
Introduction to
Field Programmable

Gate Arrays
Hannes Sakulin
CERN / EP-CMD

International School of
Trigger and Data Acquisition 2024

USTC Hefei, China, 20 June 2024

What is a Field Programmable Gate Array ?
... a quick answer for the impatient

� An FPGA is an integrated circuit

� Mostly digital electronics

� An FPGA is programmable in the in the field (=outside the factory),
hence the name “field programmable”

� Circuit design is specified with a hardware description language
or schematics

� Tools compute a programming file for the FPGA (bitstream)

� The FPGA is configured with the design (gateware / firmware)

� Your electronic circuit is ready to use

With an FPGA you can build electronic circuits …
… without using a bread board or soldering iron
… without plugging together NIM modules
… without having a chip produced at a factory

2

Outline

� Quick look at digital electronics

� FPGAs and their features

� Programming techniques

� Design flow

� Example Applications in the Trigger and DAQ domain

3

The basic elements of
digital electronics

4

The building blocks: logic gates

AND gate

OR gate

Exclusive OR gate
XOR gate

Truth table C equivalent

q = a && b;

q = a || b;

q = a != b;A
B

Q

…

5

Combinatorial logic (asynchronous)

Outputs are determined
by Inputs, only

Example: Full adder with carry-in, carry-out

Combinatorial logic may
be implemented using
Look-Up Tables (LUTs)

LUT = small memory

A B Cin S Cout

0 0 0 0 0

1 0 0 1 0

0 1 0 1 0

1 1 0 0 1

0 0 1 1 0

1 0 1 0 1

0 1 1 0 1

1 1 1 1 1 6

(Synchronous) sequential logic
Outputs are determined

by Inputs and their history

(Sequence)

The logic has an internal state

clock

data Output

Inverted output

set

reset

D Flip-flop (D=data, delay) :

samples the data at the rising

(or falling) edge of the clock

The output will be equal to

the last sampled input until the

next rising (or falling) clock edge

Example: 2-bit binary counter

https://www.zeepedia.com/read.php?b=9&c=32&d_flip-flop_based_implementation_digital_logic_design

7

Element that keeps the state: Flip-flop

(Synchronous) sequential logic
Outputs are determined
by Inputs and their history
(Sequence)
The logic has an internal state

Example: 2-bit binary counter
https://www.zeepedia.com/read.php?b=9&c=32&d_flip-flop_based_implementation_digital_logic_design

8

Flip-flop 1 Flip-flop 2

time D Q Q’ D=Q0 xor Q1 Q Q1 Q0

Before clock edge 1 1 0 1 0 0 0 0

after clock edge 1 0 1 0 1 0 0 1

after clock edge 2 1 0 1 1 1 1 0

after clock edge 3 0 1 0 0 1 1 1

after clock edge 4 1 0 1 0 0 0 0

Synchronous sequential logic

+ =

Using Look-Up-Tables and Flip-Flops
any kind of digital electronics may be implemented

Of course electronics design is an art in itself … 9

Signal processor

Trigger logic

Data compression logic

Network Interface Card

Neural net classifier

…

What is inside an FPGA?

10

Basic elements of an FPGA

Programmable Input / Output pinsFine-grained: 10.000’s
up to millions of logic blocks

extremely flexible:
can connect any block
output to any input

11

LUT-based Fabrics

12

Typical LUT-based Logic Cell

Xilinx: logic cell,
Altera: logic element

� LUT may implement any function of the inputs

� Flip-Flop registers the LUT output

� May use only the LUT or only the Flip-flop

� LUT may alternatively be configured a shift register

� Additional elements (not shown): fast carry logic 13

General-Purpose Input/Output (GPIO)

Today: Up to >1000 user I/O pins
Input and / or output
Voltages from (1.0), 1.2 .. 3.3 V
Many IO standards
Single-ended: LVTTL, LVCMOS, …
Differential pairs: LVDS, … 14

A toy example

15

Toy example: trigger on energy cluster

16

1 2 3

4 5 6

7 8 9

Say, we have a 3x3 pixel detector
Each pixel can measure deposited energy with 2 bit resolution
Trigger condition: the sum of energies deposited in a 2x2 pixel area exceeds 5 counts.

e1
e2
e3
e4
e5
e6
e7
e8
e9

accept

2

2

2

2

2

2

2

2

2

FPGA

Toy example: VHDL code

17

1 2 3

4 5 6

7 8 9

e1

e2

e3

e4

e5

e6

e7

e8

e9

accept

2

2

2

2

2

2

2

2

2

FPGA

We describe the trigger logic in the VHDL(*) hardware description language:

(*) Very High-Speed Integrated Circuit Hardware Description Language

types.vhd

top.vhd

Toy example: constraints

18

1 2 3

4 5 6

7 8 9

e1
e2
e3
e4
e5
e6
e7
e8
e9

accept

2

2

2

2

2

2

2

2

2

FPGA

We define which FPGA pins our signals are connected to:

Toy example: timing and floorplan

19

1 2 3

4 5 6

7 8 9

e1
e2
e3
e4
e5
e6
e7
e8
e9

accept

2

2

2

2

2

2

2

2

2

FPGA

We let the design tool compute the configuration for our FPGA …
… some minutes later we get the the utilization report

… and can look at the floor plan

Toy example: floorplan

20

1 2 3

4 5 6

7 8 9

e1
e2
e3
e4
e5
e6
e7
e8
e9

accept

2

2

2

2

2

2

2

2

2

FPGA

Toy example: floorplan

21

1 2 3

4 5 6

7 8 9

e1
e2
e3
e4
e5
e6
e7
e8
e9

accept

2

2

2

2

2

2

2

2

2

FPGA accept

Toy example: Register Transfer Level (RTL) design

22

1 2 3

4 5 6

7 8 9

e1
e2
e3
e4
e5
e6
e7
e8
e9

accept

2

2

2

2

2

2

2

2

2

FPGA

The design tool can also display the schematics of the circuit:

Toy example: Full example, 4 possible clusters

23

e1
e2
e3
e4
e5
e6
e7
e8
e9

accept

2

2

2

2

2

2

2

2

2

FPGA

Let’s do the full example:

(*) Very High-Speed Integrated Circuit Hardware Description Language

top.vhd

check all 4 possible
2x2 regions

1 2 3

4 5 6

7 8 9

Toy example: resource usage and floorplan

24

1 2 3

4 5 6

7 8 9

e1
e2
e3
e4
e5
e6
e7
e8
e9

accept

2

2

2

2

2

2

2

2

2

FPGA

We let the design tool compute the configuration for our FPGA

utilization report

Toy example: floorplan

25

1 2 3

4 5 6

7 8 9

e1
e2
e3
e4
e5
e6
e7
e8
e9

accept

2

2

2

2

2

2

2

2

2

FPGA

We let the design tool compute the configuration for our FPGA

utilization report

Toy example: RTL design

26

1 2 3

4 5 6

7 8 9

e1

e2

e3

e4

e5

e6

e7

e8

e9

accept

2

2

2

2

2

2

2

2

2

FPGA

Again, we can look at the generated schematics:

If we look closely, we can see that adders that are shared between adjacent 2x2 areas, are only implemented once.

Toy example: Timing

27

1 2 3

4 5 6

7 8 9

e1
e2
e3
e4
e5
e6
e7
e8
e9

accept

2

2

2

2

2

2

2

2

2

FPGA

Timing:

Input-to-output delay: ~ 10 ns

In this example asynchronous design using a Xilinx Artix 7
(note that asynchronous designs are not how we typically use FPGAs)

Toy example: Timing

28

1 2 3

4 5 6

7 8 9

e1
e2
e3
e4
e5
e6
e7
e8
e9

accept

2

2

2

2

2

2

2

2

2

FPGA

Timing:

Input-to-output delay: ~ 10 ns

In this example asynchronous design using a Xilinx Artix 7
(note that asynchronous designs are not how we typically use FPGAs)

With an FPGA we can construct
fast electronic circuits by describing them
with a hardware description language.

Doing the same with a microcontroller

29

1 2 3

4 5 6

7 8 9

e1
e2
e3
e4
e5
e6
e7
e8
e9

accept

2

2

2

2

2

2

2

2

2

Doing the same with a microcontroller

30

1 2 3

4 5 6

7 8 9

e1
e2
e3
e4
e5
e6
e7
e8
e9

accept

2

2

2

2

2

2

2

2

2

We write code that is executed by a processor

Probably about ~50-100
instructions at 20 MHz

Input to output
delay: 2-5 µs

Microcontroller vs FPGA

31

µC / CPU FPGA

Principle of
operation

Source code is translated
to machine instructions
and executed by CPU

Hardware Description Language
is translated to configuration of
FPGA, defining an electronic
circuit

Processing
time

Microseconds 10’s of nanoseconds

A closer look at FPGAs

32

Additional elements in an FPGA
� Besides logic cells and interconnect (distributed logic)

we have additional elements in an FPGA:
� Either to provide functions that cannot be implemented

with distributed logic (because the logic would be too slow)
� Clock resources, clock Managers

� Gigabit transceivers

� …

� Or to provide functionality that could also be implemented
with distributed logic, but is more efficiently(*)
implemented as a hard macro (in silicon)
� Multipliers, DSPs

� RAM

� Processors

33(*) smaller chip area, smaller power consumption, faster

Clock Trees

Typical FPGA designs use one or multiple clocks
Clock trees guarantee that the clock arrives at the same time at all flip-flops
Typical fabric clock 10’s to 100’s of MHz up to ~ 1 GHz 34

Clock Managers

Daughter clocks
may have multiple
or fraction
of the frequency

35

Our toy example
with clock

36

Adding a clock and flip-flops

37
We transform our design into a pipeline with 3 processing stages

Adding a clock and flip-flops

38

Clock Manager and global clocking resources

100 MHz
clock in

200 MHz
clock in

Adding a clock and flip-flops

39
We transform our design into a pipeline with 3 processing stages

Adding a clock and flip-flops

40
We transform our design into a pipeline with 3 processing stages

Resource usage & floorplan

41

Floorplan: clock resources

42

1. Clock capable
input pin

2. Clock manager

3. Global Clock
buffer

4. Global Clock
lines

Floorplan: flip-flops

43

1. Input flip-flop
near pad

2. Flip-flops after first adder stage 3. Flip-flops after second adder stage

4. Output flip-flops near pad
after comparator stage

VHDL code

44

3) Instantiate cluster energy
check module

1) Instantiate clocking logic
- Customized firmware block

produced by FPGA design tool
- Also called IP (Intellectual Property) Core

2) Clocked process: register inputs

4) Clocked process:
register OR of
Cluster checks

VHDL code – cluster energy check

45

Outside process: asynchronous logic

Inside clocked process:
<= assignment creates flip-flop

Constraints

46

Assign clock pin
Use input/output flip-flops

Timing

47

100 MHz clock at pin

200 MHz internal clock
(we set this as a
parameter to the clock
manager)

Design can check for clusters at 200 MHz (every 5 ns),
but needs 4 clock cycles (20 ns) to compute the trigger decision

Other elements in FPGAs

48

Embedded RAM blocks

Today: Up to ~500 Mbit of RAM49

Can be used in many ways:
Look-up of mathematical function
Buffer memory
…

Embedded Multipliers & DSPs

50

Digital Signal Processor (DSP)

DSP block (Xilinx 7-series)
Up to several 1000 per chip

51

Soft and Hard Processor Cores

� Soft core
� Design implemented with

the programmable
resources (logic cells) in
the chip

� Hard core
� Processor core that is

available in addition to the
programmable resources

� E.g.: Power PC, ARM

52

High-Speed Serial Interconnect

� Using differential pairs

� Standard I/O pins limited to
about 1 Gbit/s

� Latest serial transceivers:
typically 25 Gb/s
� up to 112 Gb/s with

Pulse Amplitude Modulation
(PAM)

� FPGAs with multi-Tbit/s IO
bandwidth

(SERDES)

53

Components in a modern FPGA

54

Programming techniques

55

Fusible Links (not used in FPGAs)

56

Antifuse Technology

57

EPROM Technology

Intel, 1971

Erasable Programmable Read Only Memory

58

EEPROM and FLASH Technology
Electrically Erasable Programmable Read Only Memory

59

EEPROM: erasable word by word
FLASH: erasable by block or by device

Erasure by “Fowler-Nordheim” Tunneling

SRAM-Based Devices

Multi-transistor SRAM cell

60

Programming a 3-bit wide LUT

61

Summary of Technologies

Used in most
FPGAs

Rad-tolerant
(e.g. Alice)

Rad-tolerant
secure

62

Major Manufacturers
� AMD Xilinx (formerly Xilinx)

� First company to produce FPGAs in 1985

� About 55% market share, today

� SRAM based CMOS devices

� Intel FPGA (formerly Altera)

� About 35% market share

� SRAM based CMOS devices

� Microchip (Microsemi, Actel)

� Anti-fuse FPGAs

� Flash based FPGAs

� Mixed Signal

� Lattice Semiconductor

� SRAM based with integrated Flash PROM

� low power

(Formerly)

63

(Formerly)

Bought by AMD in 2022

Altera bought by Intel in 2015

Trends

64

Ever-decreasing feature size

28 nm Xilinx Virtex-7 / Altera Stratix V

130 nm Xilinx Virtex-2
Widely used at LHC startup

� Higher capacity

� Higher speed

� Lower power
consumption

16 nm Xilinx UltraScale +

7 nm Xilinx Versal ACAP(*)

14 nm Intel Stratix 10

7nm (2019)

(*) Adaptive Compute Acceleration Platform
65

Technology nodes < 28 nm are commercial names and do not represent any geometry of transistors.

Trends
� Speed of logic keeps increasing

� Look-up-tables with more inputs (5 or 6)

� Speed of serial links increasing (multiple Gb/s)

� More integrated memory
� Integrated High Bandwidth Memory (HBM) in-package

� 10x faster than DDR4 (Xilinx: up to 8 GB, Intel: up to 16GB)

� More and more hard macro cores on the FPGA
� PCI Express

� Gen2: 5 Gb/s per lane
� Gen3: 8 Gb/s per lane (typically up to 16 lanes)
� Gen4: 16 Gb/s per lane

� 10 Gb/s, 40 Gb/s, 100 Gb/s Ethernet, 150 Gb/s Interlaken

� Sophisticated soft macros
� CPUs
� Gb/s MACs
� Memory interfaces (DDR2/3/4)

� Processor-centric architectures – see next slide

66

System-On-a-Chip (SoC) FPGAs

Xlinix Zynq

Intel Stratix 10 SoC

CPU(s) + Peripherals + FPGA in one package 67

Adaptive Compute Acceleration Platform
(ACAP)

Xlinix Versal

CPU(s) + Peripherals + FPGA + AI (Adaptable
Intelligence) Engines in one package 68

https://www.electronicdesign.com/markets/automation/video/21234012/electronic-design-versal-card-streamlines-acap-fpga-ai-development

Vector processor
(GPU like)

FPGA
CPU

FPGA – ASIC comparison
FPGA

� A chip (the FPGA) is configured to
represent a digital circuit

� May be reprogrammed in the field
(gateware upgrade)

� New features

� Bug fixes

� Rapid development cycle (minutes /
hours)

� Only digital designs are possible

� Low development cost

� You can get started with a
development board (< $100) and
free software

� High-end FPGAs
rather expensive

ASIC(*)
� A chip is produced in a foundry for a

specific purpose

� Design cannot be changed once it is
produced

� Long development cycle (weeks / months)

� Analog designs possible

� Higher performance
� Speed, Area, Power

� Better radiation hardness

� Extremely high development cost
� ASICs are produced at a semiconductor

fabrication facility (“fab”) according to your
design

� Lower cost per device compared to FPGA,
when large quantities are needed

69(*) Application Specific Integrated Circuit

FPGA design flow

70

Design entry

� Graphical overview
� Can draw entire design
� Use pre-defined blocks

� Can generate blocks using loops
� Can synthesize algorithms
� Independent of design tool
� May use tools used in SW

development (SVN, git …)

entity DelayLine is

generic (
n_halfcycles : integer := 2);

port (
x : in std_logic_vector;
x_delayed : out std_logic_vector;
clk : in std_logic);

end entity DelayLine;

Schematics Hardware description language
VHDL, Verilog

rarely used today
71

Hardware Description Language
� Looks similar to a programming language

� BUT be aware of the difference
� Programming language => translated into machine

instructions that are executed by a CPU

� HDL => translated into gateware (logic gates & flip-flops)

� Common HDLs
� VHDL

� Verilog
� AHDL (Altera specific)

� Newer trends
� C-like languages (handle-C, System C)

� Labview
� High Level Synthesis (HLS) from C/C++ 72

Example: VHDL
� Looks like a

programming
language

� All statements
executed in
parallel, except
inside
processes

Asynchronous logic
All signals in sensitivity list

Synchronous logic
Only clock (and reset) in sensitivity list

73

Schematics & HDL combined

74

Design flow

Synthesis

Implementation
Map
Place & Route

Timing
Simulation

Behavioral
Simulation

constraints Schematics

Programming file

Pins
Timing
Area
…

IP Integrator
VHDL / Verilog

Counters
FIFOs
RAM …

Static Timing
Analysis

Commercial Intellectual
Property cores

Processors
Interfaces
Controllers
…

State
Machines
etc.

Register Transfer Level (RTL) model(*)

C/C++

High Level
Synthesis

Net list

VHDL/Verilog

Always do this !

Always check this !

Specify timing
constraints !

Very heavy, not often done.
(*) asynchronous logic + registers (=flip-flops)

Floorplan

76

Manual Floor planning

� For large designs, manual
floor planning may be necessary

Routing congestion
Xilinx Virtex 7 (Vivado)

77

Simulation

78

Embedded Logic Analyzers

A great tool for debugging your design

79

FPGA applications
in the Trigger & DAQ domain

80

First-Level Trigger at Collider

Delay
FIFO

De-
randomizer
FIFO

Full data
(fine grain)

Coarse grain data

First Level Trigger

Pipelined
Logic

Trigger decision YES / NO
(for every beam crossing)

Fixed Latency
(= processing time
of the first
level trigger)

N beam crossings

Timing: beam crossings

Latency should be short
In order to limit the length
of the delay FIFOS

detector
LHC: 25 ns

81

Pipelined Logic

Combinatorial logic

Flip flop
Clocked with same clock as collider

1

Trigger
decision
for beam
crossing

. . .

Processing
data from
beam
crossing

2

Processing
data from
beam
crossing

3

Processing
data from
beam
crossing

4

82

Pipelined Logic – a clock cycle later

Combinatorial logic

Flip flop
Clocked with same clock as collider

2

Trigger
decision
for beam
crossing

. . .

Processing
data from
beam
crossing

3

Processing
data from
beam
crossing

4

Processing
data from
beam
crossing

5

83

Why are FPGAs ideal for First-Level Triggers ?

� They are fast
� Much faster than discrete electronics

(shorter connections)

� Many inputs
� Data from many parts of the detector

has to be combined

� All operations are performed in parallel
� Can build pipelined logic

� They can be re-programmed
� Trigger algorithms can be optimized

Low latency

High
performance

84

Trigger algorithms implemented in FPGAs
� Trigger

� Peak finding

� Pattern Recognition

� Track Finding

� Clustering / Energy summing

� Topological Algorithms (invariant mass)

� Vertex Finding

� Particle flow (reconstruction jets, etc. from individual particle tracks)

� Inference with Neural Networks

� Many more …

� Trigger Control system
� Fast (busy) signal merging & monitoring

� Generation of random triggers

� Generation of calibration sequences

� Automatic recovery sequences

� Monitoring (dead times, rates, …) 85

Neural Networks in Trigger

� Principle
� Node is assigned a value based

on the weighted sum of nodes in
the previous layer

� Maps well to DSP resources in
FPGA (multiplier + adder)

� Applications:
� Jet classification
� Assignment of transverse

momentum based on many
measurements

� Topological trigger

� …

� Tools
� Many commercial tools
� hls4ml (optimized for latency)

� Firmware generation from
high-level model using Vivado
HLS

By Glosser.ca - Own work, Derivative of File:Artificial neural network.svg, CC
BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=24913461

One or many hidden layers

86

CMS Global Muon Trigger

� The CMS Global Muon trigger received 16 muon
candidates from the three muon systems of CMS

� It merged different measurements for the same muon
and found the best 4 over-all muon candidates

� VME card (9U)

� Input: ~1000 bits
@ 40 and 80 MHz

� Output: ~50 bits @ 80MHz

� Processing time: 250 ns

� Pipelined logic
one new result every 25 ns

� 10 Xilinx Virtex-II FPGAs

� up to 500 user I/Os per chip

� Up to 25000 LUTs per chip
used

� Up to 96 x 18kbit RAM used

� In use in the CMS trigger
2008-2015

87

CMS Global Muon Trigger main FPGA

88

µTCA board for Run 2&3
CMS trigger based on Virtex 7

Virtex 7 with 690k logic cells
80 x 10 Gb/s transceivers bi-directional
72 of them as optical links on front panel

0.75 + 0.75 Tb/s
Being used in the CMS trigger since 2015

MP7, Imperial College

360 Gb/s
36 x

10 Gb/s

Rx
Tx

Rx
Tx

Input/output:
up to 14k bits per 40 MHz clock

Same board used for different functions
(different gateware)
Separation of framework + algorithm fw89

CMS ATCA Trigger boards for HL-LHC (2029+)

� Few types of generic boards, ATCA standard

� Xilinx Virtex/Kintex Ultrascale+ FPGAs (> 3 million logic cells / FPGA)

� 25-28 Gb/s optical links
� SoC FPGAs used for board control (on some boards)

� Advanced firmware algorithms
� Vertex finding
� Particle flow
� Neural network classifiers

Serenity, UK

90

120 x
25 Gb/s

APX, US

FPGAs in Data Acquisition
� Frontend Electronics

� Pedestal subtraction

� Zero suppression

� Compression

� Buffering …

� Custom data links

� E.g. SLINK-64 over copper
� Several serial LVDS links in parallel

� Up to 400 MB/s

� SLINK/SLINK-express over optical

� Interface from custom hardware to commercial electronics

� PCI/PCIe, VME bus, Myrinet, 10/40/100 Gb/s Ethernet etc.

91

C-RORC (Alice) / Robin NP (ATLAS) for Run-2

Xilinx Virtex-6 FPGA

SLINK (ATLAS)
DDL (ALICE)

92

Custom data
link in

Commercial PCIe
link out (DMA to host memory)

CMS Front-end Readout Link (Run-1)

� Front-end Readout Link Card
� 1 main FPGA (Altera)
� 1 FPGA as PCI interface
� Custom Compact PCI card
� Receives 1 or 2 SLINK64
� 2nd CRC check
� Monitoring, Histogramming
� Event spy

Commercial Myrinet Network
Interface Card on internal PCI bus

� SLINK Sender Mezzanine
Card: 400 MB / s
� 1 FPGA (Altera)
� CRC check
� Automatic link test

93

Custom
data
link in

Interface to
commercial
HW

Custom
data
link out

Custom
interface to
backend
electronics

CMS Readout Link for Run-2&3 in use
since 2015

Myrinet NIC
replaced by
custom-built
card
(“FEROL”)

FEROL (Front End Readout Optical Link)
Input: 1x or 2x SLINK (copper)

1x or 2x 5Gb/s optical
1x 10Gb/s optical

10 Gb/s TCP/IP

Output: 10 Gb/s Ethernet optical
TCP/IP sender in FPGA

Cost effective solution
(need many boards)
Rather inexpensive FPGA
+ commercial chip to combine
3 Gb/s links to 10 Gb/s SLINK-64 input

LVDS / copper

94

FEROL (Front End Readout Optical Link)
Input: 1x or 2x SLINK (copper)

1x or 2x 5Gb/s optical
1x 10Gb/s optical

10 Gb/s TCP/IP

10 Gb/s SLINK Express
5 Gb/s SLINK Express
5 Gb/s SLINK Express

Output: 10 Gb/s Ethernet optical
TCP/IP sender in FPGA

SLINK-64 input
LVDS / copper

95

CMS Readout Link for Run-2&3 in use
since 2015

Custom data
link in

Commercial
data link out

PCIe40 – LHCb and ALICE Run-3

J.P. Cachemiche, ACES 2018
96

Custom data
link in

Direct Memory Access
transfer to host memory

Clock,
control

CMS DTH (DAQ and Timing Hub) for HL-LHC (2029+)

� ATCA board using Xilinx Virtex Ultrascale + FPGAs

� One or two DAQ units per board
� Up to 24 inputs at 25 Gb/s
� 5x 100 Gb/s Ethernet to commercial network
� TCP/IP in FPGA

� Board contains switch for control network 97

DTH prototype 2
Main board

Rear
transition
module

Custom data
link in

Commercial
data link
(TCP/IP) out

Clock & control distribution
via backplane

Clock & control
uplink

Zynq SoC FPGA
for control

DAQ FPGA

FPGAs in other domains
� Machine Learning

Inferencing

� Automotive Driver Assist
(Image Processing)

� 5G Wireless

� Medical imaging

� Speech recognition

� Cryptography

� Bioinformatics
(Genome sequencing)

� Aerospace / Defense

� (Bitcoin mining)

� ASIC Prototyping

� Compute accelerators
� Accelerator cards

� Server processors w. FPGA
� Financial
� Video transcoding
� …

98

Lab Session 5: Programming an FPGA

You are going to design the digital electronics inside this FPGA !
99

Lab Session 13: System-on-a-chip FPGA

Design the digital electronics and software in this SoC FPGA!
100

PYNQ-Z2 board
Xilinx Zynq w. dual-core ARM

Thank you

101

Acknowledgement

� Parts of this lecture are based on material by Clive Maxfield, author
of several books on FPGAs. Many thanks for his kind permission to
use his material!

� Re-use of the material is permitted only with the written
authorization of both Hannes Sakulin (Hannes.Sakulin@cern.ch)
and Clive Maxfield.

Re-use

102

mailto:Hannes.Sakulin@cern.ch

Reference Material

103

Top-of-the-line Xilinx devices

104

105

106

107

FPGA count in CMS trigger for HL-LHC

108

109

History

110

Long long time ago …

111

Simple Programmable Logic Devices (sPLDs)
a) Programmable Read Only Memory (PROMs)

Unprogrammed PROM (Fixed AND Array, Programmable OR Array)

Late 60’s

112

Programmable AND array

1975Most flexible
but slower

Unprogrammed PLA (Programmable AND and OR Arrays)

Simple Programmable Logic Devices (sPLDs)
b) Programmable Logic Arrays (PLAs)

113

Unprogrammed PAL (Programmable AND Array, Fixed OR Array)

Simple Programmable Logic Devices (sPLDs)
c) Programmable Array Logic (PAL)

114

Complex PLDs (CPLDs)

Coarse grained
100’s of blocks, restrictive structure
(EE)PROM based

and flip-flops

115

FPGAs …

116

Timing

117

Design Considerations (SRAM Config.)

118

Configuration at power-up

FPGA
(SRAM based)

Flash
PROM

Serial bit-stream
(may be encrypted)

stores
single or
multiple
designs

Typical FPGA configuration time: milliseconds
119

Programming via JTAG

FPGA
(SRAM based)

Flash
PROM

JTAG
connector

JTAG is a serial bus that can be used to
- Program Flash PROMs
- Program FPGAs
- Read / write the status of all FPGA I/Os

(= Boundary scan)
...

Joint Test Action Group

120

Remote programming

FPGA
(SRAM based)

Flash
PROM

...

FPGA PCI, VME

The JTAG bus may be driven by an FPGA
which contains an interface to a host PC
via PCI or VME

gateware can then be updated remotely

JTAG bus

121

Timing

122

Timing
� Timing in FPGA design is critical

123

Data paths must respect setup and hold times

� Setup time is the amount of time required for the input
to a Flip-Flop to be stable before a clock edge. Hold
time is similar to setup time, but it deals with events
after a clock edge occurs.

Manoel Barros Marin, ISOTDAQ, https://indico.cern.ch/event/828931/

124

time

Timing
� Timing in FPGA design is critical

Manoel Barros Marin, ISOTDAQ, https://indico.cern.ch/event/828931/

125

Timing
� Timing in FPGA design is critical

� If signals do not arrive at destination on time
� Catastrophic consequences 126

Timing
� Always use dedicated clock networks to distribute clocks

� Assures that clock is seen at all FFs at same time

� Other clocking resources
� Clock capable pins

� Clock buffers

� Clock Multiplexers

� Phase Locked Loops

� Digital Clock Managers

� Do not gate or derive clocks

Manoel Barros Marin, ISOTDAQ, https://indico.cern.ch/event/828931/
127

Meeting timing closure

� Place & route step will try to position registers (flip-flops) and logic so that data path delays
respect setup and hold times

� Options to meet timing

� Instruct Place & route to use higher effort level

� Add register stages & reduce amount of logic in data path (increases latency)

� Choose location of inputs and outputs (at board design, or through optical patch panel)

� Placement (area) constraints (give hints to the place & route step)

� Good practice
� Whenever possible use I/O flip –flops (i.e FFs inside input/output cells)

� Ensures timing with respect to external components is respected 128

