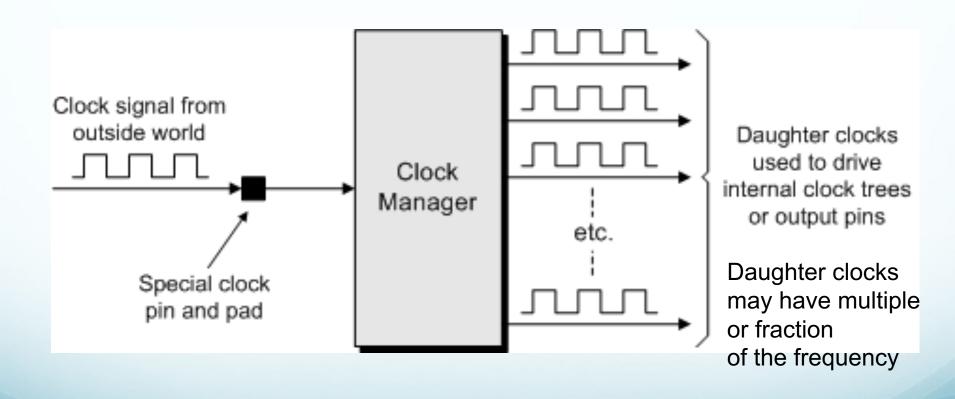
Doing the same with a microcontroller

Microcontroller vs FPGA

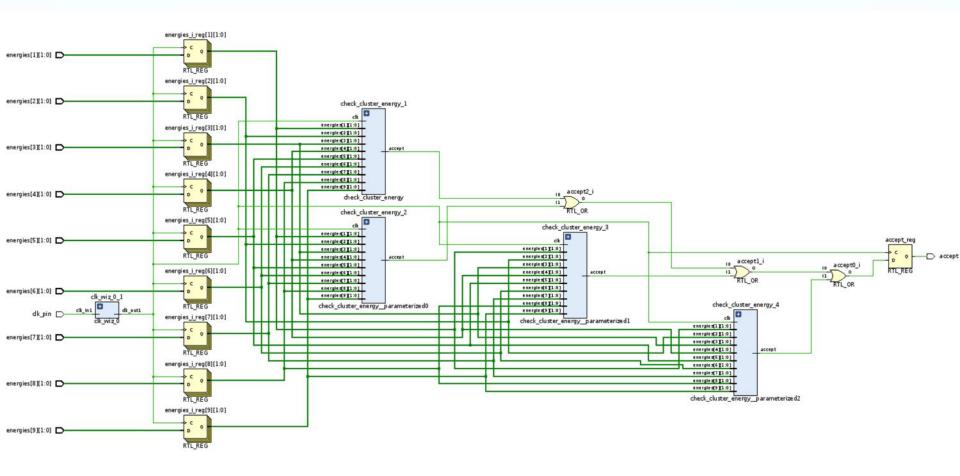

	μC / CPU	FPGA		
Principle of operation	Source code is translated to machine instructions and executed by CPU	Hardware Description Language is translated to configuration of FPGA, defining an electronic circuit		
Processing time	Microseconds	10's of nanoseconds		

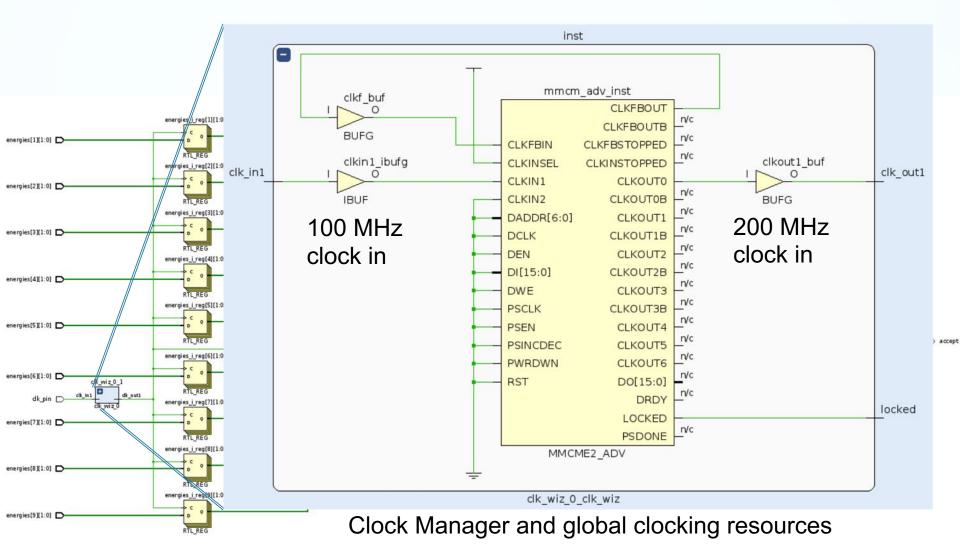
A closer look at FPGAs

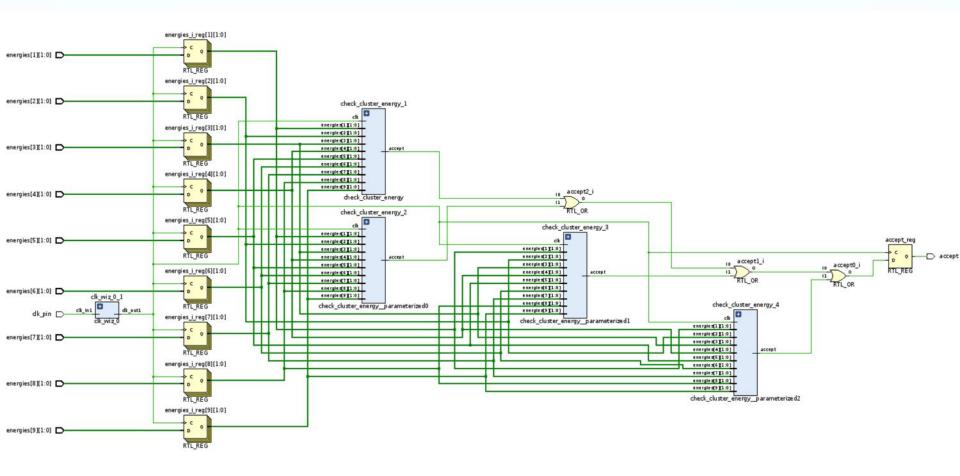
Additional elements in an FPGA

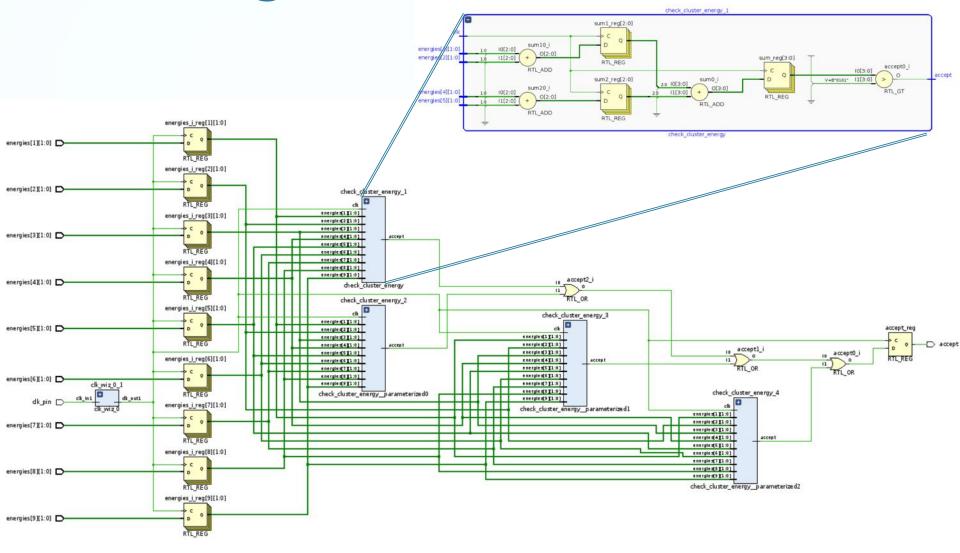

- Besides logic cells and interconnect (distributed logic)
 we have additional elements in an FPGA:
 - Either to provide functions that cannot be implemented with distributed logic (because the logic would be too slow)
 - Clock resources, clock Managers
 - Gigabit transceivers
 - ...
 - Or to provide functionality that could also be implemented with distributed logic, but is more efficiently(*) implemented as a hard macro (in silicon)
 - Multipliers, DSPs
 - RAM
 - Processors

Clock Trees

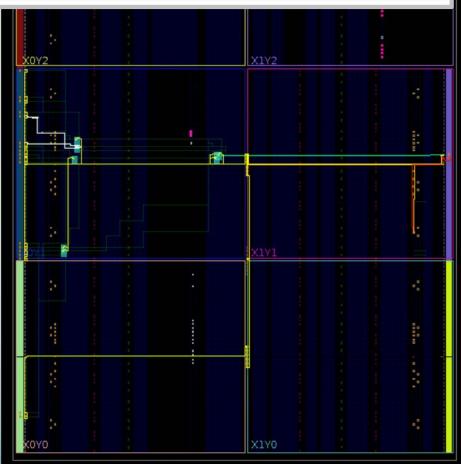


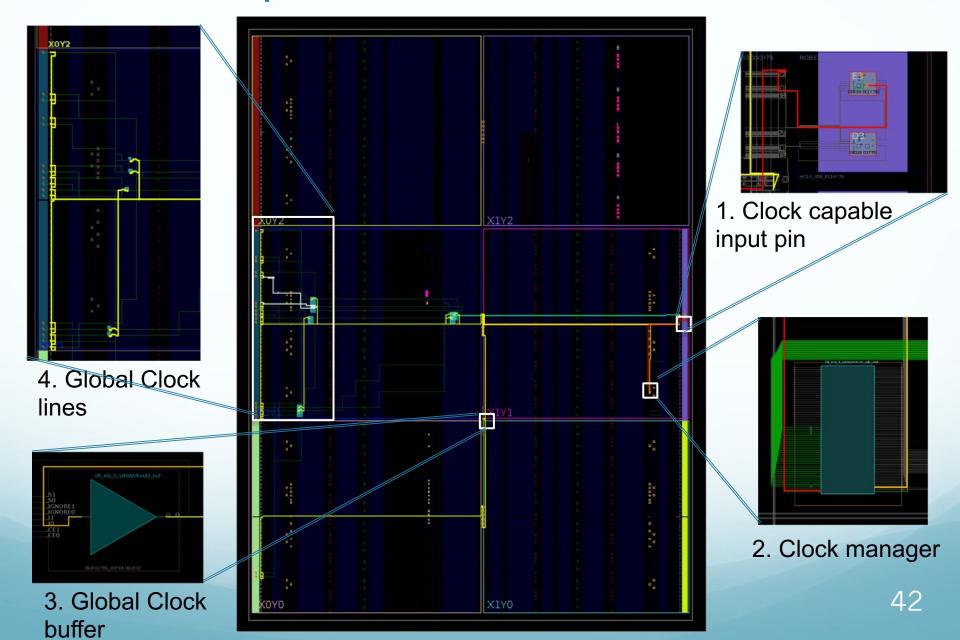

Typical FPGA designs use one or multiple clocks
Clock trees guarantee that the clock arrives at the same time at all flip-flops
Typical fabric clock 10's to 100's of MHz up to ~ 1 GHz

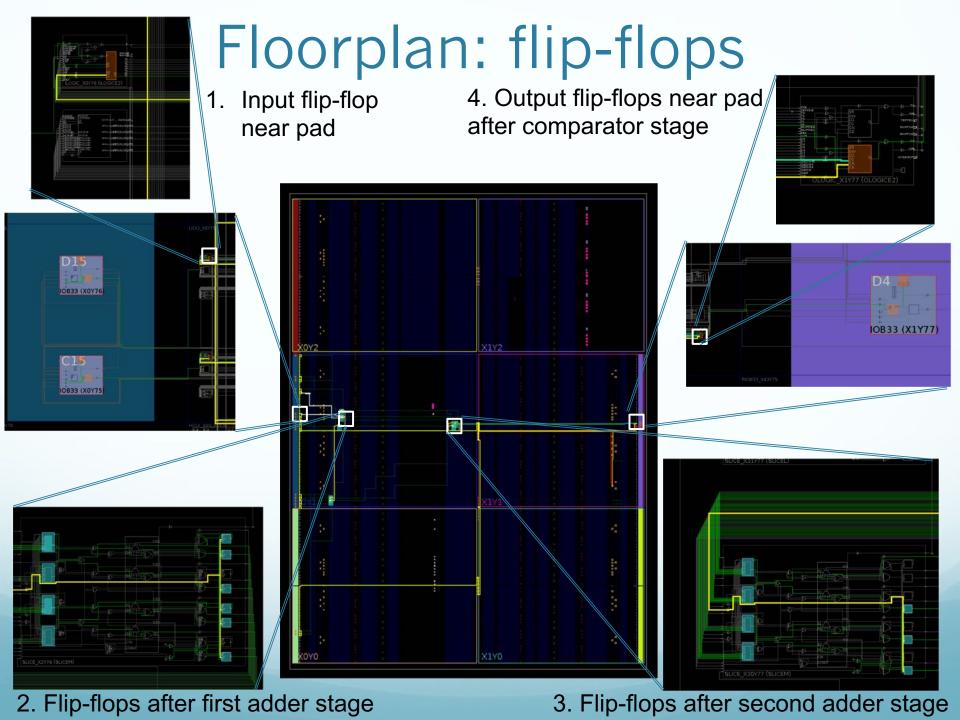

Clock Managers



Our toy example with clock






Resource usage & floorplan

Name ^1	Slice LUTs (20800)	Slice Registers (41600)	Slice (8150)	LUT as Logic (20800)	Bonded IOB (210)	(210)	OLOGIC (210)	BUFGCTRL (32)	MMCME2_ADV (5)
N top	27	30	10	27	20	18	1	2	1
<pre>check_cluster_energy_1 (check_cluster_energy)</pre>	9	9	5	9	0	0	0	0	0
<pre>[] check_cluster_energy_2 (check_cluster_energy_parameterized0)</pre>	5	6	2	5	0	0	0	0	0
<pre>[] check_cluster_energy_3 (check_cluster_energy_parameterized1)</pre>	8	9	3	8	0	0	0	0	0
check_cluster_energy_4 (check_cluster_energy_parameterized2)	5	6	2	5	0	0	0	0	0
> [clk_wiz_0_1 (clk_wiz_0)	0	0	0	0	0	0	0	2	1

Floorplan: clock resources

VHDL code

3) Instantiate cluster energy check module

```
entity top is
   Port ( energies : in t_energy_array;
          accept : out STD LOGIC;
          clk pin : in std logic);
end top;
architecture Behavioral of top is
     component clk wiz 0 is
       port (
         clk out1 : out STD LOGIC;
         locked : out STD LOGIC;
         clk in1 : in STD LOGIC);
     end component clk wiz 0;
     component check cluster energy is
       generic (
         il, i2, i3, i4 : integer);
       port (
         energies : in t energy array;
         accept : out STD LOGIC;
                  : in std logic):
         clk
     end component check cluster energy;
     signal clk, locked : std logic;
     signal energies i : t energy array;
     signal accept1, accept2, accept3, accept4 : std logic;
begin
 clk wiz 0 1: entity work.clk wiz 0
   port map (
     clk outl => clk,
     locked => locked.
     clk in1 => clk pin);
  reg inputs: process (clk) is
  begin
   if rising edge(clk) then
     energies i <= energies;
   end if:
  end process reg inputs;
```

```
check cluster energy 1: entity work.check cluster energy
   generic map (
     il => 1,
     i2 => 2,
     i3 => 4,
     i4 => 5)
   port map (
     energies => energies i,
     accept => accept1,
     clk
              => clk):
   check cluster energy 2: entity work.check cluster energy...
   check cluster energy 3: entity work.check cluster energy...
   check_cluster_energy_4: entity work.check_cluster_energy...
  reg output: process (clk) is
 begin
   if rising edge(clk) then
     accept <= accept1 or accept2 or accept3 or accept4;
   end if;
                                         4) Clocked process:
  end process reg output;
                                         register OR of
end Behavioral;
                                         Cluster checks
```

- 1) Instantiate clocking logic
- Customized firmware block produced by FPGA design tool
- Also called IP (Intellectual Property) Core
- 2) Clocked process: register inputs

VHDL code – cluster energy check

```
entity check cluster energy is
 generic (il, i2, i3, i4: integer);
 port (energies : in t energy array;
       accept : out STD LOGIC;
       clk : in std logic);
end entity check cluster energy;
architecture Behavioral of check cluster energy is
                                                                Inside clocked process:
 signal sum1, sum2 : UNSIGNED(2 downto 0);
                                                                <= assignment creates flip-flop
 signal sum : UNSIGNED (3 downto 0);
begin -- architecture Behavioral
pl: process (clk) is
   begin -- process pl
     if clk'event and clk = '1' then -- rising clock edge
       suml <= UNSIGNED('0' & energies(i1)) + UNSIGNED('0' & energies(i2));</pre>
       sum2 <= UNSIGNED('0' & energies(i3)) + UNSIGNED('0' & energies(i4));</pre>
       sum <= UNSIGNED('0' & suml) + UNSIGNED('0' & sum2);
     end if;
   end process pl;
   accept <= '1' when sum > 5 else '0';
end architecture Behavioral:
```

Outside process: asynchronous logic

Constraints

```
set property PACKAGE_PIN V12 [get_ports {energies[9][1]}]
set property PACKAGE PIN E3 [get ports clk pin]
                        [get ports {energies[1][0]}]
set property IOB true
set property IOB true
                        [get ports {energies[1][1]}]
set property IOB true
                        [get ports {energies[2][0]}]
                        [get ports {energies[2][1]}]
set property IOB true
set property IOB true
                        [get ports {energies[3][0]}]
set property IOB true
                        [get ports {energies[3][1]}]
set property IOB true
                        [get ports {energies[4][0]}]
                        [get ports {energies[4][1]}]
set property IOB true
                        [get ports {energies[5][0]}]
set property IOB true
set property IOB true
                        [get ports {energies[5][1]}]
                        [get ports {energies[6][0]}]
set property IOB true
                        [get ports {energies[6][1]}]
set property IOB true
                        [get ports {energies[7][0]}]
set property IOB true
                        [get ports {energies[7][1]}]
set property IOB true
set property IOB true
                        [get ports {energies[8][0]}]
set property IOB true
                        [get ports {energies[8][1]}]
                        [get ports {energies[9][0]}]
set property IOB true
                        [get ports {energies[9][1]}]
set property IOB true
set_property IOB true [get ports accept]
```

Assign clock pin
Use input/output flip-flops

Timing

100 MHz clock at pin

```
∨ □ clk pin (100.00 MHz) (drives 50 loads)

   ∨ P clk pin
       V ■ I (clk wiz 0 1/inst/clkin1 ibufg/l)

√ □ clkin1 ibufg (IBUF)

√ ■ O (clk wiz 0 1/inst/clkin1 ibufg/0)

√ 

∫ clk in1 clk wiz 0 (clk wiz 0 1/inst/clk in1 clk wiz 0)

                     ✓ D CLKIN1 (clk wiz 0 1/inst/mmcm adv inst/CLKIN1)

✓ ■ mmcm adv inst (MMCME2 ADV)

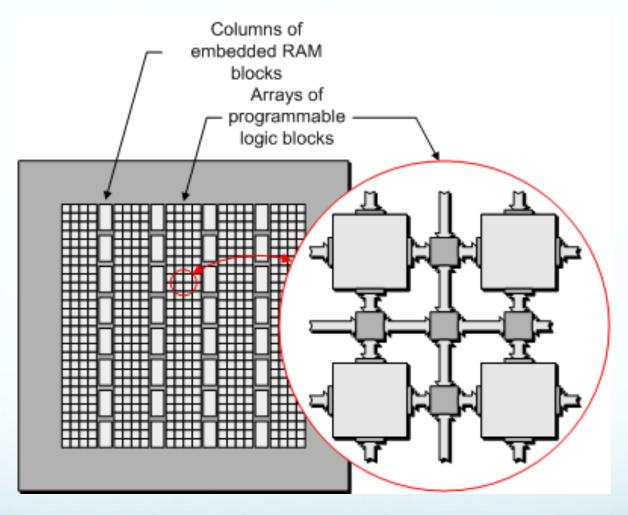
                            U clk_out1_clk_wiz_0 (200.00 MHz) (drives 49 loads)

√ (CLKOUTO (clk wiz 0 1/inst/mmcm adv inst/CLKOUTO)

                                   v _ clk_out1_clk_wiz_0 (clk_wiz_0_1/inst/clk_out1_clk_wiz_0)
                                       V ■ I (clk wiz 0 1/inst/clkout1 buf/I)

✓ ■ clkout1 buf (BUFG)

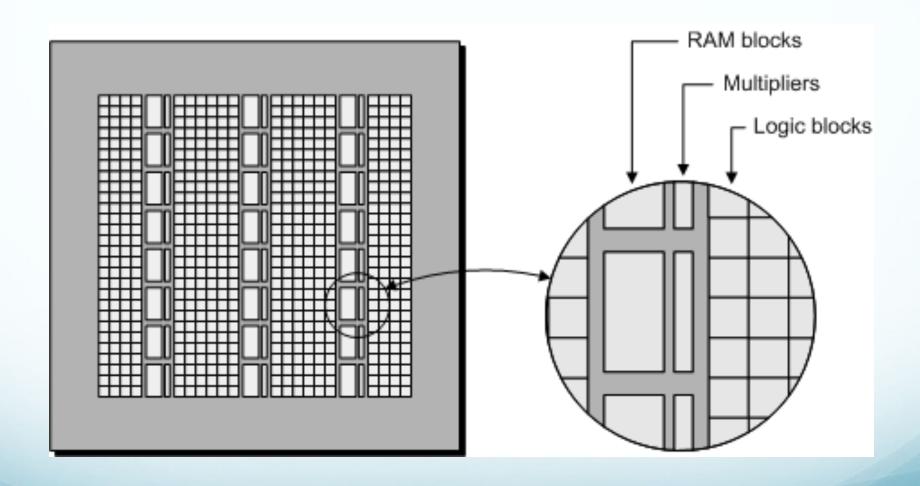
√ ■ O (clk wiz 0 1/inst/clkout1 buf/0)
                                                 v _ clk_out1 (clk_wiz_0_1/inst/clk_out1)
                                                     > FDRE (49 loads)
```


200 MHz internal clock (we set this as a parameter to the clock manager)

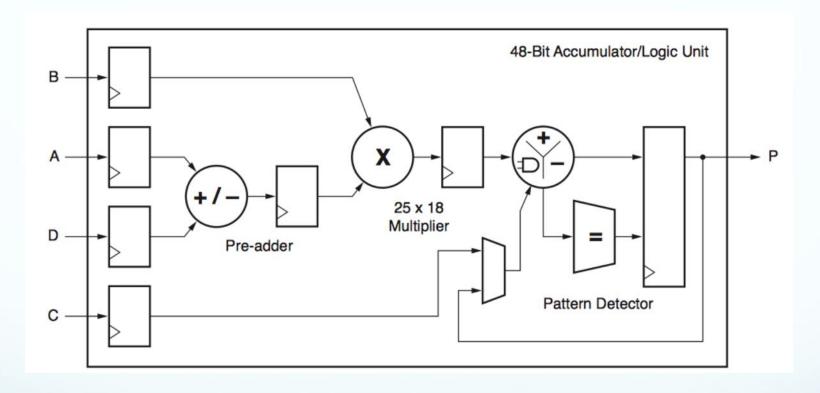
Design can check for clusters at 200 MHz (every 5 ns), but needs 4 clock cycles (20 ns) to compute the trigger decision

Other elements in FPGAs

Embedded RAM blocks

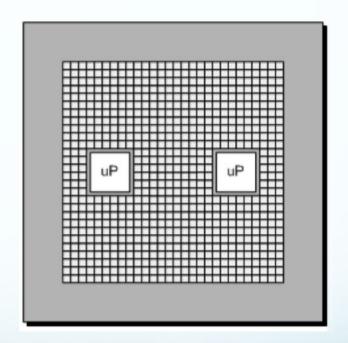

Can be used in many ways:

Look-up of mathematical function

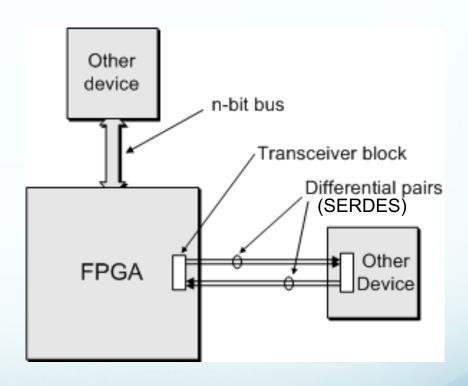

Buffer memory

Today: Up to ~500 Mbit of RAM_9

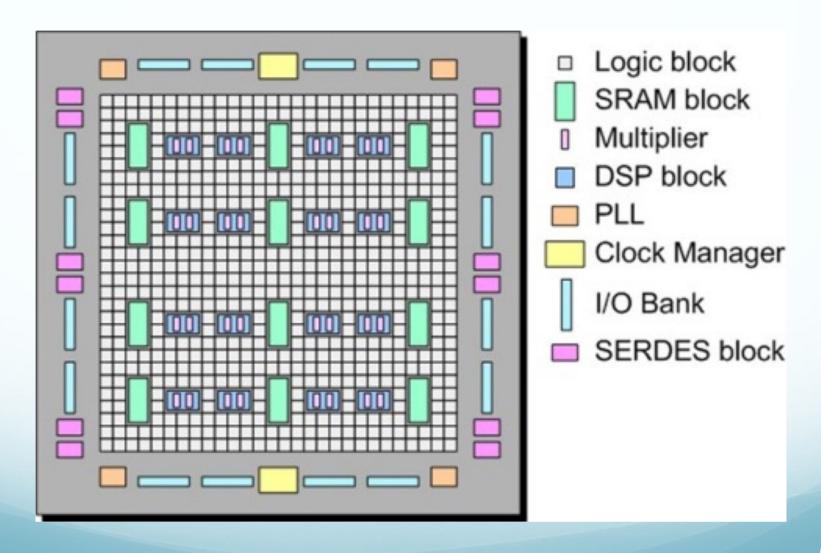
Embedded Multipliers & DSPs


Digital Signal Processor (DSP)

DSP block (Xilinx 7-series)
Up to several 1000 per chip

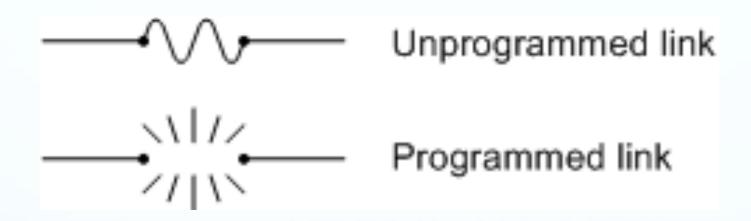

Soft and Hard Processor Cores

- Soft core
 - Design implemented with the programmable resources (logic cells) in the chip
- Hard core
 - Processor core that is available in addition to the programmable resources
 - E.g.: Power PC, ARM

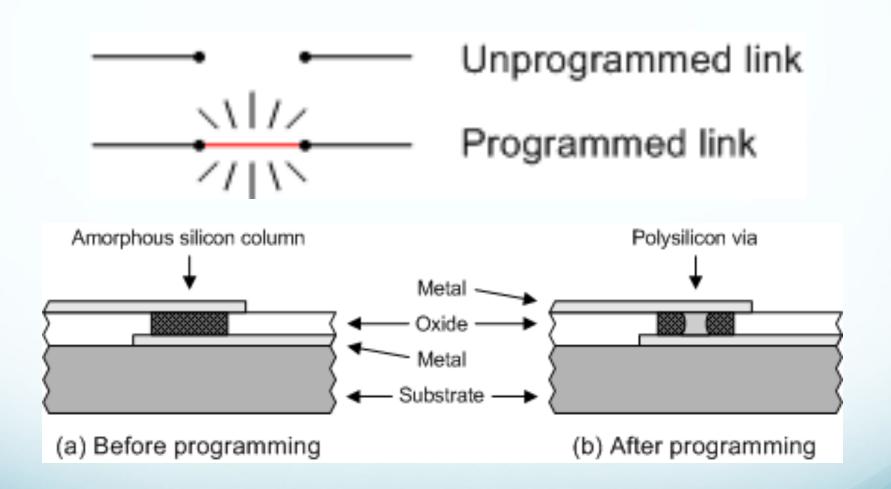


High-Speed Serial Interconnect

- Using differential pairs
- Standard I/O pins limited to about 1 Gbit/s
- Latest serial transceivers: typically 25 Gb/s
 - up to 112 Gb/s with Pulse Amplitude Modulation (PAM)
- FPGAs with multi-Tbit/s IO bandwidth

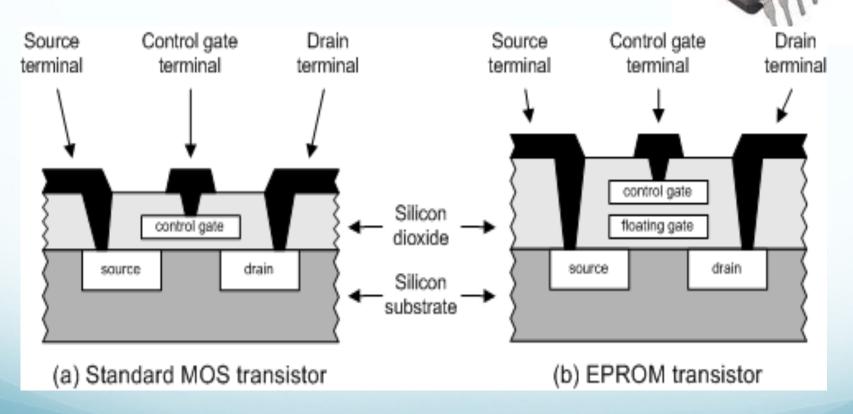


Components in a modern FPGA



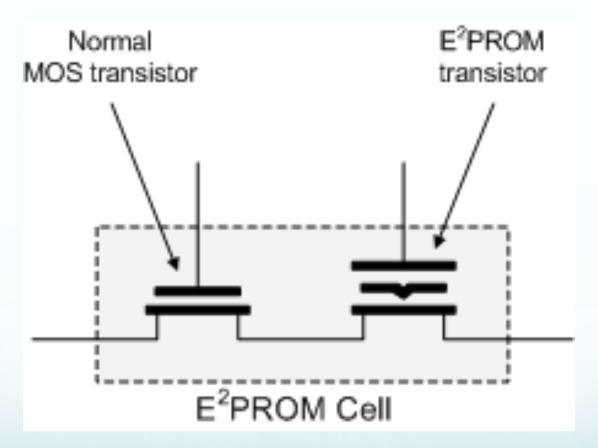
Programming techniques

Fusible Links (not used in FPGAs)



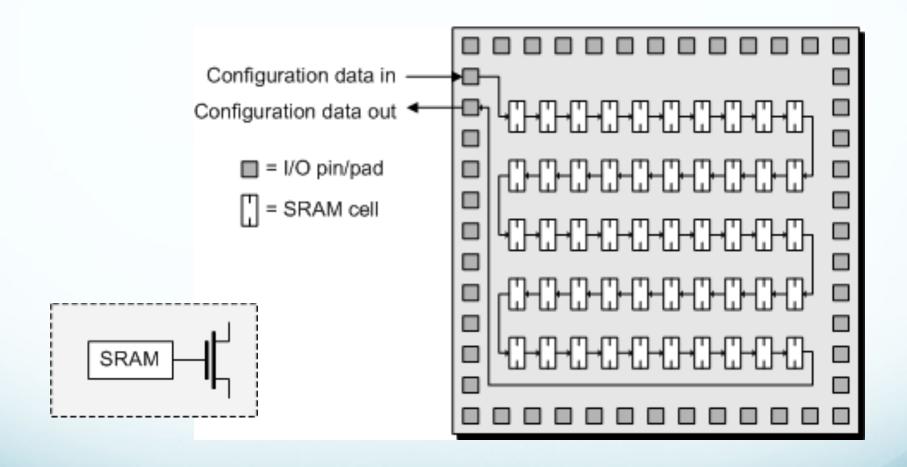
Antifuse Technology

EPROM Technology

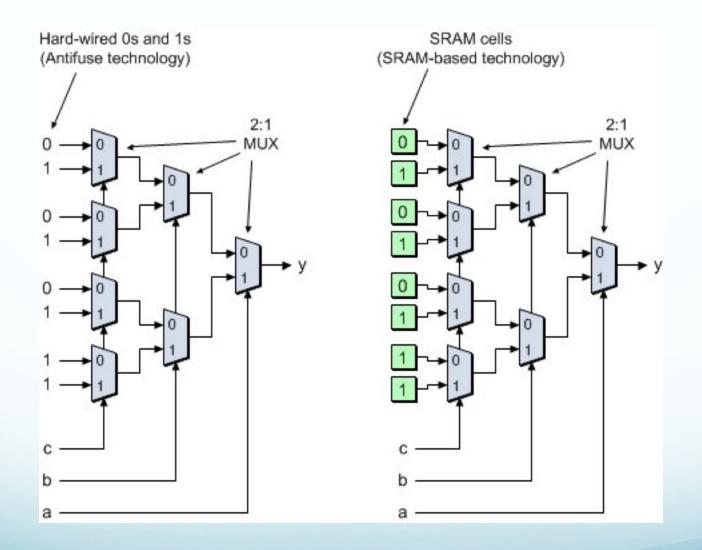

Erasable Programmable Read Only Memory

Intel, 1971

EEPROM and FLASH Technology


Electrically Erasable Programmable Read Only Memory

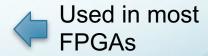
EEPROM: erasable word by word


FLASH: erasable by block or by device

SRAM-Based Devices

Multi-transistor SRAM cell

Programming a 3-bit wide LUT

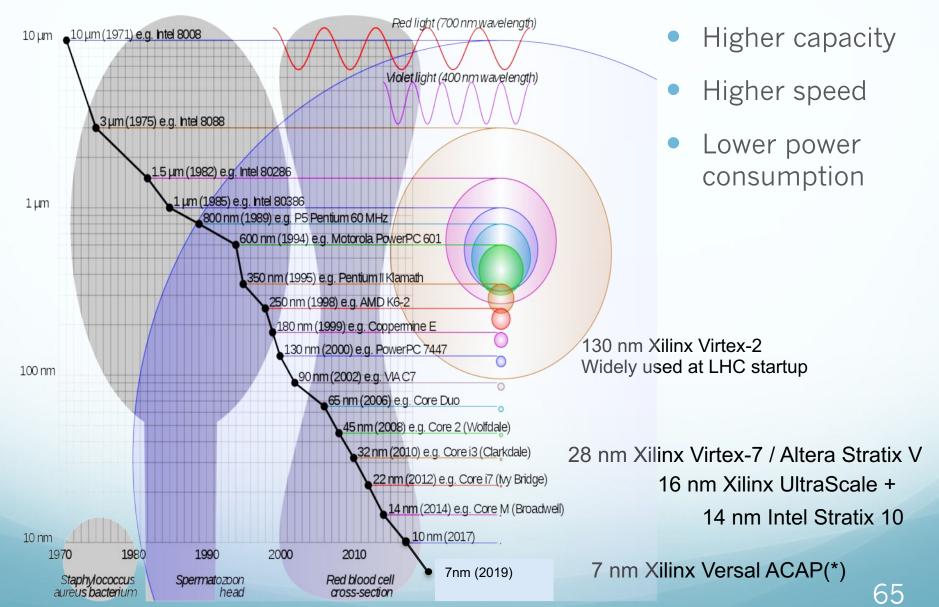


Summary of Technologies

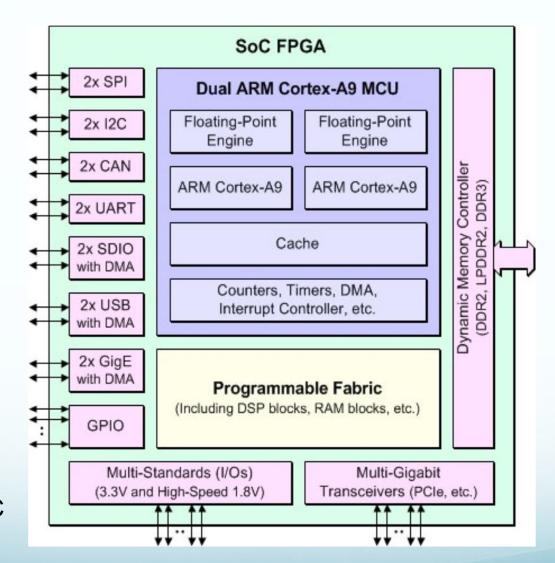
Technology	Symbol	Predominantly associated with				
Fusible-link		SPLDs				
Antifuse		FPGAs				
EPROM	一片	SPLDs and CPLDs				
E ² PROM/ FLASH	一片	SPLDs, CPLDs, and FPGAs				
SRAM	SRAM —	FPGAs (some CPLDs)				

Major Manufacturers

- AMD Xilinx (formerly Xilinx)
 - First company to produce FPGAs in 1985
 - About 55% market share, today
 - SRAM based CMOS devices
- Intel FPGA (formerly Altera)
 - About 35% market share
 - SRAM based CMOS devices
- Microchip (Microsemi, Actel)
 - Anti-fuse FPGAs
 - Flash based FPGAs
 - Mixed Signal
- Lattice Semiconductor
 - SRAM based with integrated Flash PROM
 - low power

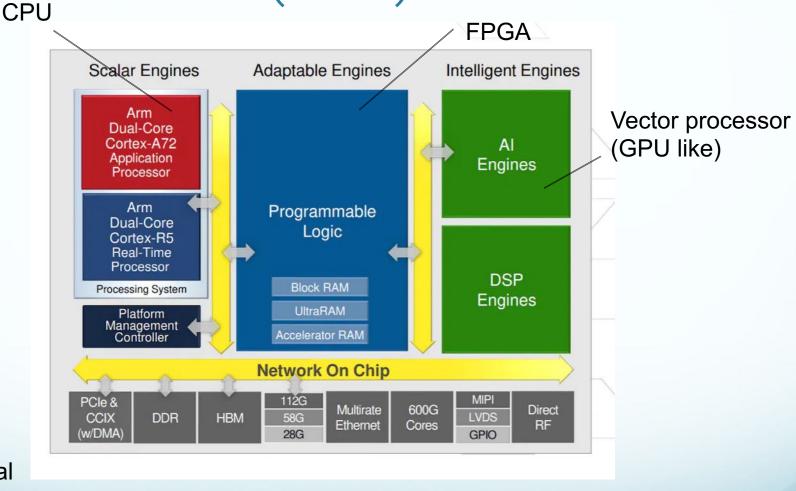


Trends


Ever-decreasing feature size

Trends

- Speed of logic keeps increasing
- Look-up-tables with more inputs (5 or 6)
- Speed of serial links increasing (multiple Gb/s)
- More integrated memory
 - Integrated High Bandwidth Memory (HBM) in-package
 - 10x faster than DDR4 (Xilinx: up to 8 GB, Intel: up to 16GB)
- More and more hard macro cores on the FPGA
 - PCI Express
 - Gen2: 5 Gb/s per lane
 - Gen3: 8 Gb/s per lane (typically up to 16 lanes)
 - Gen4: 16 Gb/s per lane
 - 10 Gb/s, 40 Gb/s, 100 Gb/s Ethernet, 150 Gb/s Interlaken
- Sophisticated soft macros
 - CPUs
 - Gb/s MACs
 - Memory interfaces (DDR2/3/4)
- Processor-centric architectures see next slide


System-On-a-Chip (SoC) FPGAs

Xlinix Zynq

Intel Stratix 10 SoC

Adaptive Compute Acceleration Platform (ACAP)

Xlinix Versal

https://www.electronicdesign.com/markets/automation/video/21234012/electronic-design-versal-card-streamlines-acap-fpga-ai-development

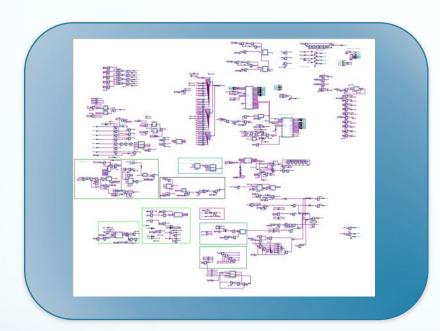
CPU(s) + Peripherals + FPGA + AI (Adaptable Intelligence) Engines in one package

FPGA – ASIC comparison

FPGA

- A chip (the FPGA) is configured to represent a digital circuit
- May be reprogrammed in the field (gateware upgrade)
 - New features
 - Bug fixes
- Rapid development cycle (minutes / hours)
- Only digital designs are possible
- Low development cost
 - You can get started with a development board (< \$100) and free software
- High-end FPGAs rather expensive

ASIC(*)


- A chip is produced in a foundry for a specific purpose
- Design cannot be changed once it is produced
- Long development cycle (weeks / months)
- Analog designs possible
- Higher performance
 - Speed, Area, Power
- Better radiation hardness
- Extremely high development cost
 - ASICs are produced at a semiconductor fabrication facility ("fab") according to your design
- Lower cost per device compared to FPGA, when large quantities are needed

FPGA design flow

Design entry

Schematics

- Graphical overview
- Can draw entire design
- Use pre-defined blocks

rarely used today

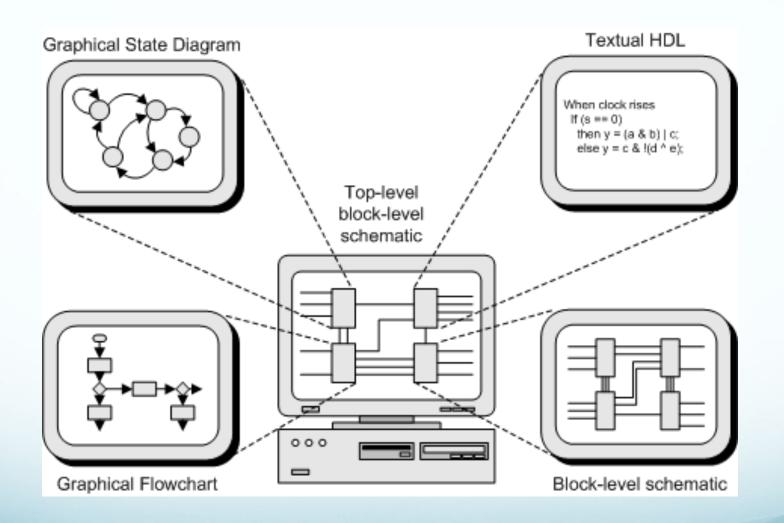
Hardware description language VHDL, Verilog

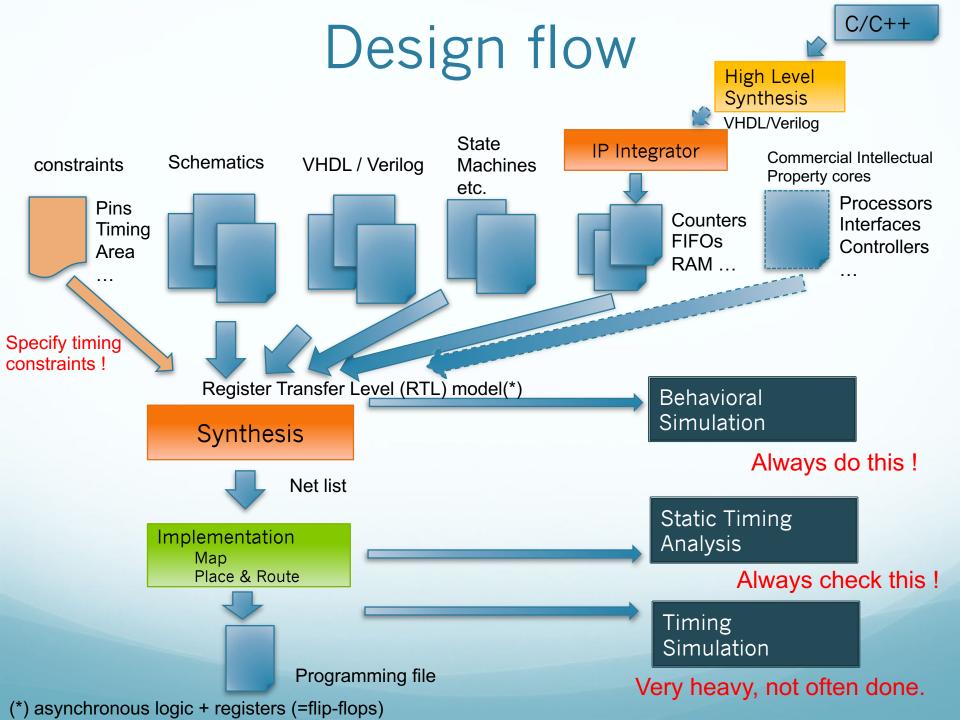
- Can generate blocks using loops
- Can synthesize algorithms
- Independent of design tool
- May use tools used in SW development (SVN, git ...)

Hardware Description Language

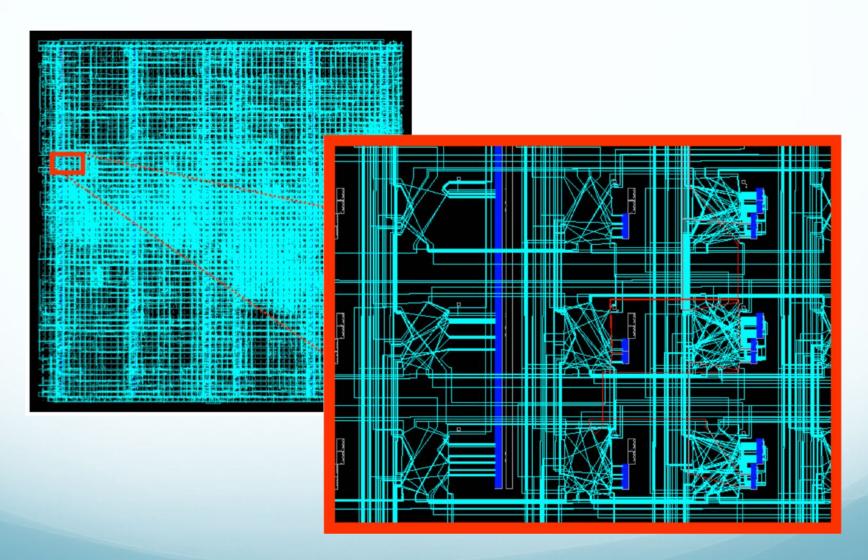
- Looks similar to a programming language
 - BUT be aware of the difference
 - Programming language => translated into machine instructions that are executed by a CPU
 - HDL => translated into gateware (logic gates & flip-flops)
- Common HDLs
 - VHDL
 - Verilog
 - AHDL (Altera specific)
- Newer trends
 - C-like languages (handle-C, System C)
 - Labview
 - High Level Synthesis (HLS) from C/C++

architecture behavioral of VMEReg is

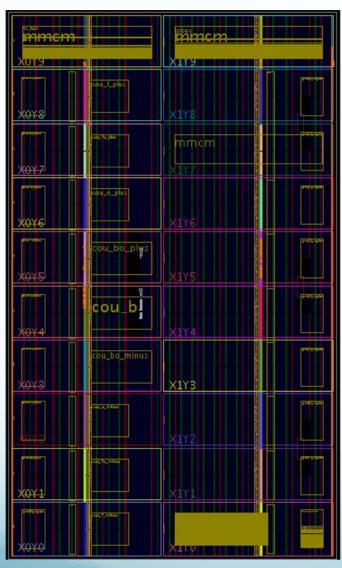

Example: VHDL

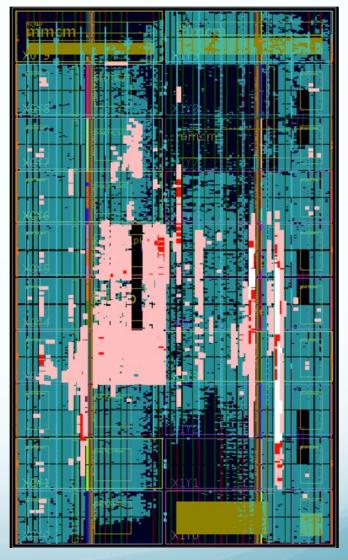

```
signal vme_en_i : std_logic;
  signal 0 : std_logic_vector(15 downto 0);
                                               Asynchronous logic
begin -- behavioral
                                               All signals in sensitivity list
  vme_addr_decode : process (vme_addr, vme_en) is
    variable my_addr_vec : std_logic_vector(vme_addr'high downto 0);
    variable selected
                        : boolean;
  begin -- process vme_addr_decode
    my_addr_vec := std_logic_vector( TO_UNSIGNED ( my_vme_base_address, vme_addr'high+1 ) );
               := my_addr_vec(vme_addr'high downto 1) = vme_addr(vme_addr'high downto 1);
   vme_en_i <= '0' :
    if selected then
     vme_en_i <= vme_en;
    end if:
  end process vme_addr_decode;
                                    Synchronous logic
                                     Only clock (and reset) in sensitivity list
  reg: process (vme_clk, reset) is
  begin -- process reg
   if reset = '1' then
                                       -- asynchronous reset
       0 <= init_val;</pre>
       vme_en_out <= '0';
    elsif vme_clk'event and vme_clk = '1' then -- rising clock edge
     vme_en_out <= vme_en_i;</pre>
     if vme_en_i = '1' and vme_wr = '1' then
       Q <= vme_data;
      end if:
   end if:
  end process reg;
  data <= 0:
  vme_data_out <= 0;
end behavioral;
```

Looks like a programming language

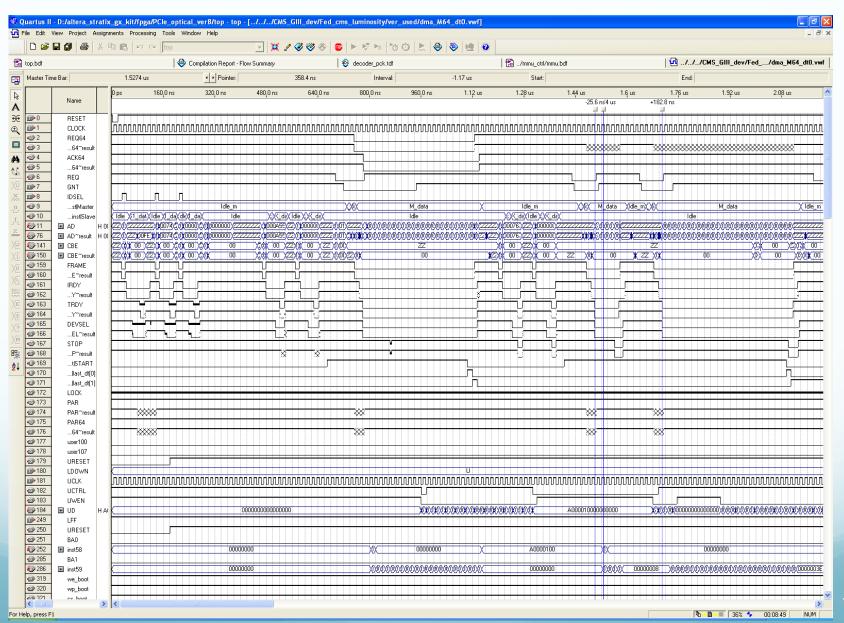

All statements executed in parallel, except inside processes

Schematics & HDL combined

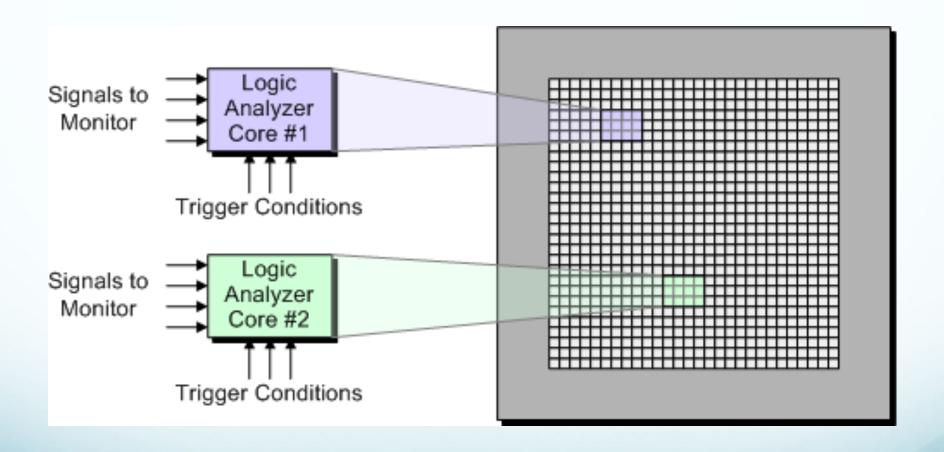



Floorplan

Manual Floor planning

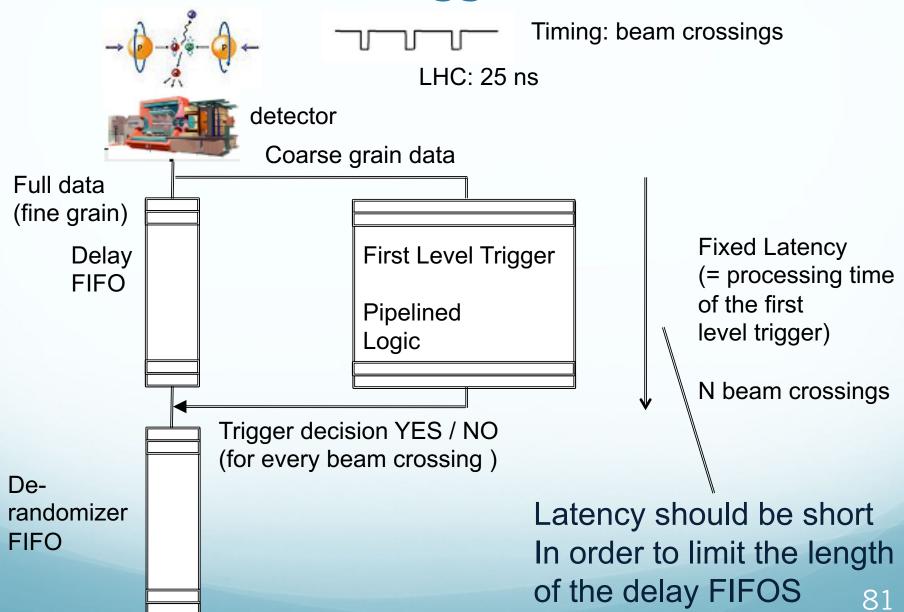


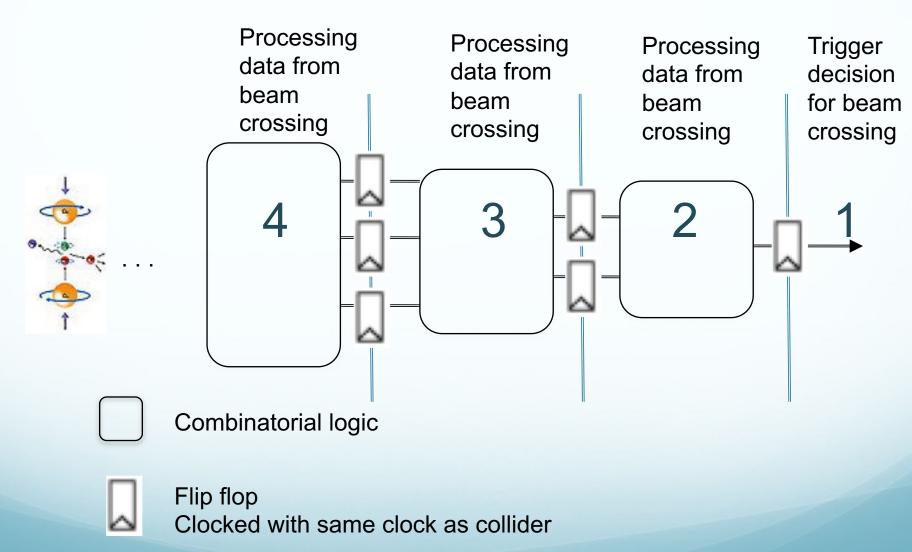
For large designs, manual floor planning may be necessary



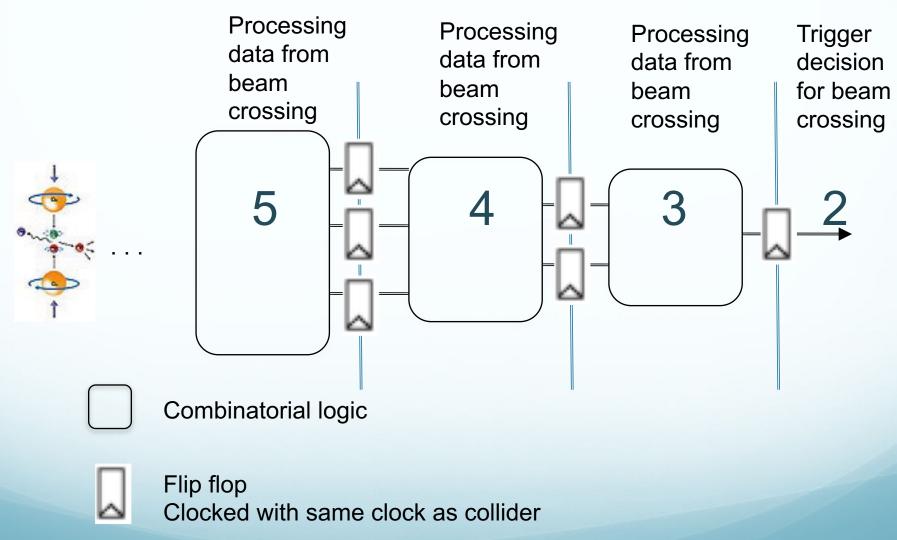
Routing congestion
Xilinx Virtex 7 (Vivado)

Simulation


Embedded Logic Analyzers


A great tool for debugging your design

FPGA applications in the Trigger & DAQ domain


First-Level Trigger at Collider

Pipelined Logic

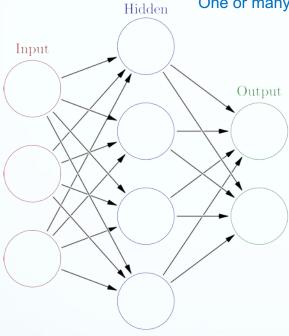
Pipelined Logic – a clock cycle later

Why are FPGAs ideal for First-Level Triggers?

- They are fast
 - Much faster than discrete electronics (shorter connections)
- Many inputs
 - Data from many parts of the detector has to be combined

Low latency

- All operations are performed in parallel
 - Can build pipelined logic
- They can be re-programmed
 - Trigger algorithms can be optimized


High performance

Trigger algorithms implemented in FPGAs

- Trigger
 - Peak finding
 - Pattern Recognition
 - Track Finding
 - Clustering / Energy summing
 - Topological Algorithms (invariant mass)
 - Vertex Finding
 - Particle flow (reconstruction jets, etc. from individual particle tracks)
 - Inference with Neural Networks
 - Many more ...
- Trigger Control system
 - Fast (busy) signal merging & monitoring
 - Generation of random triggers
 - Generation of calibration sequences
 - Automatic recovery sequences
 - Monitoring (dead times, rates, ...)

Neural Networks in Trigger

By Glosser.ca - Own work, Derivative of File:Artificial neural network.svg, CC BY-SA 3.0. https://commons.wikimedia.org/w/index.php?curid=24913461

Principle

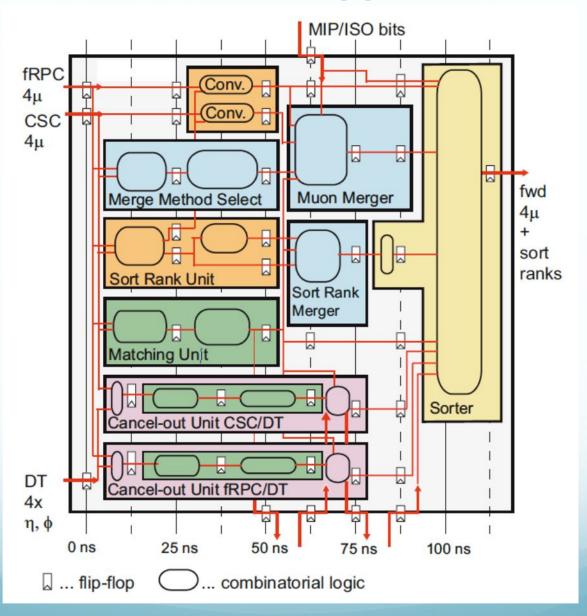
- Node is assigned a value based on the weighted sum of nodes in the previous layer
- Maps well to DSP resources in FPGA (multiplier + adder)

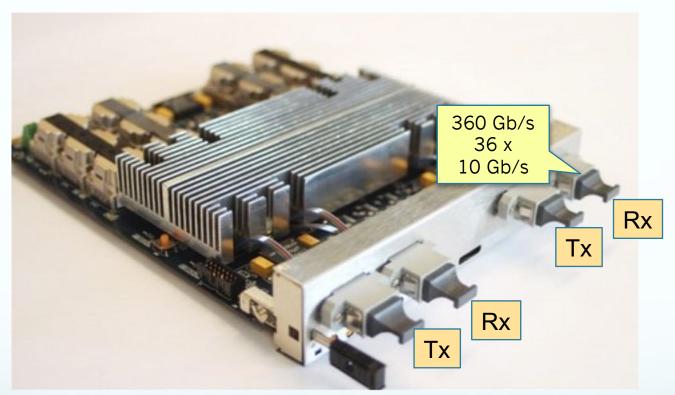
Applications:

- Jet classification
- Assignment of transverse momentum based on many measurements
- Topological trigger
- ...

Tools

- Many commercial tools
- hls4ml (optimized for latency)
 - Firmware generation from high-level model using Vivado HLS


CMS Global Muon Trigger


- The CMS Global Muon trigger received 16 muon candidates from the three muon systems of CMS
 - It merged different measurements for the same muon and found the best 4 over-all muon candidates

- VME card (9U)
- Input: ~1000 bits@ 40 and 80 MHz
- Output: ~50 bits @ 80MHz
- Processing time: 250 ns
- Pipelined logic one new result every 25 ns
- 10 Xilinx Virtex-II FPGAs
- up to 500 user I/Os per chip
- Up to 25000 LUTs per chip used
- Up to 96 x 18kbit RAM used
- In use in the CMS trigger 2008-2015

CMS Global Muon Trigger main FPGA

μTCA board for Run 2&3 CMS trigger based on Virtex 7

MP7, Imperial College

Virtex 7 with 690k logic cells
80 x 10 Gb/s transceivers bi-directional
72 of them as optical links on front panel
0.75 + 0.75 Tb/s

Being used in the CMS trigger since 2015

Input/output: up to 14k bits per 40 MHz clock

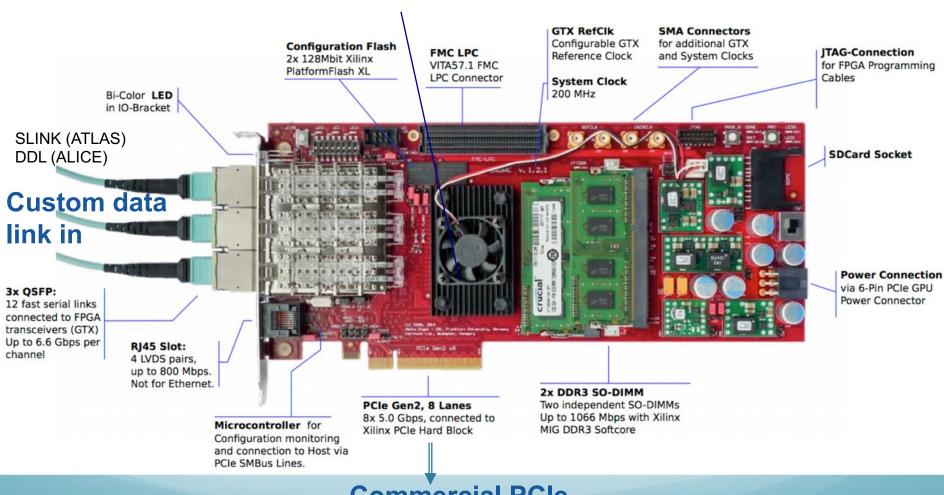
Same board used for different functions (different gateware)
Separation of framework + algorithm fw

CMS ATCA Trigger boards for HL-LHC (2029+)

120 x 25 Gb/s

APX, US

Serenity, UK


- Few types of generic boards, ATCA standard
- Xilinx Virtex/Kintex Ultrascale+ FPGAs (> 3 million logic cells / FPGA)
- 25-28 Gb/s optical links
- SoC FPGAs used for board control (on some boards)
- Advanced firmware algorithms
 - Vertex finding
 - Particle flow
 - Neural network classifiers

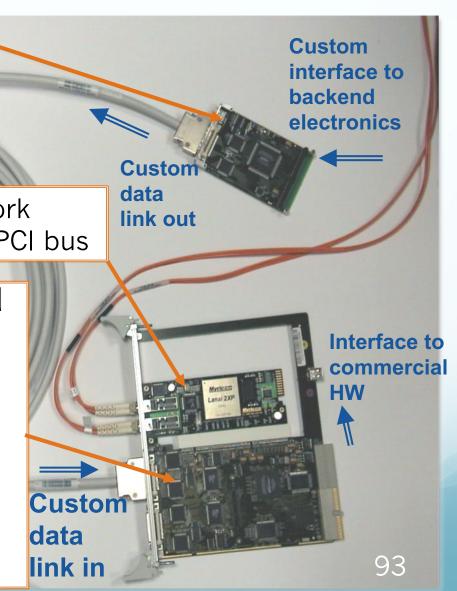
FPGAs in Data Acquisition

- Frontend Electronics
 - Pedestal subtraction
 - Zero suppression
 - Compression
 - Buffering ...
- Custom data links
 - E.g. SLINK-64 over copper
 - Several serial LVDS links in parallel
 - Up to 400 MB/s
 - SLINK/SLINK-express over optical
- Interface from custom hardware to commercial electronics
 - PCI/PCIe, VME bus, Myrinet, 10/40/100 Gb/s Ethernet etc.

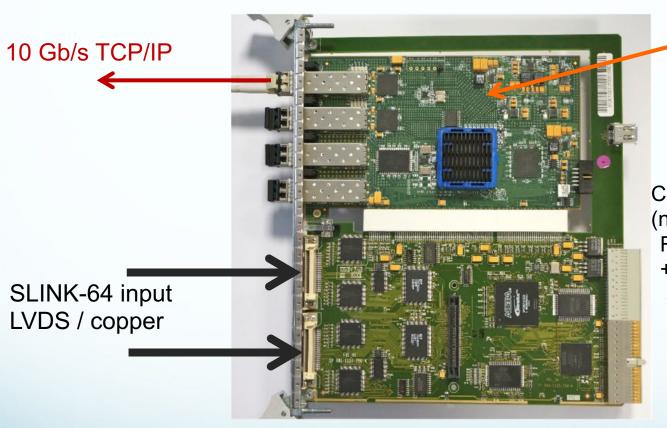
C-RORC (Alice) / Robin NP (ATLAS) for Run-2

Xilinx Virtex-6 FPGA

Commercial PCle
link out (DMA to host memory)


CMS Front-end Readout Link (Run-1)

- SLINK Sender Mezzanine Card: 400 MB / s
 - 1 FPGA (Altera)
 - CRC check
 - Automatic link test


Commercial Myrinet Network Interface Card on internal PCI bus

- 1 main FPGA (Altera)
- 1 FPGA as PCI interface
- Custom Compact PCI card
- Receives 1 or 2 SLINK64
- 2nd CRC check
- Monitoring, Histogramming
- Event spy

CMS Readout Link for Run-2&3 in use since 2015

Myrinet NIC replaced by custom-built card ("FEROL")

Cost effective solution (need many boards)
Rather inexpensive FPGA

+ commercial chip to combine 3 Gb/s links to 10 Gb/s

FEROL (Front End Readout Optical Link)

Input: 1x or 2x SLINK (copper)

1x or 2x 5Gb/s optical

1x 10Gb/s optical

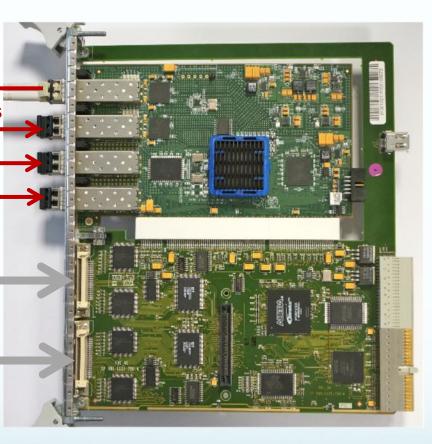
Output: 10 Gb/s Ethernet optical

TCP/IP sender in FPGA

CMS Readout Link for Run-2&3 in use since 2015

Commercial data link out

10 Gb/s TCP/IP


10 Gb/s SLINK Express

5 Gb/s SLINK Express

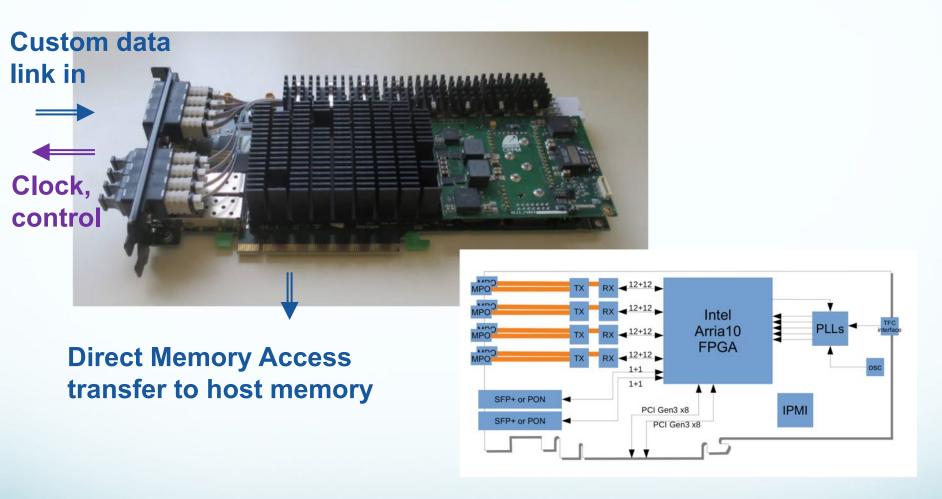
5 Gb/s SLINK Express

Custom data link in

SLINK-64 input LVDS / copper

FEROL (Front End Readout Optical Link)

Input: 1x or 2x SLINK (copper)


1x or 2x 5Gb/s optical

1x 10Gb/s optical

Output: 10 Gb/s Ethernet optical

TCP/IP sender in FPGA

PCle40 – LHCb and ALICE Run-3

- 48 bidirectional links running at up to 10 Gbits/s each (minipods)
- 2 bidirectional links running at up to 10 Gbits/s devoted to time distribution (can use SFP+ or 10G PON devices)
- Sustained 112 Gbits/s interface with CPU through PCIe

CMS DTH (DAQ and Timing Hub) for HL-LHC (2029+)

Custom data link in

Commercial data link (TCP/IP) out

Clock & control Main board uplink

DAQ FPGA

Zynq SoC FPGA for control

> Rear transition module

DTH prototype 2

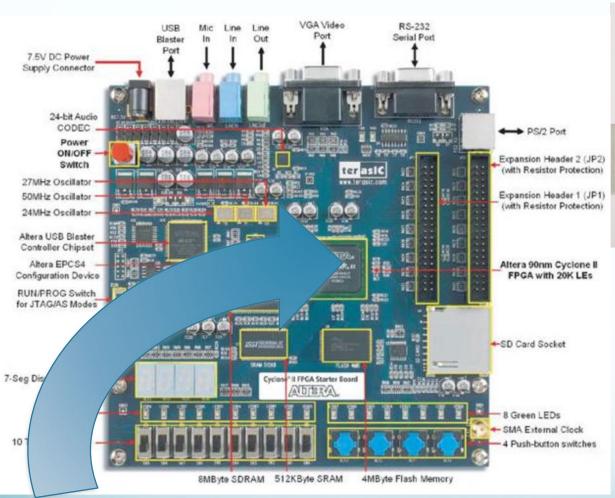
Clock & control distribution via backplane

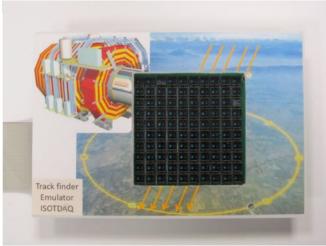
- **ATCA** board using Xilinx Virtex Ultrascale + FPGAs
- One or two DAQ units per board
 Up to 24 inputs at 25 Gb/s
 5x 100 Gb/s Ethernet to commercial network
 - TCP/IP in FPGA

Board contains switch for control network

FPGAs in other domains

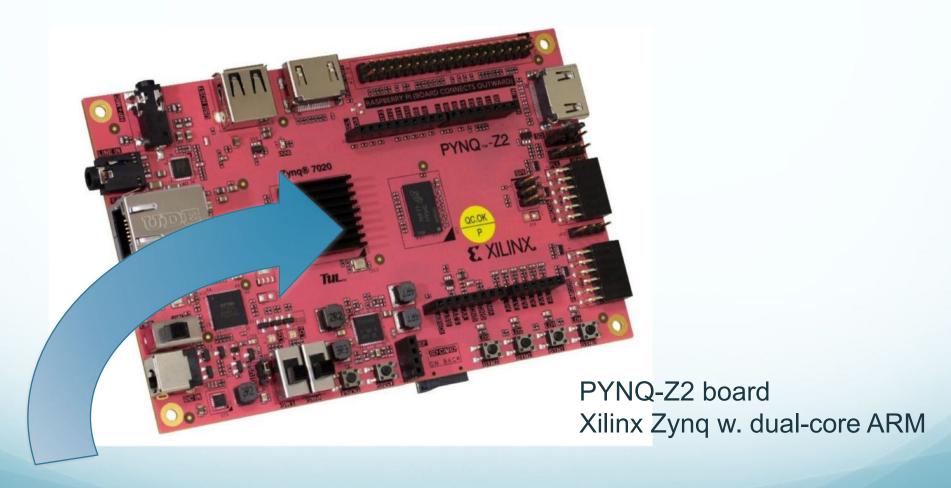
- Machine Learning Inferencing
- Automotive Driver Assist (Image Processing)
- 5G Wireless
- Medical imaging
- Speech recognition
- Cryptography
- Bioinformatics (Genome sequencing)
- Aerospace / Defense
- (Bitcoin mining)


- ASIC Prototyping
- Compute accelerators
 - Accelerator cards



- Server processors w. FPGA
- Financial
- Video transcoding
- ...

Lab Session 5: Programming an FPGA



You are going to design the digital electronics inside this FPGA!

99

Lab Session 13: System-on-a-chip FPGA

Design the digital electronics and software in this SoC FPGA!

Thank you

Acknowledgement

 Parts of this lecture are based on material by Clive Maxfield, author of several books on FPGAs. Many thanks for his kind permission to use his material!

Re-use

 Re-use of the material is permitted only with the written authorization of both Hannes Sakulin (<u>Hannes.Sakulin@cern.ch</u>) and Clive Maxfield.

Reference Material

Top-of-the-line Xilinx devices

		Device Name	VU3P	VU5P	VU7P	VU9P	VU11P	VU13P	VU27P	VU29P	VU31P	VU33P	VU35P	VU37P
	System	Logic Cells (K)	862	1,314	1,724	2,586	2,835	3,780	2,835	3,780	962	962	1,907	2,852
	CLB	Flip-Flops (K)	788	1,201	1,576	2,364	2,592	3,456	2,592	3,456	879	879	1,743	2,607
		CLB LUTs (K)	394	601	788	1,182	1,296	1,728	1,296	1,728	440	440	872	1,304
	Max. Di	st. RAM (Mb)	12.0	18.3	24.1	36.1	36.2	48.3	36.2	48.3	12.5	12.5	24.6	36.7
	Total Blo	ck RAM (Mb)	25.3	36.0	50.6	75.9	70.9	94.5	70.9	94.5	23.6	23.6	47.3	70.9
	U	traRAM (Mb)	90.0	132.2	180.0	270.0	270.0	360.0	270.0	360.0	90.0	90.0	180.0	270.0
	HBN	M DRAM (GB)	-	-	_	-	-	_	-	-	4	8	8	8
	HBM /	AXI Interfaces	_	-	-	-	-	-	-	-	32	32	32	32
	Clock Mgm	t Tiles (CMTs)	10	20	20	30	12	16	16	16	4	4	8	12
		DSP Slices	2,280	3,474	4,560	6,840	9,216	12,288	9,216	12,288	2,880	2,880	5,952	9,024
	Peak INT	B DSP (TOP/s)	7.1	10.8	14.2	21.3	28.7	38.3	28.7	38.3	8.9	8.9	18.6	28.1
	PC	le® Gen3 x16	2	4	4	6	3	4	1	1	0	0	1	2
PCle	Gen3 x16/Ge	n4 x8 / CCIX ⁽¹⁾	-	-	-	-	-	-	-	-	4	4	4	4
150G Interlaken		3	4	6	9	6	8	6	8	0	0	2	4	
10	0G Ethernet w	/ KR4 RS-FEC	3	4	6	9	9	12	11	15	2	2	5	8
Max. Single-Ended HP I/Os		520	832	832	832	624	832	520	676	208	208	416	624	
(STY 32.75Gb/s	Transceivers	40	80	80	120	96	128	32	32	32	32	64	96
MT	58Gb/s PAM4	Transceivers							32	48				
	100G/	50G KP4 FEC							16/32	24 / 48				
		Extended ⁽²⁾	-1 -2 -2L -3	-1 -2 -2L										
		Industrial	-1 -2	-1 -2	-1 -2	-1 -2	-1 -2	-1 -2	-1 -2	-1 -2	-	-	-	-
F	ootprint(3,4,5)	Dim. (mm)			HP I/0	O, GTY			HP I/O, 0	STY, GTM		HP I/C), GTY	
	C1517	40x40	520, 40											
er	F1924 ⁽⁶⁾	45x45					624, 64							
ntifi	A2104	47.5x47.5		832, 52	832,52	832, 52								
nm it ide	ALIOT	52.5x52.5 ⁽⁷⁾						832, 52						
n 20	B2104	47.5x47.5		702, 76	702,76	702, 76	572, 76							
e foc	DZIO4	52.5x52.5 ⁽⁷⁾						702, 76						
sam	C2104	47.5x47.5		416, 80	416,80	416, 104	416, 96							
with	C2104	52.5x52.5 ⁽⁷⁾						416, 104						
ices	D2104	47.5x47.5				676, 76	572, 76							
Dev	02104	52.5x52.5 ⁽⁷⁾						676, 76	676, 16, 30	676, 16, 30				
roatprint compatible with 20nm UltraScale Devices with same footprint identifier	A2577	52.5x52.5				448, 120	448, 96	448, 128	448, 32, 48	448, 32, 48				
Iltras	H1924	45x45									208, 32			
٦	H2104	47.5x47.5										208, 32	416, 64	
	H2892	55x55											416, 64	624, 9

(55 mm x 55 mm, 1.0 mm pitch)

Intel Stratix 10

INTEL® STRATIX® 10 GX/SX PRODUCT TABLE

PRO	DUCT LINE	GX 400 SX 400	GX 650 SX 650	GX 850 SX 850	GX 1100 SX 1100	GX 1650 SX 1650	GX 2100 SX 2100	GX 2500 SX 2500	GX 2800 SX 2800	GX 4500 SX 4500	GX 5500 SX 5500	
	Logic elements (LEs) ¹	378,000	612,000	841,000	1,092,000	1,624,000	2,005,000	2,422,000	2,753,000	4,463,000	5,510,000	
	Adaptive logic modules (ALMs)	128,160	207,360	284,960	370,080	550,540	679,680	821,150	933,120	1,512,820	1,867,680	
	ALM registers	512,640	829,440	1,139,840	1,480,320	2,202,160	2,718,720	3,284,600	3,732,480	6,051,280	7,470,720	
	Hyper-Registers from Intel® HyperFlex™ FPGA architecture				Millions of Hyper-R	egisters distributed	throughout the mon	olithic FPGA fabric				
	Programmable clock trees synthesizable		Hundreds of synthesizable clock trees									
Jrce	M20K memory blocks	1,537	2,489	3,477	4,401	5,851	6,501	9,963	11,721	7,033	7,033	
esor	M20K memory size (Mb)	30	49	68	86	114	127	195	229	137	137	
K	MLAB memory size (Mb)	2	3	4	6	8	11	13	15	23	29	
	Variable-precision digital signal processing (DSP) blocks	648	1,152	2,016	2,520	3,145	3,744	5,011	5,760	1,980	1,980	
	18 x 19 multipliers	1,296	2,304	4,032	5,040	6,290	7,488	10,022	11,520	3,960	3,960	
	Peak fixed-point performance (TMACS) ²	2.6	4.6	8.1	10.1	12.6	15.0	20.0	23.0	7.9	7.9	
	Peak floating-point performance (TFLOPS) ³	1.0	1.8	3.2	4.0	5.0	6.0	8.0	9.2	3.2	3.2	
Т	Secure device manager AES-256/SHA-256 bitsream encryption/authentication, physically unclonable function (PUF), ECDSA 256/384 boot code authentication, side channel attack protection											
2	Hard processor system ⁴ Quad-core 64 bit ARM* Cortex*-A53 up to 1.5 GHz with 32 KB I/D cache, NEON* coprocessor, 1 MB L2 cache, direct memory access (DMA), system memory management unit, cache coherency unit hard memory controllers, USB 2.0 x2, 1G EMAC x3, UART x2, SPI x4, I ² C x5, general-purpose timers x7, watchdog timer x4											
Feat	Maximum user I/O pins	392	400	736	736	704	704	1160	1160	1640	1640	
	Maximum LVDS pairs 1.6 Gbps (RX or TX)	192	192	360	360	336	336	576	576	816	816	
,	Total full duplex transceiver count	24	48	48	48	96	96	96	96	24	24	
5	GXT full duplex transceiver count (up to 30 Gbps)	16	32	32	32	64	64	64	64	16	16	
alla	GX full duplex transceiver count (up to 17.4 Gbps)	8	16	16	16	32	32	32	32	8	8	
2	PCI Express* (PCIe*) hard intellectual property (IP) blocks (Gen3 x16)	1	2	2	2	4	4	4	4	1	1	
	Memory devices supported				DDR4, DDR3, DDR2	, DDR, QDR II, QDR	I+, RLDRAM II, RLDR	AM 3, HMC, MoSys				
ick	age Options and I/O Pins: General-Purpose I/O (GPIO) Count,	High-Voltage I/O Co	ount, LVDS Pairs, and	Transceiver Count ⁵								
	52 pin mm x 35 mm, 1.0 mm pitch)	392,8,192,24	392,8,192,24		: -	-	-	-	-1	-	-	
	60 pin 5 mm x 42.5 mm, 1.0 mm pitch)	_	400,16,192,48	-	12	_	2	-	-	2	-	
	50 pin 5 mm x 42.5 mm, 1.0 mm pitch)	-	-	688,16,336,48	688,16,336,48	688,16,336,48	688,16,336,48	688,16,336,48	688,16,336,48	-	-	
	12 pin 5 mm x 47.5 mm, 1.0 mm pitch)	18	ä	736,16,360,48	736,16,360,48	-	-	-	-	-	-	
	97 pin mm x 50 mm, 1.0 mm pitch)	-	-	21	1-	704,32,336,96	704,32,336,96	704,32,336,96	704,32,336,96	2	-	
	12 pin				7.5	_	_	1160,8,576,24	1160,8,576,24	1640,8,816,24	1547,8,016,	

F2912 pin (55 mm x 55 mm, 1.0 mm pitch)

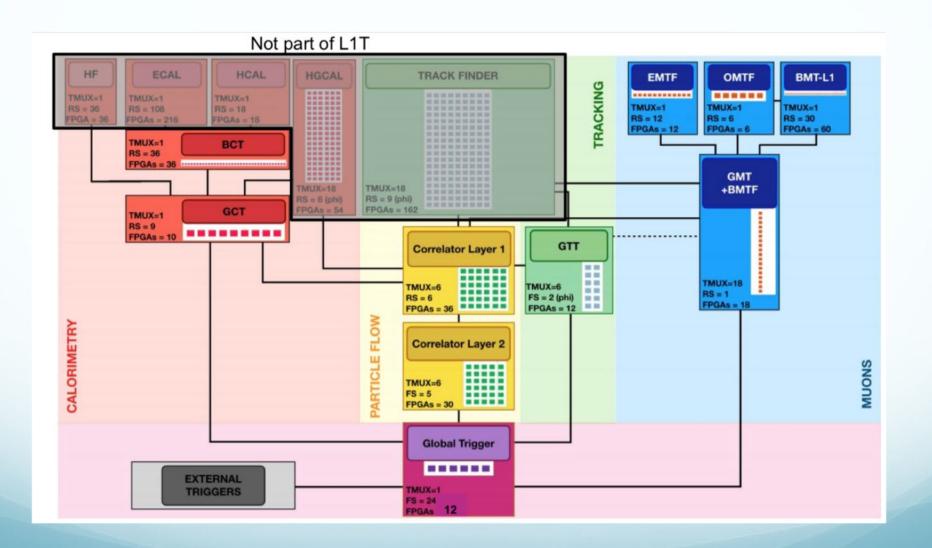
Intel Stratix 10

296,8,144,120,24

INTEL® STRATIX® 10 TX PRODUCT TABLE

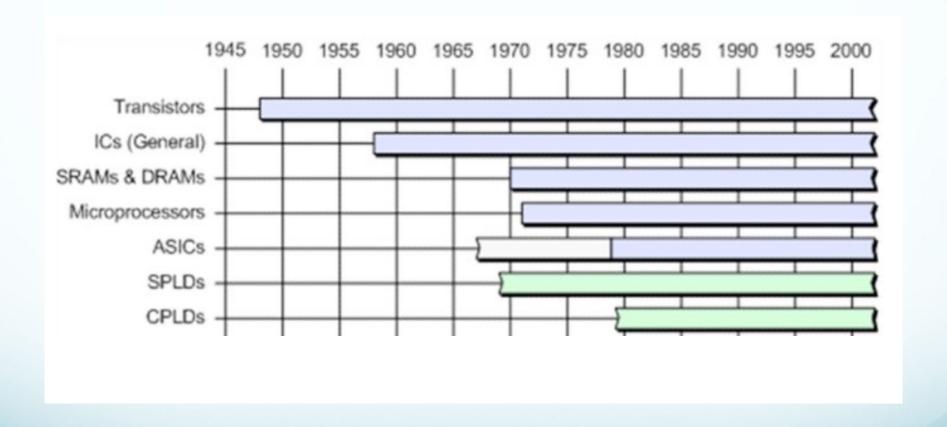
PRO	DDUCT LINE	TX 1	650	TX	2100		TX 2500			TX 2800		
_	Logic elements (LEs) ¹	1,679,000		2,073,000		2,422,000			2,753,000			
	Adaptive logic modules (ALMs)	569,200		702,720		821,150			933,120			
	ALM registers	2,276,800		2,810,880		3,284,600			3,732,480			
s	Hyper-Registers from Intel® Hyperflex™ FPGA architecture	Millions of Hyper-Registers distributed throughout the monolithic FPGA fabric										
	Programmable clock trees synthesizable	Hundreds of synthesizable clock trees										
	eSRAM memory blocks	2		2			-		-			
urce	eSRAM memory size (Mb)	9	0	9	90		-					
Resources	M20K memory blocks	6,1	62	6,8	347		9,963		11,721			
œ	M20K memory size (Mb)	12	20	13	34	195			229			
	MLAB memory size (Mb)	9		11		13			15			
	Variable-precision digital signal processing (DSP) blocks	3,326		3,960		5,011			5,760			
s	18 x 19 multipliers	6,652		7,920		10,022			11,520			
	Peak fixed-point performance (TMACS) ²	13.3		15	15.8		20.0			23.0		
	Peak floating-point performance (TFLOPS) ³	5.3		6.3		8.0			9.2			
	Hard processor system	management unit, cache cohere		-		rs, USB 2.0 x2, 1G EMAC x3, UART x2, SPI x4, I ² C x5, Yes			, general purpose timers x7, watchdog timer x4 Yes			
Featur	Maximum user I/O pins	544	440	544	440	544	440	296	544	440	296	
	Maximum LVDS pairs 1.6 Gbps (RX or TX)	264	216	264	216	264	216	144	264	216	144	
ural	Total full duplex transceiver count	72	96	72	96	72	96	144	72	96	144	
Architectur	GXE transceiver count - PAM-4 (up to 58 Gbps) or NRZ (up to 30 Gbps)	12 PAM-4 24 NRZ	36 PAM-4 72 NRZ	12 PAM-4 24 NRZ	36 PAM-4 72 NRZ	12 PAM-4 24 NRZ	36 PAM-4 72 NRZ	60 PAM-4 120 NRZ	12 PAM-4 24 NRZ	36 PAM-4 72 NRZ	60 PAM-4 120 NRZ	
	GXT transceiver count - NRZ (up to 28.3 Gbps)	32	16	32	16	32	16	16	32	16	16	
and	GX transceiver count - NRZ (up to 17.4 Gbps)	16	8	16	8	16	8	8	16	8	8	
							2.5	2,00			0	
I/O and	PCI Express* (PCIe*) hard intellectual property (IP) blocks (Gen3 x16)	2	1	2	1	2	1	1	2	1	1	
	PCI Express* (PCIe*) hard intellectual property (IP) blocks (Gen3 x16) 100G Ethernet MAC (no FEC) hard IP blocks	2	1	2	1	2	1	1	2	1	_	
					-			100			1	
	100G Ethernet MAC (no FEC) hard IP blocks	2	1	2 4	1 12	2	1 12	1 20	2	1	1	
0/1	100G Ethernet MAC (no FEC) hard IP blocks 100G Ethernet MAC + FEC hard IP blocks	2 4	1 12	2 4 DDR4	1 12 4, DDR3, DDR2, D	2 4 DR, QDR II, QDR II	1 12 I+, RLDRAM II, RL	1 20	2	1	1	
Pac	100G Ethernet MAC (no FEC) hard IP blocks 100G Ethernet MAC + FEC hard IP blocks Memory devices supported	2 4	1 12 DS pairs, GXE (E-	2 4 DDR4 Tile) Transceiver	1 12 4, DDR3, DDR2, D	2 4 DR, QDR II, QDR II	1 12 I+, RLDRAM II, RL	1 20 DRAM 3, HMC, M	2 4 oSys	1	1	

296,8,144,120,24

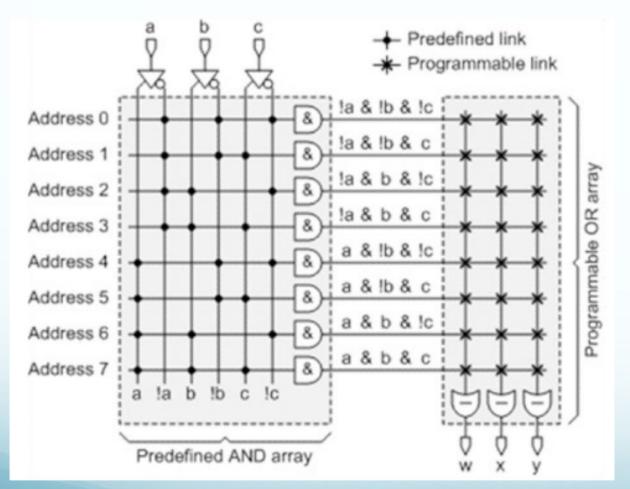


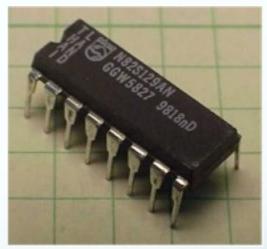
Intel Stratix 10

INTEL® STRATIX® 10 MX (DRAM SYSTEM-IN-PACKAGE) PRODUCT TABLE


PRODUCT LIN	NE	MX 1100	MX 1650	MX 1650	MX 1650	MX 2100	MX 2100	MX 2100	MX 2100	
Logic el	lements (LEs) ¹	1,092,000	1,679,000	1,679,000	1,679,000	2,073,000	2,073,000	2,073,000	2,073,000	
Adaptiv	ve logic modules (ALMs)	370,080	569,200	569,200	569,200	702,720	702,720	702,720	702,720	
ALM reg	gisters	1,480,320	2,276,800	2,276,800	2,276,800	2,810,880	2,810,880	2,810,880	2,810,880	
Hyper-F	Registers from Intel® Hyperflex™ FPGA architecture			Millions of Hyper-Re	gisters distributed th	roughout the mono	lithic FPGA fabric			
Progran	mmable clock trees synthesizable	Hundreds of synthesizable clock trees								
HBM2 h	high-bandwidth DRAM memory (GBytes)	3.25	8	16	8	8	8	16	8	
eSRAM	memory blocks	1	2	2	2	2	2	2	2	
eSRAM eSRAM M20K n	1 memory size (Mb)	45	90	90	90	90	90	90	90	
M20K n	memory blocks	4,401	6,162	6,162	6,162	6,847	6,847	6,847	6,847	
M20K n	memory size (Mb)	86	120	120	120	134	134	134	134	
MLAB n	memory size (Mb)	6	9	9	9	11	11	11	11	
Variable	e-precision digital signal processing (DSP) blocks	2,520	3,326	3,326	3,326	3,960	3,960	3,960	3,960	
18 x 19	multipliers	5,040	6,652	6,652	6,652	7,920	7,920	7,920	7,920	
Peak fix	xed-point performance (TMACS) ²	10.1	13.3	13.3	13.3	15.8	15.8	15.8	15.8	
Peak flo	oating-point performance (TFLOPS) ³	4.0	5.3	5.3	5.3	6.3	6.3	6.3	6.3	
100000000000000000000000000000000000000	rocessor system	management unit, cache coherency unit, hard memory controllers, USB 2.0 x2, 1G EMAC x3, UART x2, serial peripheral interface (SPI) x4, I ² C x5, general-purpose timers x7, watchdog timer x4								
res								eripheral interface	(SPI) x4,	
		Yes	-					eripheral interface	(SPI) x4,	
Maximu	um user I/O pins	Yes 448	- 656					eripheral interface		
Maximu LVDS pa		11777		l ² C x5, ge	eneral-purpose time –	rs x7, watchdog time –	er x4 -	-	_	
Maximu LVDS pa	um user I/O pins	448	656	l ² C x5, gr	eneral-purpose time – 584	rs x7, watchdog time - 640	er x4 - 656	- 656	- 584	
Maximu LVDS pa Total fu GXE tra (up to 3	um user I/O pins airs 1.6 Gbps (RX or TX)	448 216	656 312	I ² C x5, gr - 656 312	eneral-purpose time - 584 288	rs x7, watchdog time - 640 312	er x4 - 656 312	- 656 312	- 584 288	
Maximu LVDS pa Total fu GXE tra (up to 3	um user I/O pins pairs 1.6 Gbps (RX or TX) ull duplex transceiver count ansceiver count - PAM4 (up to 58 Gbps) or NRZ	448 216 48	656 312 96	1 ² C x5, gr - 656 312 96	eneral-purpose time - 584 288 96	640 312 48	656 312 96	- 656 312 96	- 584 288 96	
Maximu LVDS pa Total fu GXE tra (up to 3 GXT tra GX tran	um user I/O pins pairs 1.6 Gbps (RX or TX) ull duplex transceiver count ansceiver count - PAM4 (up to 58 Gbps) or NRZ 30 Gbps)	448 216 48 0	656 312 96	1 ² C x5, g0 - 656 312 96	- 584 288 96	rs x7, watchdog time - 640 312 48 0	656 312 96	- 656 312 96	584 288 96	
o or truit	um user I/O pins pairs 1.6 Gbps (RX or TX) ull duplex transceiver count ansceiver count - PAM4 (up to 58 Gbps) or NRZ 30 Gbps) ansceiver count - NRZ (up to 28.3 Gbps) ansceiver count - NRZ (up to 17.4 Gbps) bress* (PCIe*) hard intellectual property (IP) blocks	448 216 48 0	656 312 96 0	1 ² C x5, g0 - 656 312 96 0	96 72 16	- 640 312 48 0	656 312 96 0	- 656 312 96 0	- 584 288 96 72	
PCI Exp (Gen3 x	um user I/O pins pairs 1.6 Gbps (RX or TX) ull duplex transceiver count ansceiver count - PAM4 (up to 58 Gbps) or NRZ 30 Gbps) ansceiver count - NRZ (up to 28.3 Gbps) ansceiver count - NRZ (up to 17.4 Gbps) bress* (PCIe*) hard intellectual property (IP) blocks	448 216 48 0 32 16	656 312 96 0 64 32	1°C x5, g0 - 656 312 96 0 64 32	96 72 16 8		- 656 312 96 0 64 32	- 656 312 96 0 64 32	- 584 288 96 72 16 8	
PCI Exp (Gen3 x 100G Et	um user I/O pins pairs 1.6 Gbps (RX or TX) ull duplex transceiver count ansceiver count - PAM4 (up to 58 Gbps) or NRZ 30 Gbps) ansceiver count - NRZ (up to 28.3 Gbps) ansceiver count - NRZ (up to 17.4 Gbps) bress* (PCIe*) hard intellectual property (IP) blocks x16)	448 216 48 0 32 16	656 312 96 0 64 32	1°C x5, g0 - 656 312 96 0 64 32 4	288 96 72 16 8	rs x7, watchdog time - 640 312 48 0 32 16	96 0 64 32 4	- 656 312 96 0 64 32	- 584 288 96 72 16 8	
PCI Exp (Gen3 x 100G Et	um user I/O pins pairs 1.6 Gbps (RX or TX) ull duplex transceiver count ansceiver count - PAM4 (up to 58 Gbps) or NRZ BO Gbps) ansceiver count - NRZ (up to 28.3 Gbps) ansceiver count - NRZ (up to 17.4 Gbps) bress* (PCIe*) hard intellectual property (IP) blocks k16) Ethernet MAC (no FEC) hard IP blocks	448 216 48 0 32 16 2	656 312 96 0 64 32 4	1°C x5, g0 - 656 312 96 0 64 32 4	96 72 16 8 1	7, watchdog time 640 312 48 0 32 16 2 0	96 0 64 32 4 0	- 656 312 96 0 64 32 4	- 584 288 96 72 16 8	
PCI Exp (Gen3 x 100G Et 100G Et Memory	um user I/O pins pairs 1.6 Gbps (RX or TX) ull duplex transceiver count ansceiver count - PAM4 (up to 58 Gbps) or NRZ 30 Gbps) ansceiver count - NRZ (up to 28.3 Gbps) ansceiver count - NRZ (up to 17.4 Gbps) bress* (PCIe*) hard intellectual property (IP) blocks x16) Ethernet MAC (no FEC) hard IP blocks	448 216 48 0 32 16 2	656 312 96 0 64 32 4	1°C x5, gr - 656 312 96 0 64 32 4 4 0 DDR4, DDR3, DDR2,	96 72 16 8 1	7, watchdog time 640 312 48 0 32 16 2 0	96 0 64 32 4 0	- 656 312 96 0 64 32 4	- 584 288 96 72 16 8	
PCI Exp (Gen3 x 100G Et 100G Et Memory	um user I/O pins pairs 1.6 Gbps (RX or TX) ull duplex transceiver count ansceiver count - PAM4 (up to 58 Gbps) or NRZ 30 Gbps) ansceiver count - NRZ (up to 28.3 Gbps) ansceiver count - NRZ (up to 17.4 Gbps) bress* (PCIe*) hard intellectual property (IP) blocks (x16) Ethernet MAC (no FEC) hard IP blocks Ethernet MAC + FEC hard IP blocks (xy) devices supported	448 216 48 0 32 16 2	656 312 96 0 64 32 4	1°C x5, gr - 656 312 96 0 64 32 4 4 0 DDR4, DDR3, DDR2,	96 72 16 8 1	7, watchdog time 640 312 48 0 32 16 2 0	96 0 64 32 4 0	- 656 312 96 0 64 32 4	- 584 288 96 72 16 8	
LVDS part Total fur to 3 GXE tran (up to 3 GXT tran GX tran GE Total fur to 3 GXT tran GX tran 100G Et 100G Et Memory ackage Optical 1760 pin (42	um user I/O pins pairs 1.6 Gbps (RX or TX) ull duplex transceiver count ansceiver count - PAM4 (up to 58 Gbps) or NRZ 30 Gbps) ansceiver count - NRZ (up to 28.3 Gbps) ansceiver count - NRZ (up to 17.4 Gbps) bress* (PCle*) hard intellectual property (IP) blocks (x16) Ethernet MAC (no FEC) hard IP blocks Ethernet MAC + FEC hard IP blocks (xy devices supported (ions and I/O Pins: General-Purpose I/O (GPIO) Count, High	448 216 48 0 32 16 2 2 0	656 312 96 0 64 32 4	1°C x5, gr - 656 312 96 0 64 32 4 4 0 DDR4, DDR3, DDR2,	96 72 16 8 1 1 1 2 DDR, QDR II, QDR II+	- 48 0 312 48 0 32 16 2 2 0 -, RLDRAM II, RLDRA	96 0 64 32 4 4 0 M 3, HMC, MoSys	- 656 312 96 0 64 32 4	- 584 288 96 72 16 8 1	

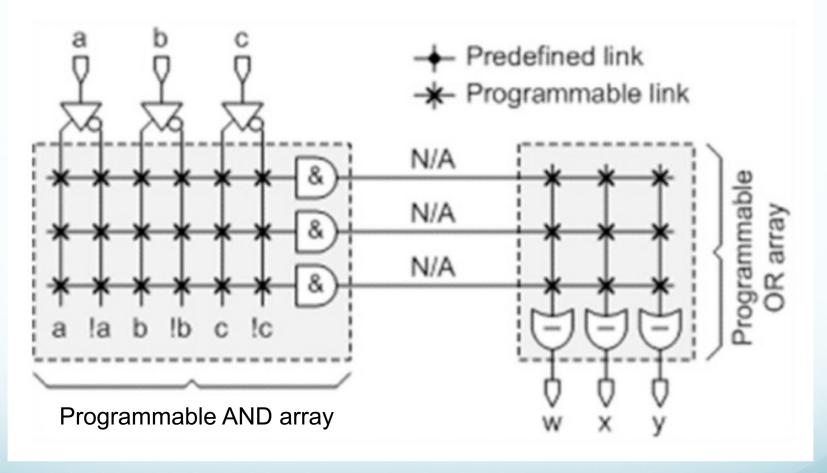
FPGA count in CMS trigger for HL-LHC




History

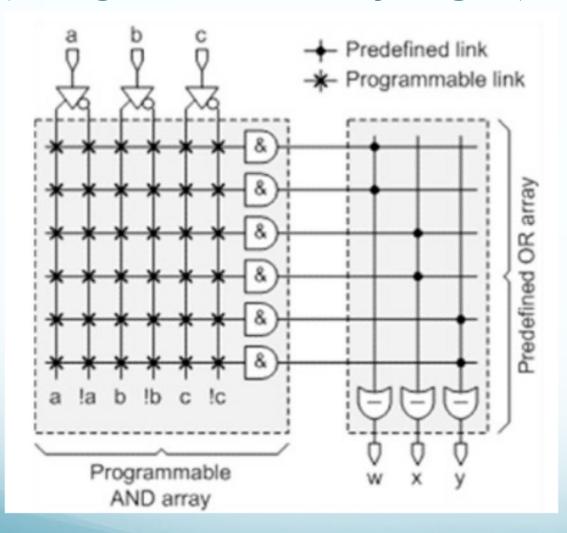
Long long time ago ...

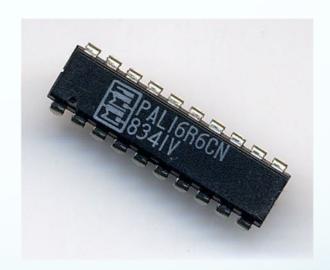
Simple Programmable Logic Devices (sPLDs) a) Programmable Read Only Memory (PROMs)



Late 60's

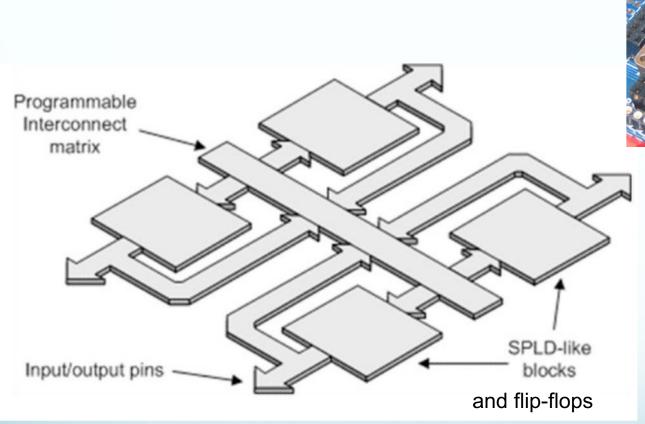
Unprogrammed PROM (Fixed AND Array, Programmable OR Array)

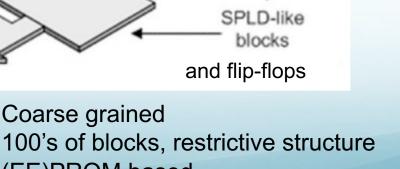

Simple Programmable Logic Devices (sPLDs) b) Programmable Logic Arrays (PLAs)



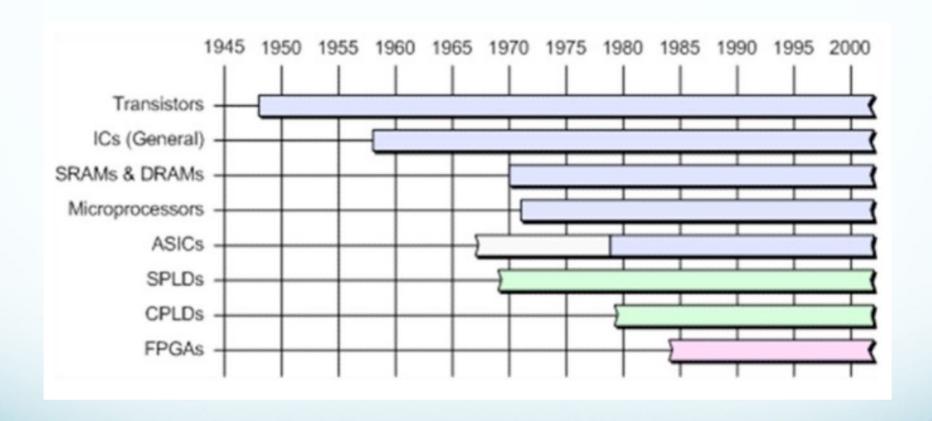
Unprogrammed PLA (Programmable AND and OR Arrays)

Most flexible but slower

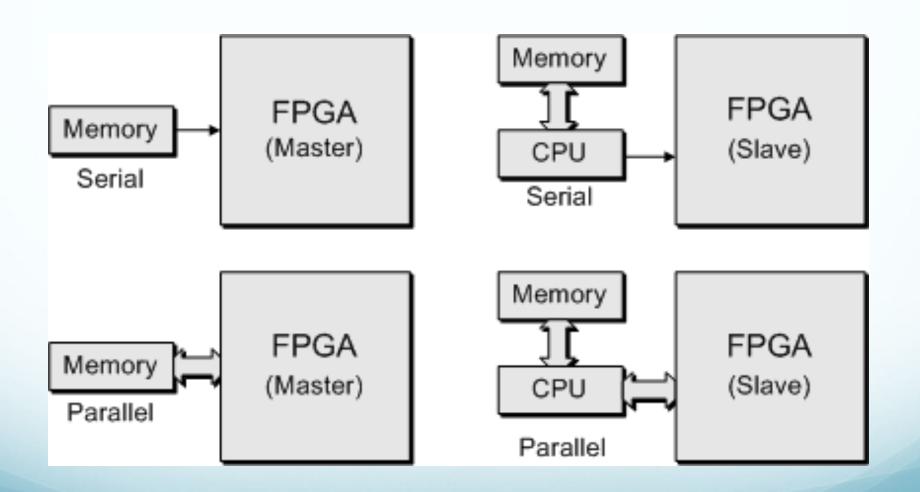

Simple Programmable Logic Devices (sPLDs) c) Programmable Array Logic (PAL)

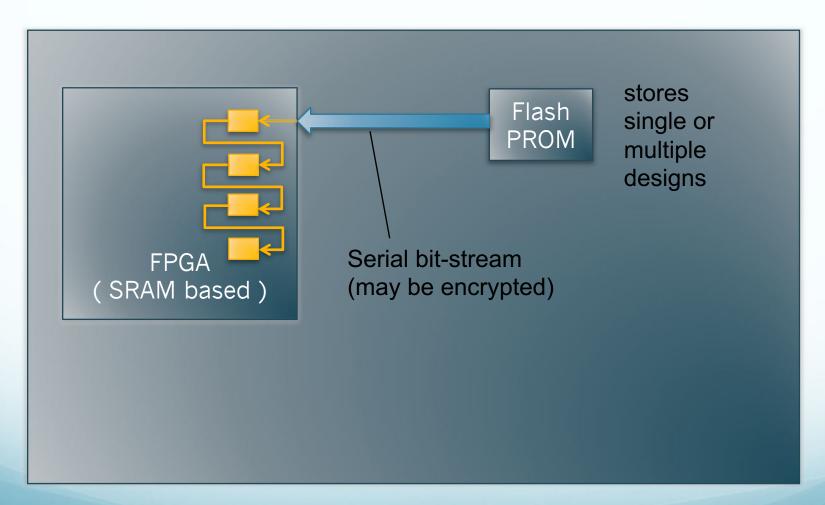

Unprogrammed PAL (Programmable AND Array, Fixed OR Array)

Complex PLDs (CPLDs)

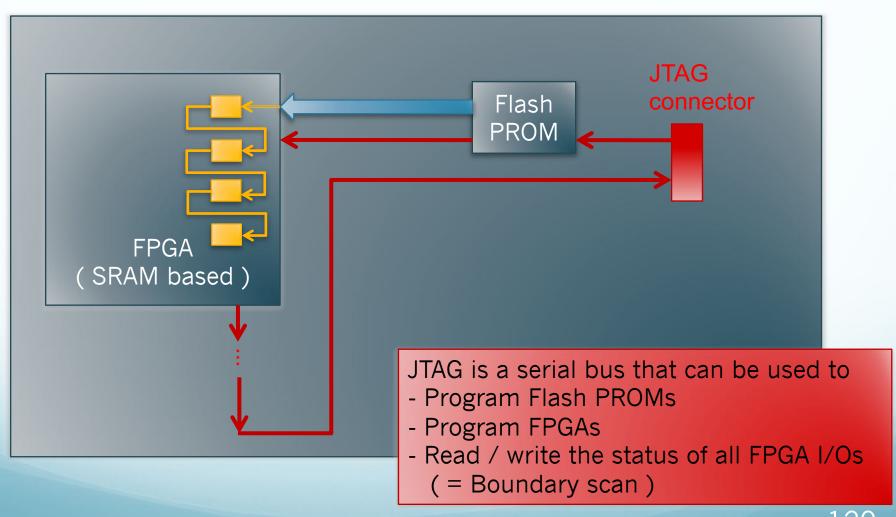


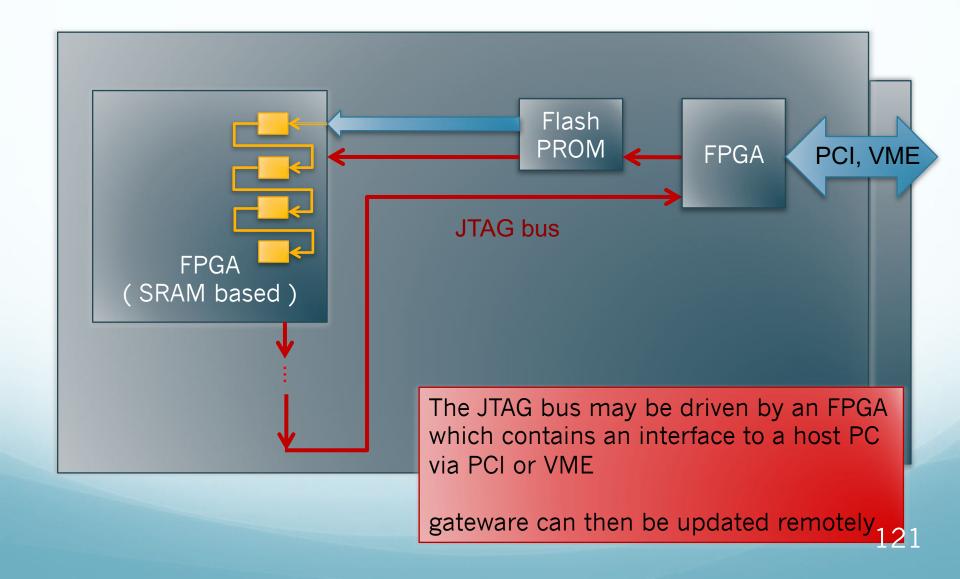
Coarse grained


(EE)PROM based

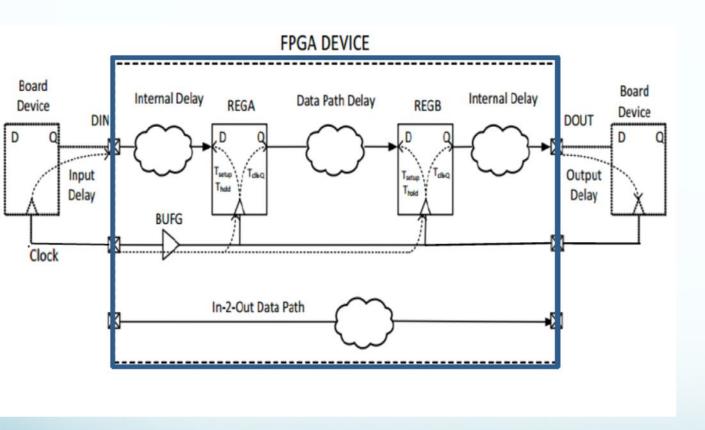

FPGAs ...

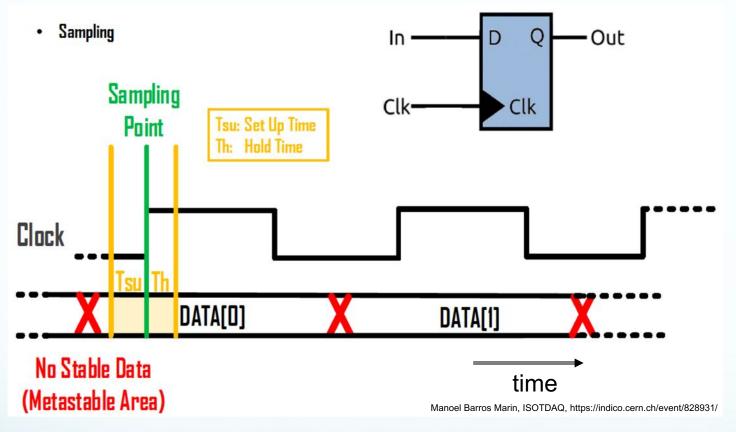
Design Considerations (SRAM Config.)


Configuration at power-up

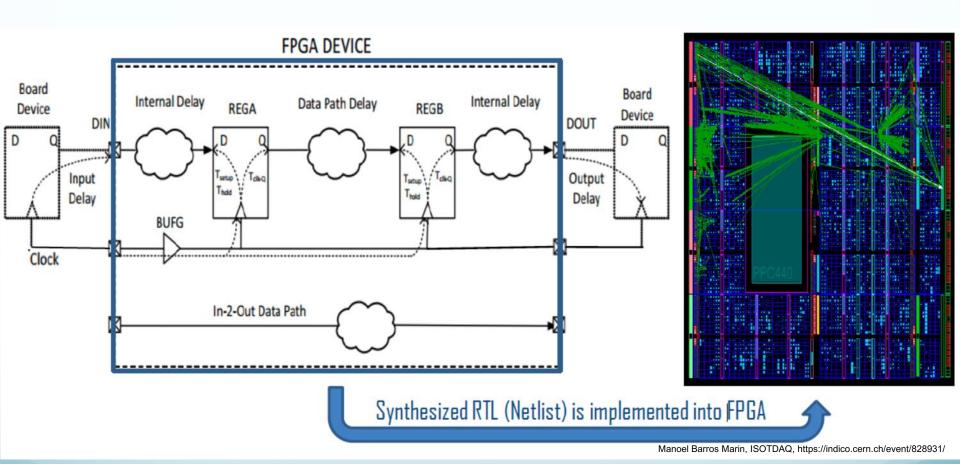

Typical FPGA configuration time: milliseconds

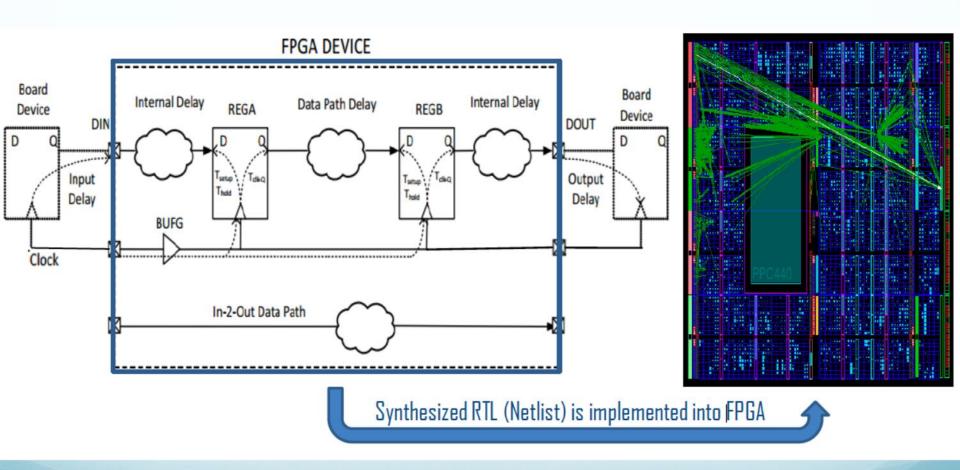
Programming via JTAG


Joint Test Action Group


Remote programming

Timing in FPGA design is critical


Data paths must respect setup and hold times


Setup time is the amount of time required for the input to a Flip-Flop to be stable before a clock edge. Hold time is similar to setup time, but it deals with events after a clock edge occurs.

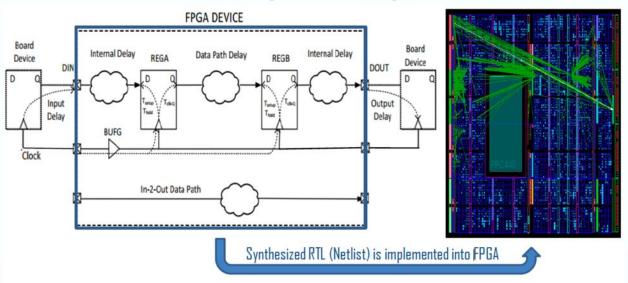
124

Timing in FPGA design is critical



Timing in FPGA design is critical

- If signals do not arrive at destination on time
- Catastrophic consequences


- Always use dedicated clock networks to distribute clocks
 - Assures that clock is seen at all FFs at same time
 - Other clocking resources
 - Clock capable pins
 - Clock buffers
 - Clock Multiplexers
 - Phase Locked Loops
 - Digital Clock Managers

Do not gate or derive clocks

Meeting timing closure

- Place & route step will try to position registers (flip-flops) and logic so that data path delays respect setup and hold times
- Options to meet timing
 - Instruct Place & route to use higher effort level
 - Add register stages & reduce amount of logic in data path (increases latency)
 - Choose location of inputs and outputs (at board design, or through optical patch panel)
 - Placement (area) constraints (give hints to the place & route step)
- Good practice
 - Whenever possible use I/O flip –flops (i.e FFs inside input/output cells)
 Ensures timing with respect to external components is respected