

Machine Learning for Trigger and DAQ ISOTDAQ 2024

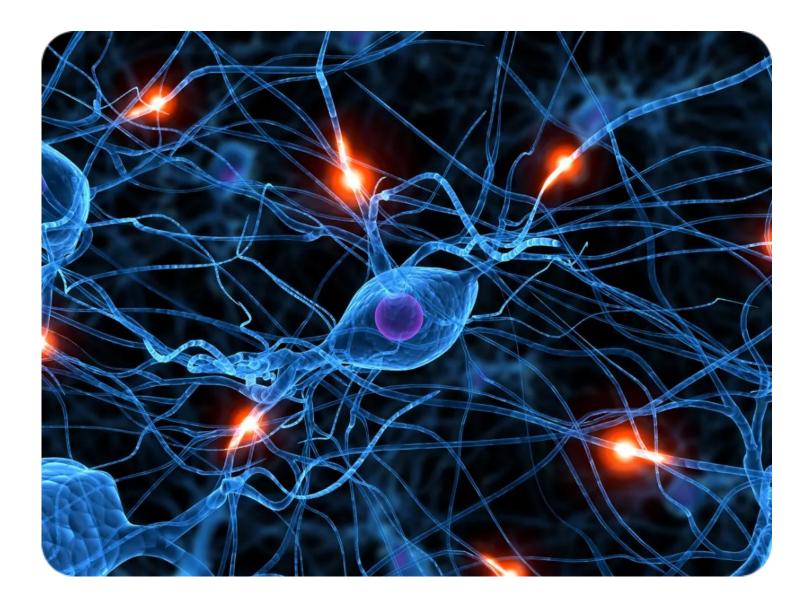
Thomas James, CERN

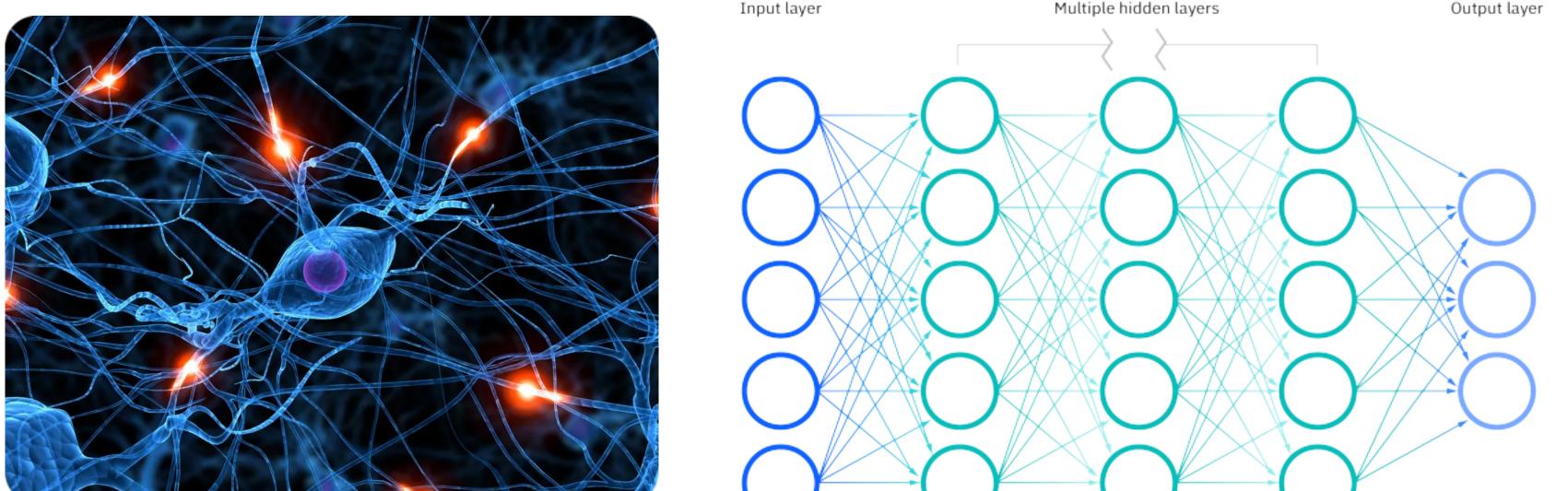
CERN openlab, CTO for AI and Edge Devices

Applied Physicist, CMS

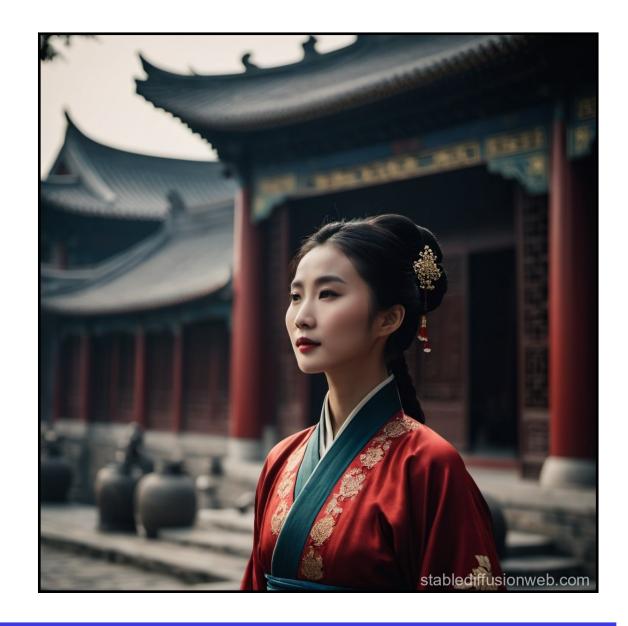
Many thanks to Sioni Summers (CERN) for his slides from the 2022 lecture







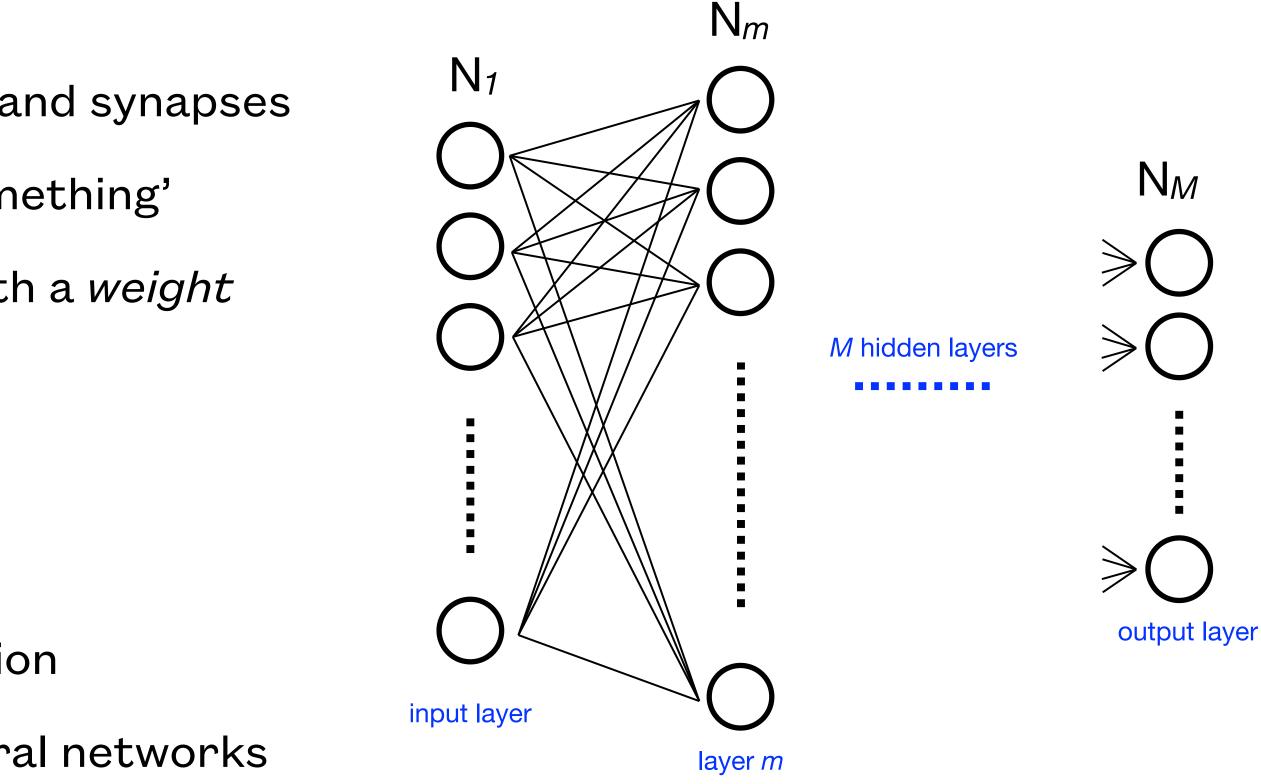
Introduction/Recap of ML & NNs



Neural Networks

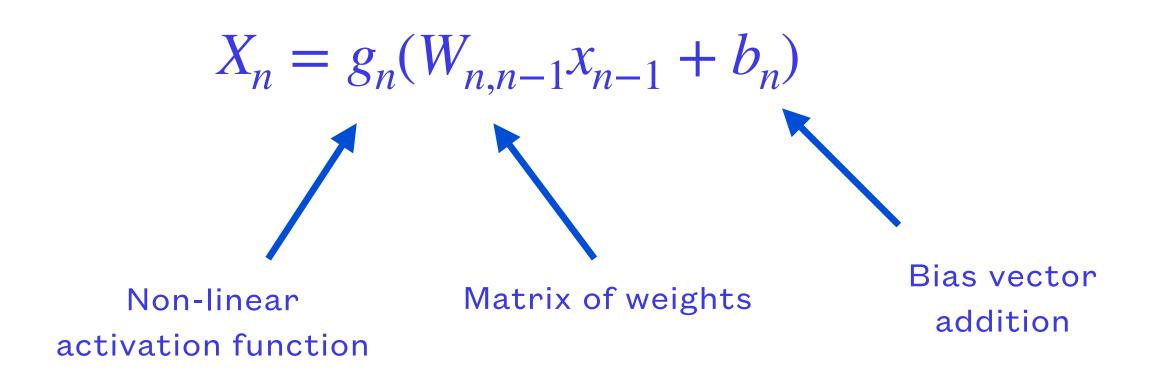
- Loosely inspired by brain structure with neurons and synapses
 - Neurons are real valued representations of 'something'
 - Synapses connect neurons (in one direction) with a *weight*
- Input neurons are your data variables
- Output neuron(s) are your predictions
 - class probabilities,
 - or continuous variables if performing a regression
- Hidden layers bring the performance of deep neural networks
 - Intermediate layers of neurons learn a more abstract representation of the data
 - More capable than 'shallow' networks on raw data
- Many topologies exist for different types of problems

Fully Connected or Dense Neural Networks



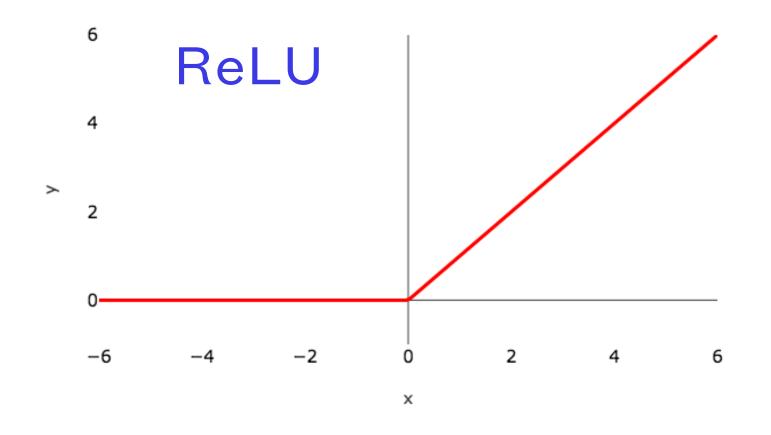
Neural Networks

the matrix of weights, with an added 'bias', and a non-linear 'activation function' applied



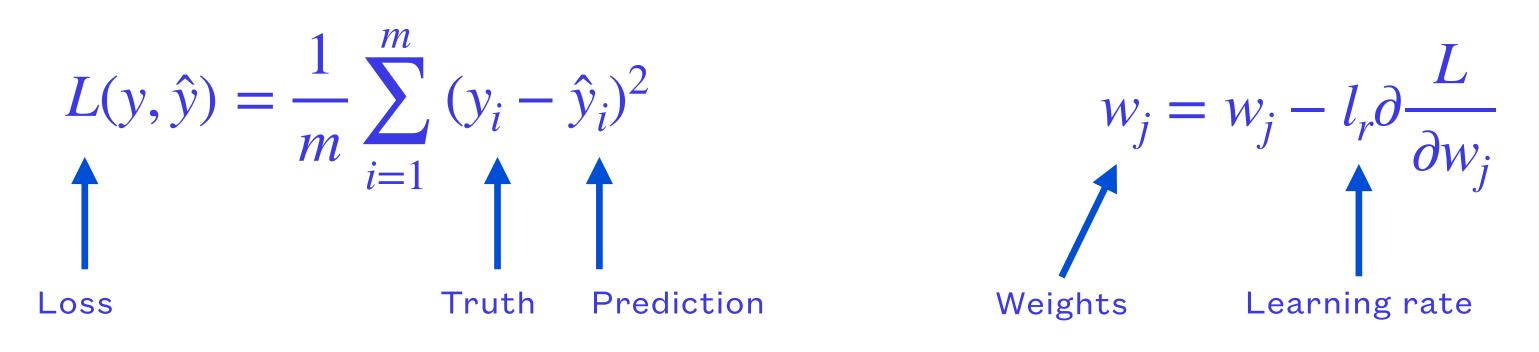
- Without the activation function, we're just doing linear transformations of our variables
- Values of weights and biases learned from data during training

• The values of neurons in a layer is given by the product of the neuron values of the previous layer and



Training with Gradient Descent

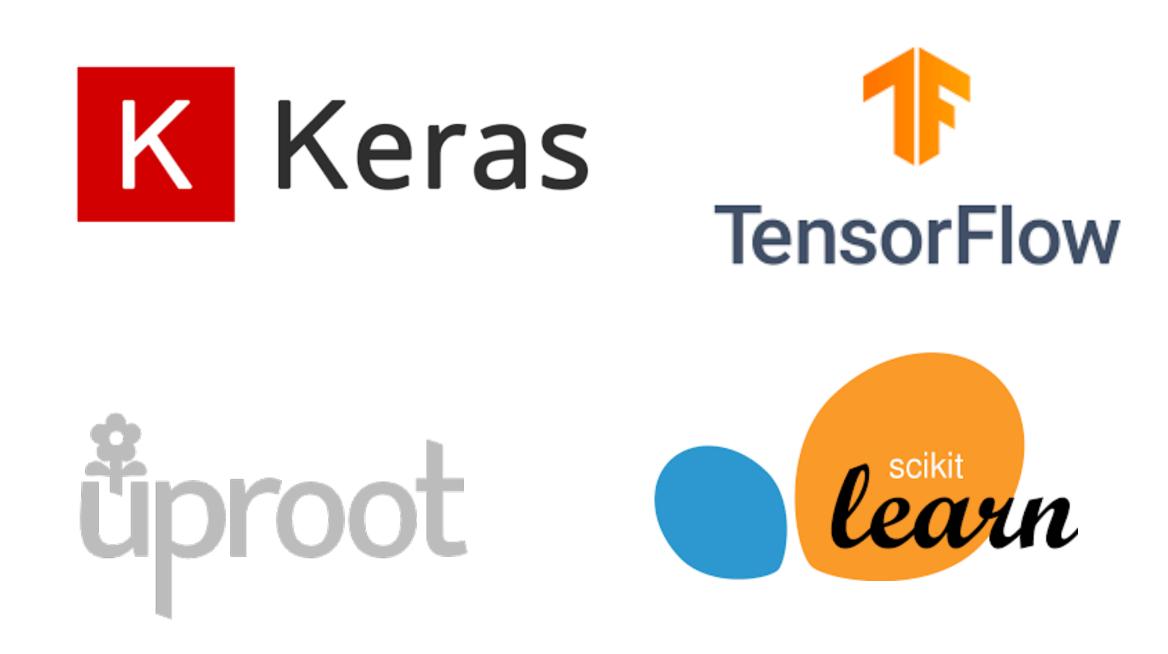
- Supervised learning start with a NN of randomised weights and a collection of training data
- Evaluate performance network with a loss function, e.g. mean squared error:



- Minimise loss function to get the best performing network
 - Predictions as close to true labels as possible
- Update the (initially not very good) network parameters by evaluating the derivative of the loss function w.r.t those parameters, and iterate!

Tools / Frameworks

- and deploying them
- There are particularly good sets of tools in Python



• Many excellent software tools and frameworks are out there for building ML models, training

OPyTorch

dmlc

pandas XGBC

Minimal example - tensorflow NN

from tensorflow.keras.models import Model

```
from tensorflow.keras.layers import Input, Dense
from sklearn.model_selection import train_test_split
import uproot
```

X, y, = uproot.open('data.root').arrays([...])

X_train, X_test, y_train, y_test = train_test_split(X, y)

```
inputs = Input(shape=(3,))
```

hidden = Dense(64, activation='relu', input_shape=2, name='hidden'))(inputs)

output = Dense(1, activation='sigmoid', name='output'))(hidden)

nn = Model(inputs=inputs, outputs=output)

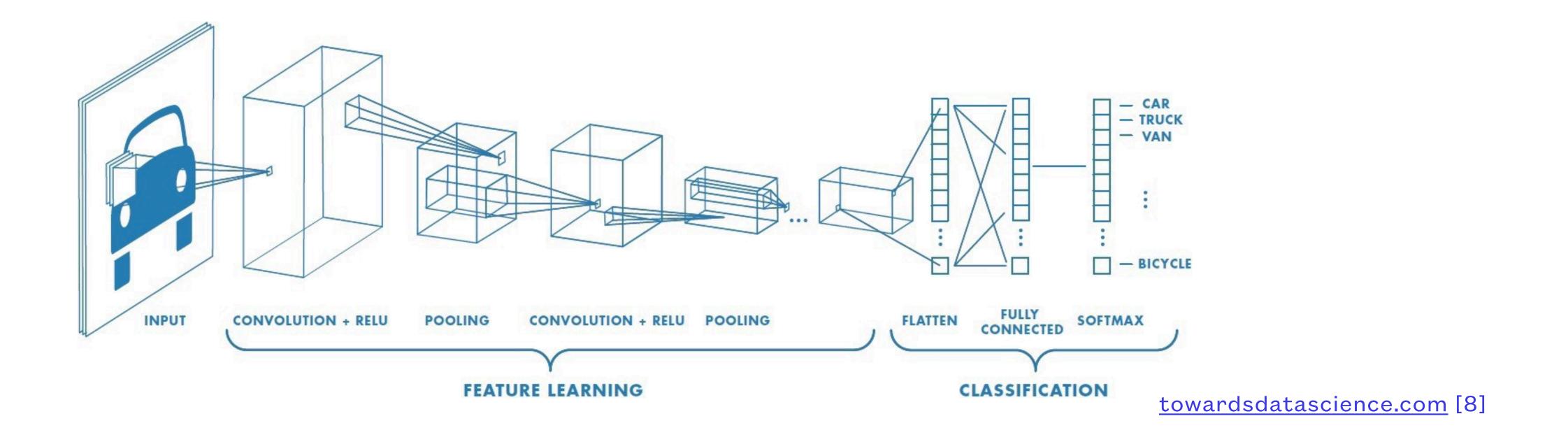
nn.compile(optimizer="Adam", loss="binary_crossentropy", metrics=["accuracy"])

nn.fit(X_train, y_train, batch_size=100, epochs=10)

nn.save('nn.h5')

Convolutional Neural Networks

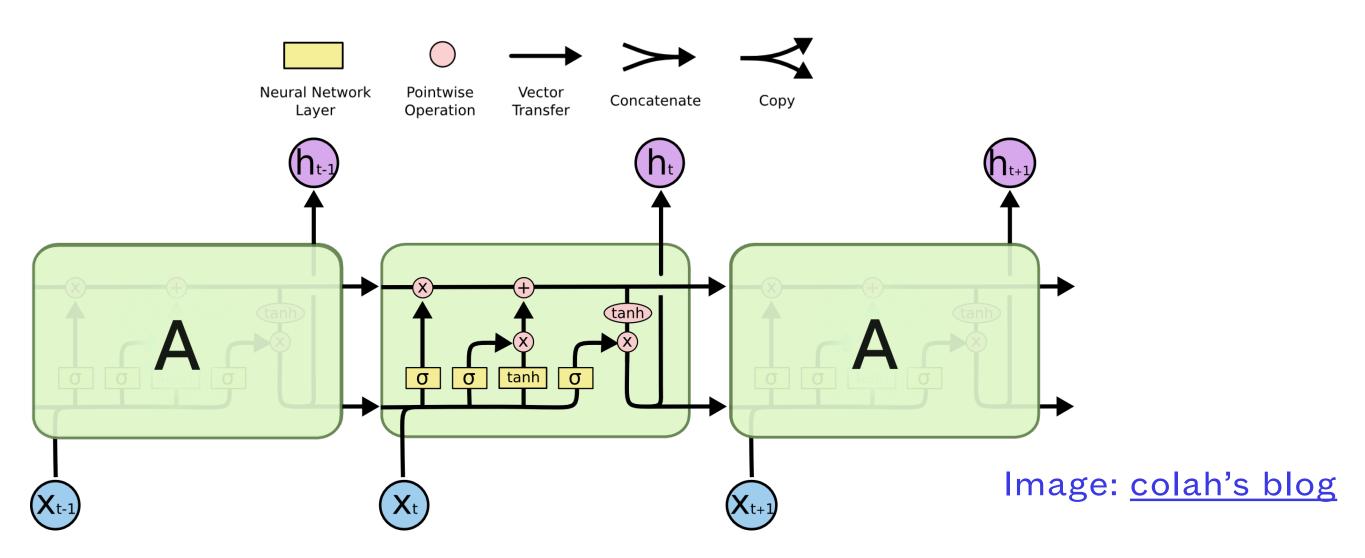
- - Reduces the number of parameters compared to feeding the pixels into a Fully Connected NN
 - Adds translational invariance: the object in the image could be anywhere, and is filtered down by the convolutions



• Convolutional Neural Networks for images: apply convolutional filters - small neural networks - scanning over the pixels

Recurrent Neural Networks

- Built in *memory*
- Used for ordered data, e.g. time series, natural language processing
- Few different flavours: Long Short Term Memory (LSTM), Gate Recurrent Unit (GRU)

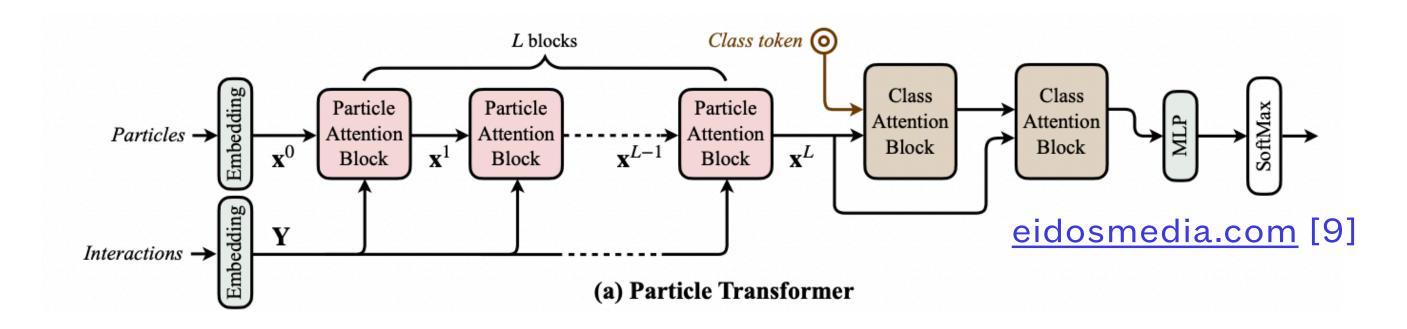


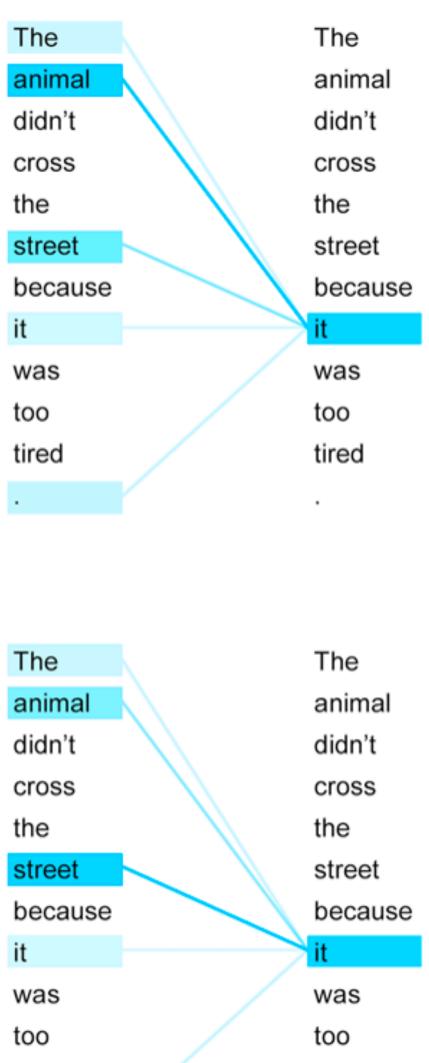
- iteration
- Could be used, e.g. to predict the next word in a sentence

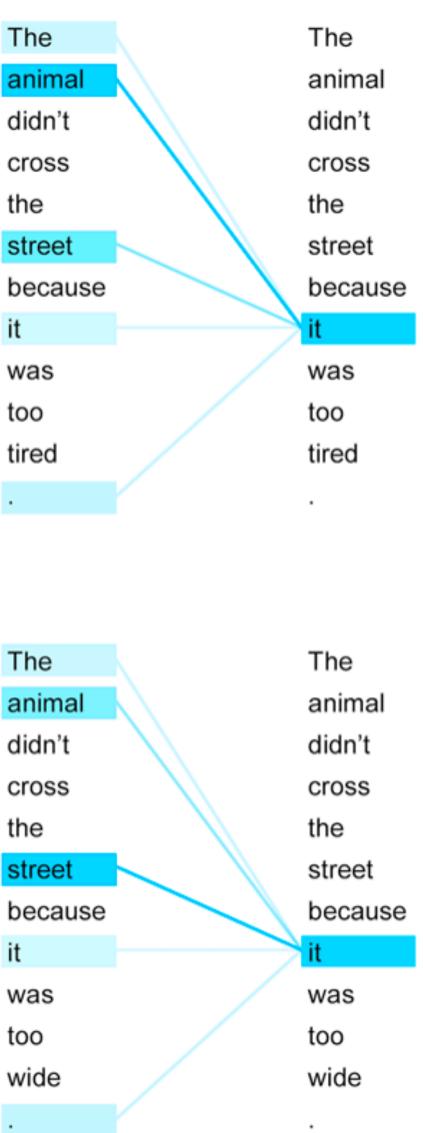
• The LSTM cell has an internal state, and fully connected neural networks update this at each

Transformers

- Sequence-to-sequence type problems
 - The big Natural Language Processing (NLP) models like BERT and GPT3
 - **Billions of parameters**
 - Unlike RNNs the full sequence enters at once more paralellizable
- Attention mechanism learning relationships / context
- Also relevant in HEP <u>Particle Transformer (ParT)</u> (jet tagging)
- Better than CNN & RNN at long-distance connections

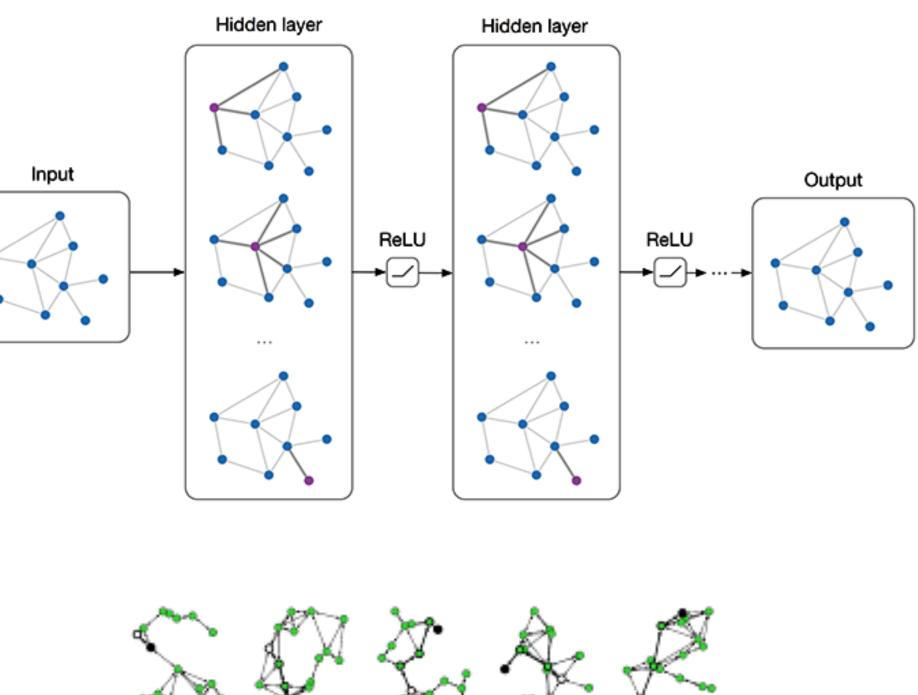


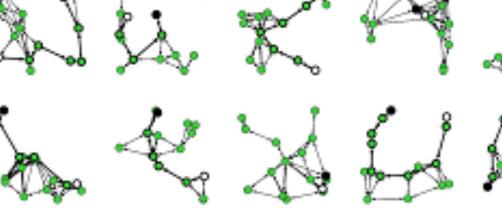




Graph Neural Networks

- Well suited to problems described by graphs of vertices and edges
- Cluster / classify data not only according to its coordinates, but its neighbourhood
- Iteratively update (strengthen/weaken) connections with fully connected or convolutional networks
- Used in, e.g., molecule synthesis for drug discovery
- Promising in HEP for multi-clusters in 'point cloud' like detectors (sparse images)
 - tracking, calorimetry in high pileup
 - hierarchical type problems, e.g. tracking, jets



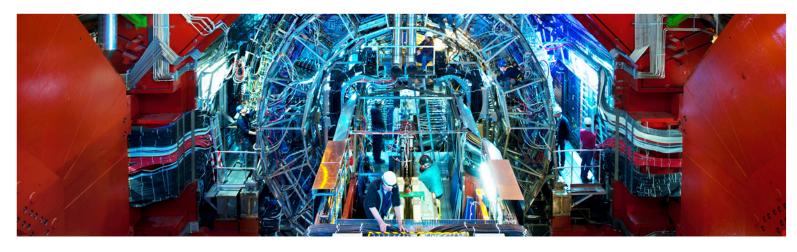


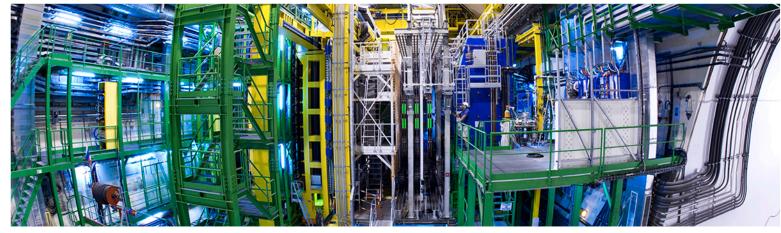
ML for TDAQ Overview

- ML algorithms **highly parallelisable**
 - NN forward pass just matrix-vector products and non-linear functions on vectors
- Can be accelerated with appropriate hardware:
 - CPUs with vector/SIMD units (e.g. AVX get packages from Intel, for example)
 - GPU, FPGA, TPU (T = Tensor), IPU (I = Intelligence)
 - Need also good software and compilers to utilise hardware effectively
- Need to (re)optimize ML models for online performance
 - Tuning the learning rate, optimizer, loss function, activation function
 - Tune network architecture
 - Type of network, N layers, N neurons / layer
 - Hyperparameter scan / optimization e.g. Keras Tuner, Ray Tune

12

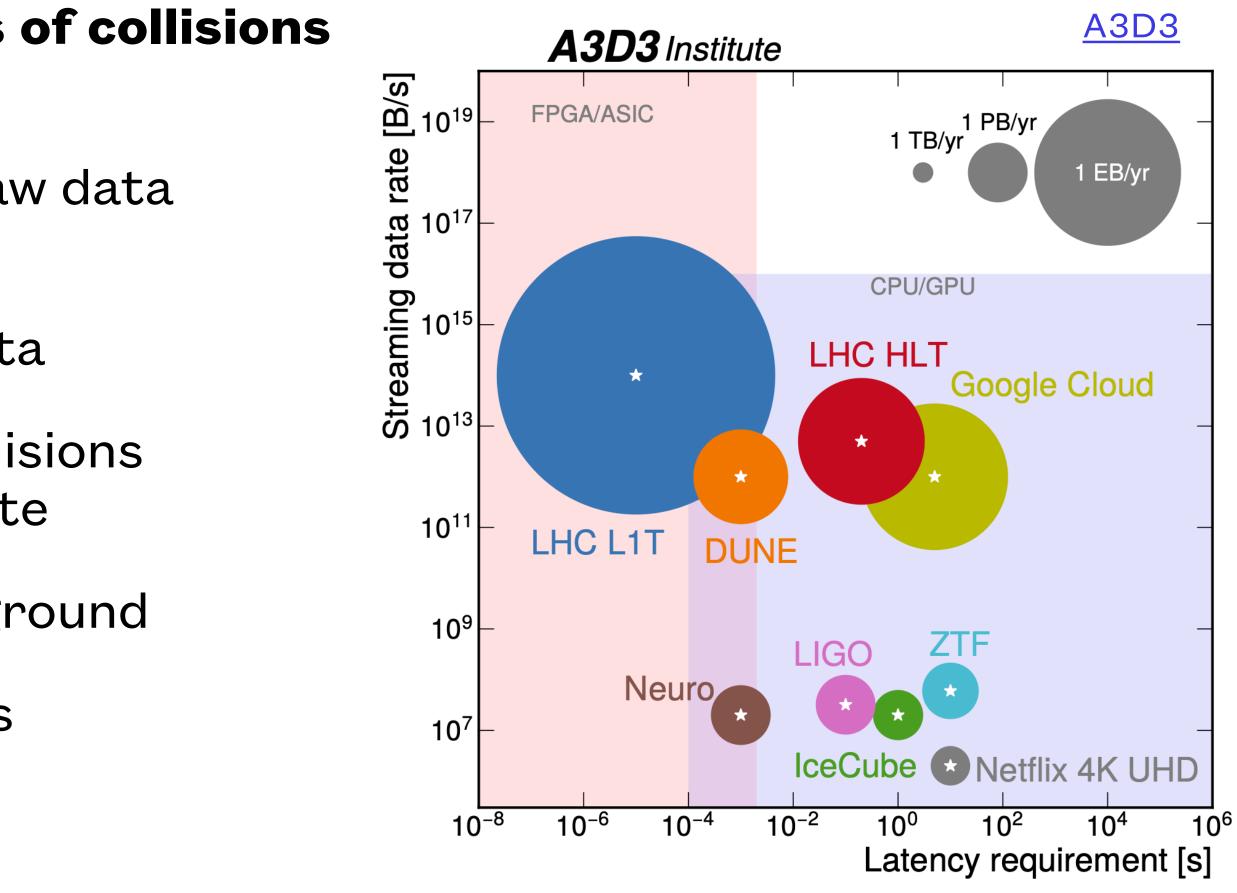
Fast ML at LHC





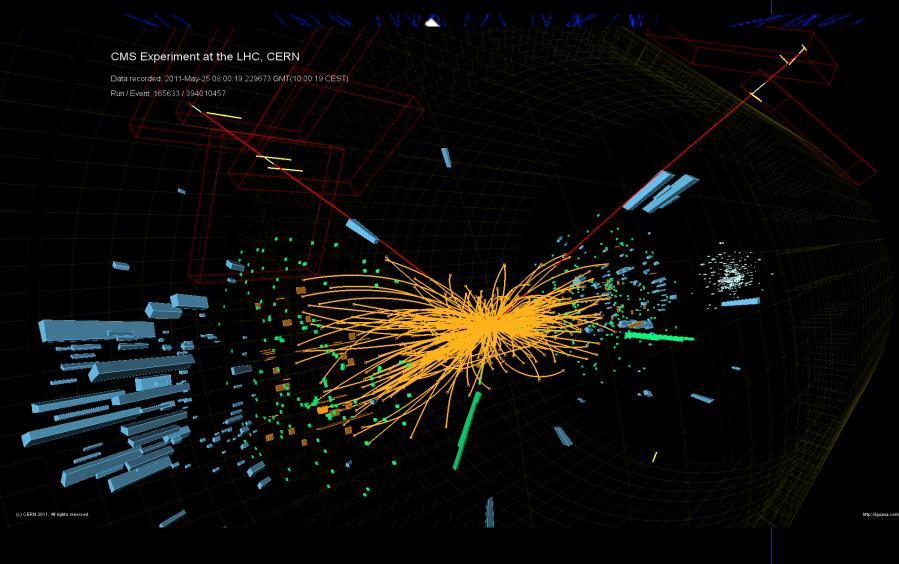
Big data at the LHC

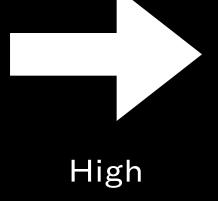
- LHC produces vast amounts of data, **billions of collisions** per second during operation
 - Without selection would generate ~ Pb/s raw data for CMS & ATLAS
 - Impossible to readout/process/store all data
 - Need fast *trigger* to select interesting collisions for analysis with high efficiency, low fake rate
 - **Particles of interest rare** among background
 - e.g Higgs produced ~1 in a billion collisions
- Two layered selection:
 - Hardware-level: Fixed latency of μ s -> FPGAs required
 - Software-level: Flexible latency ~100 ms compute / event -> CPUs/GPUs



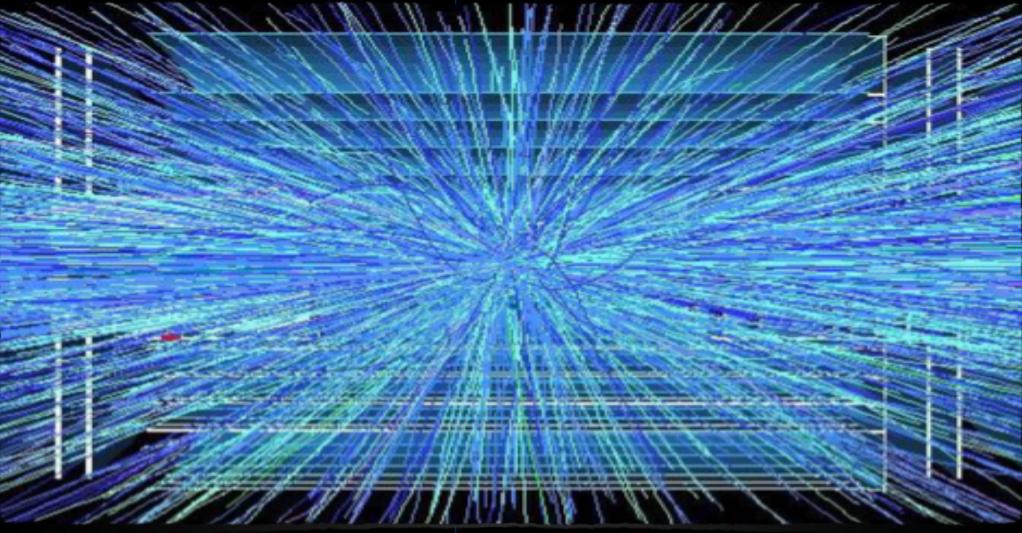
Al inference at the edge

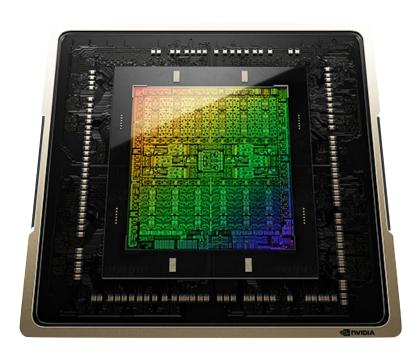
- Machine learning being exploited across particle physics
- ML allows us to speed up data processing by training networks on much more complex algorithms than implementable within latency constraints
- High-Luminosity LHC upgrade from ~2029 -> ~5x increase in luminosity
- Fast ML *αt the edge* needed for reducing and filtering data in real-time; train offline, predict online





Luminosity upgrade



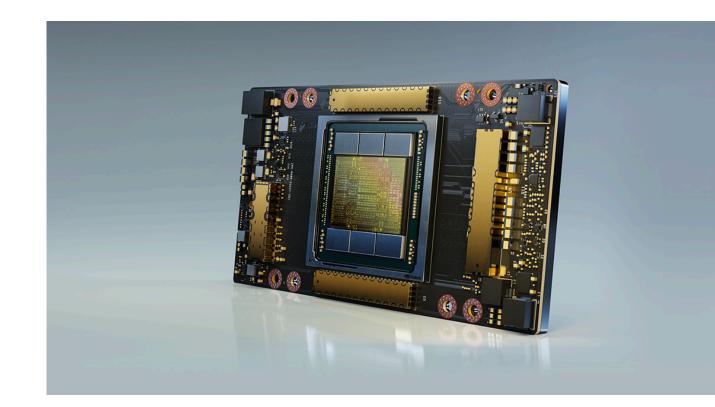


ML with GPUs

GPUs for ML

- GPUs are very powerful for machine learning
 - Many more parallel arithmetic ops than a CPU
 - Very high memory bandwidth

 - Plus the GPU can be useful for other things
- Usually, using GPUs for ML, you don't write CUDA code yourself but use a higher level • framework like Tensorflow (or higher still with Keras, PyTorch)
 - Extremely easy to execute on a GPU with these environments
 - Exception might be when doing something extremely custom
- Biggest gains in training, but also beat CPUs in inference
 - But remember you have to get the data to the device

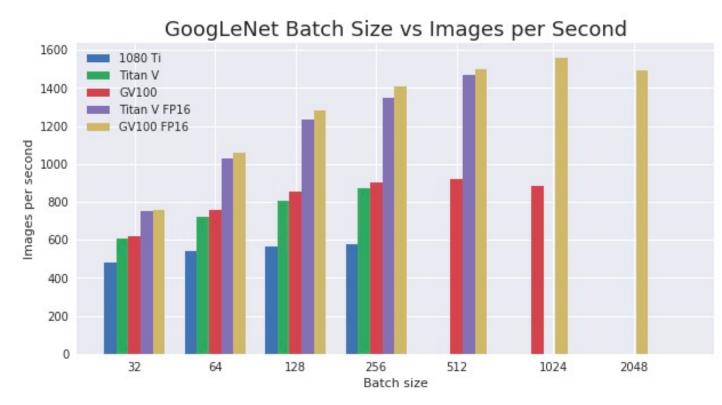


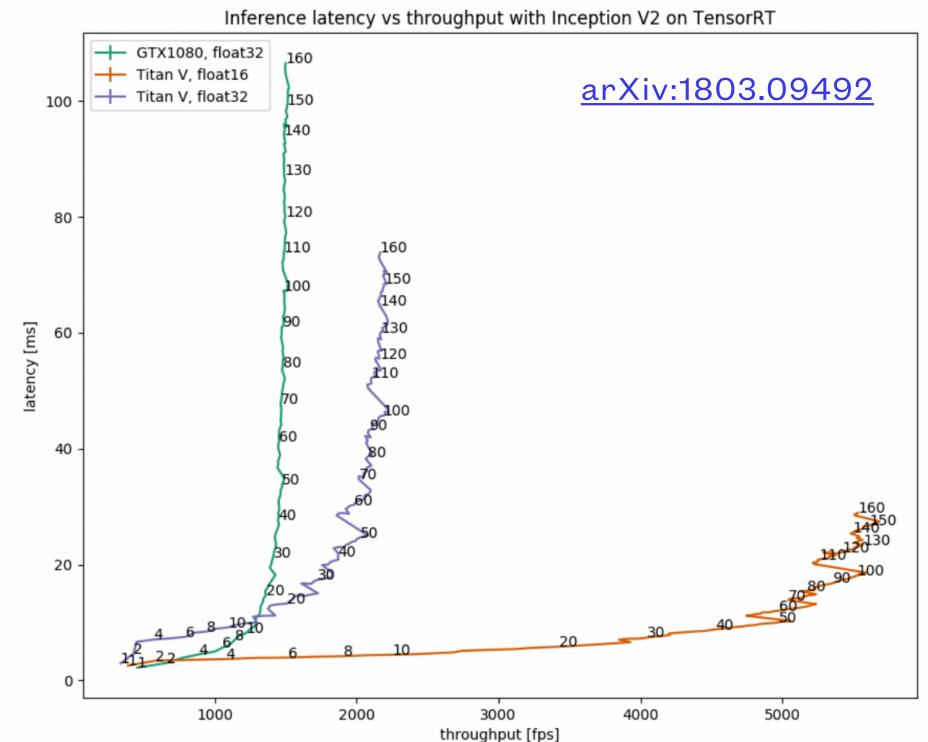
Training / predicting ML models on large datasets doesn't involve much branching/control

GPUs for ML - batching

- **Batching**: a common technique for better hardware utilisation
 - Relevant both at training and inference time
- Send several data samples to the GPU in one batch
 - Maximise use of memory bandwidth and compute
- Is the constraint latency or throughput?
 - If strictly latency: low batch size
 - If throughput: high batch size
 - Both: batch size where throughput saturates
- mlperf.org has nice benchmarking of different hardware (not only GPUs) running on different models

Puget Systems



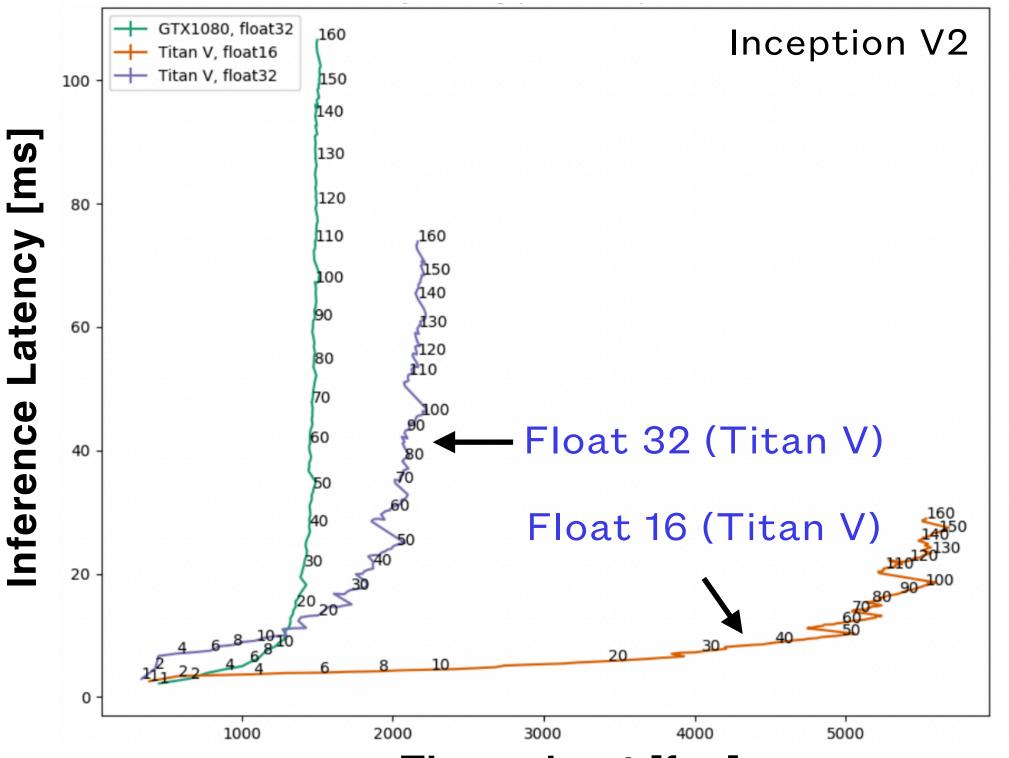


Quantization

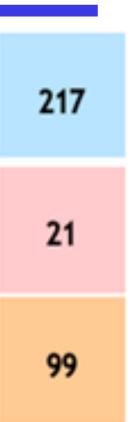
- Many GPUs support Int8, float16, bfloat16 precision with many more OPS than float32
 - **Post Training Quantization (PTQ)** train with FP32 then scale & round to lower precision
 - Quantization Aware Training (QAT) train with lower precision
 - TensorRT (NVIDIA GPU),
 - TensorFlow Lite (Google),
 - torch.quantization (PyTorch)
- Choice of precision depends on target hardware and requirements

0.34	3.75	5.64		64	134
1.12	2.7	-0.9	Quantization	76	119
-4.7	0.68	1.43		3	81

FP32



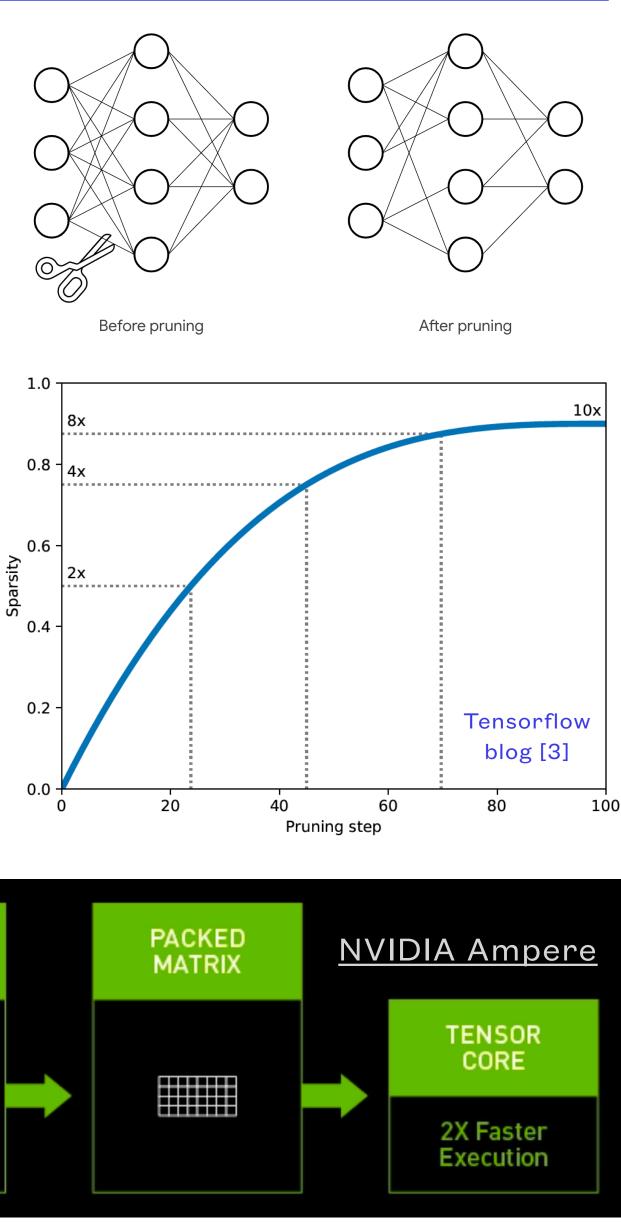
Throughput [fps]

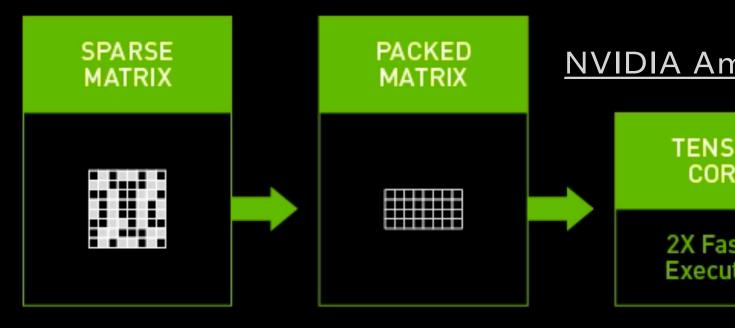


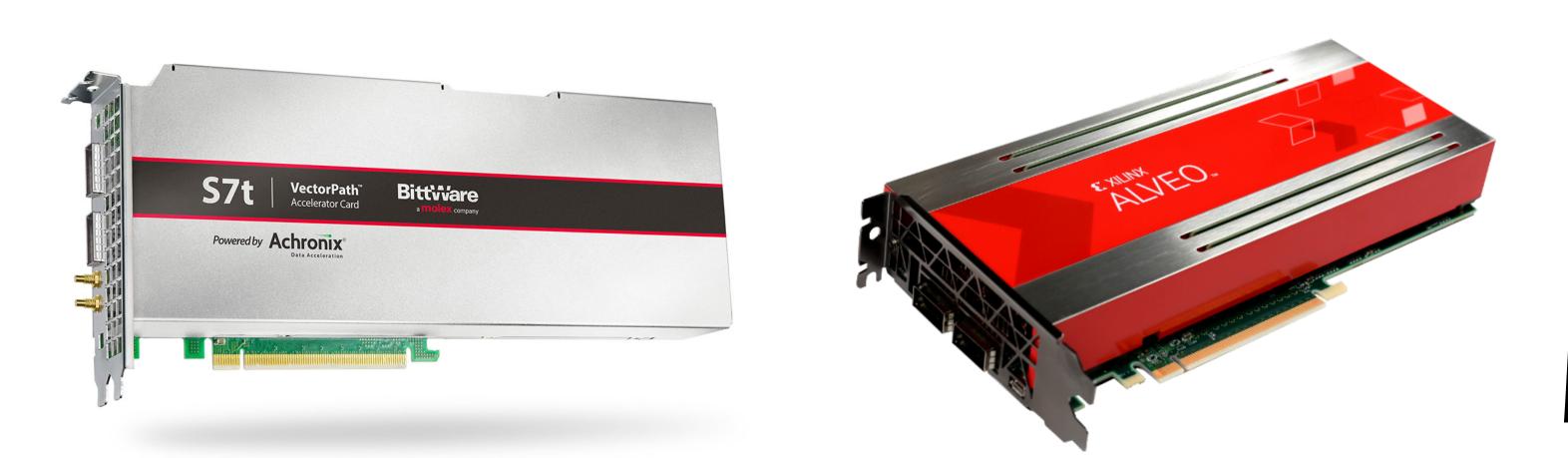
INT8

Pruning/Sparsity

- NN often contains many redundant connections
- Pruning: remove some connections from final model
- Can reduce model size (memory footprint)
- Some processors can skip/accelerate multiply by zero calc.
- Methods:
 - Regularisation (penalise low value weights, then make them 0)
 - Target sparsity,
 - Structured pruning remove continuous blocks of weights
 - Filter pruning entire filters of CNN
- Applies also to BDTs (λ , α in xgboost)
- Can be coupled with Quantisation Aware Training





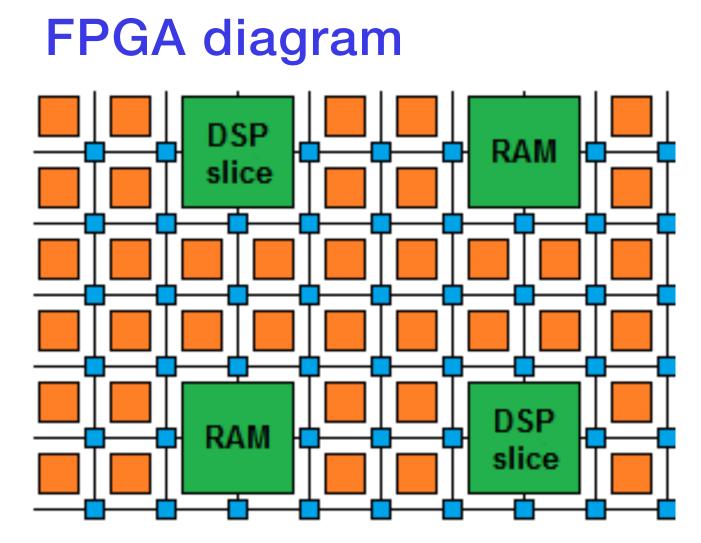


ML inference with FPGAs

What are FPGAs?

- Field Programmable Gate Arrays = reprogrammable integrated circuits
- Extremely parallel processors
- Computing in space as well as time
- Utilised by most low level HEP triggers

Contain many different building blocks (*resources*) which are connected together as desired



LUTs - generic logic

DSPs - for multiplication

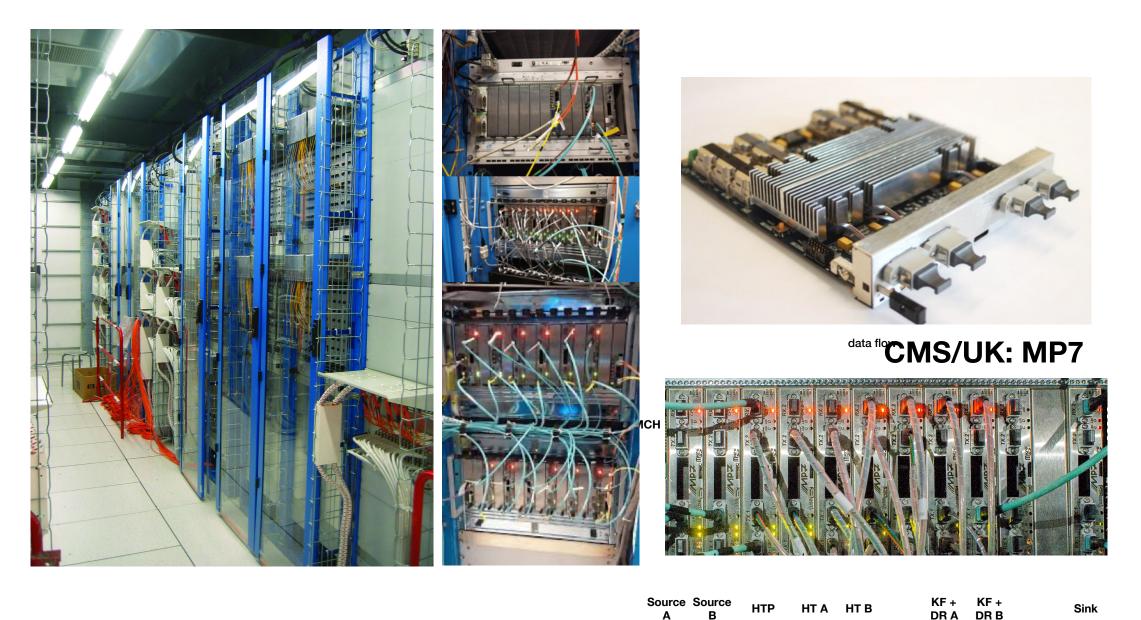
BRAM - for local, high-throughput storage

22

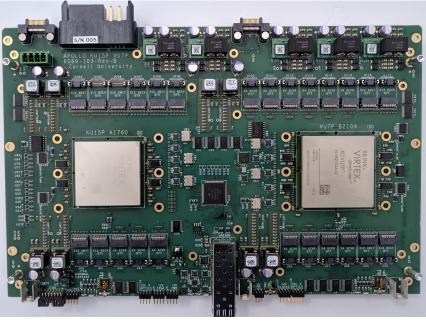
FPGAs at the LHC

Most commonly: Stream processor / real-time : data acquisition, trigger, control

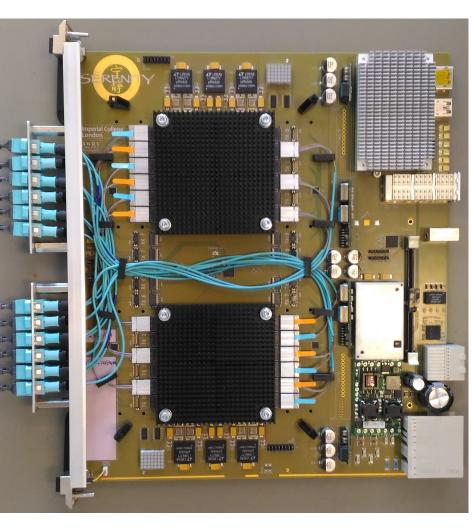
- Primarily use **custom hardware**
- Very high IO bandwidth / optical inputs
- Often custom board for each task



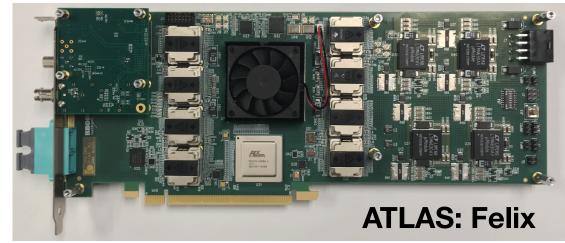
Form factor: VME -> MTCA -> ATCA / PCIx -> PCIe



CMS/US: APOLLO



CMS/UK: Serenity

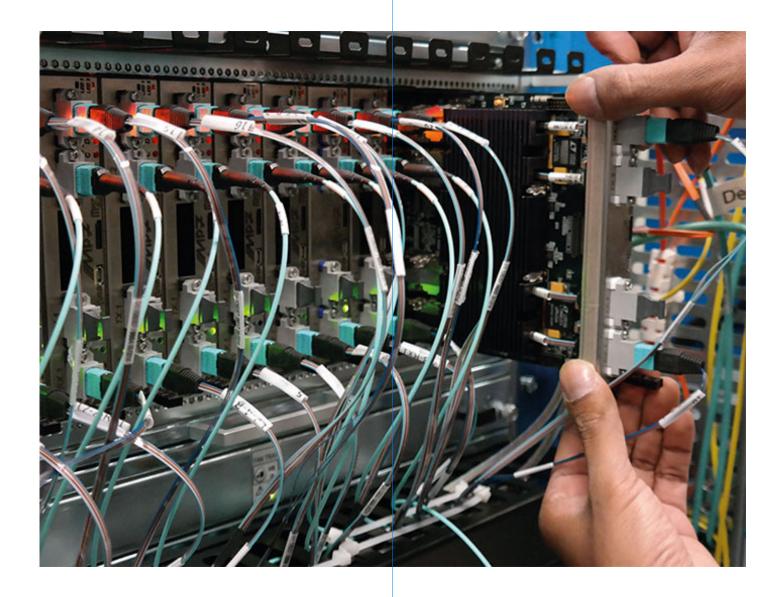


Accelerators

- More often commercial hardware
- Mostly PCle form-factor

Algorithms running on FPGAS

- LHC Run 2 (2015-2018)
 - Clustering
 - Pattern Recognition
 - Energy Sums
 - Zero Suppression
 - Boosted Decision Trees
- LHC Run 3 (2022-2025)
 - Multi Layer Perceptrons: DNNs
 - Kalman Filters

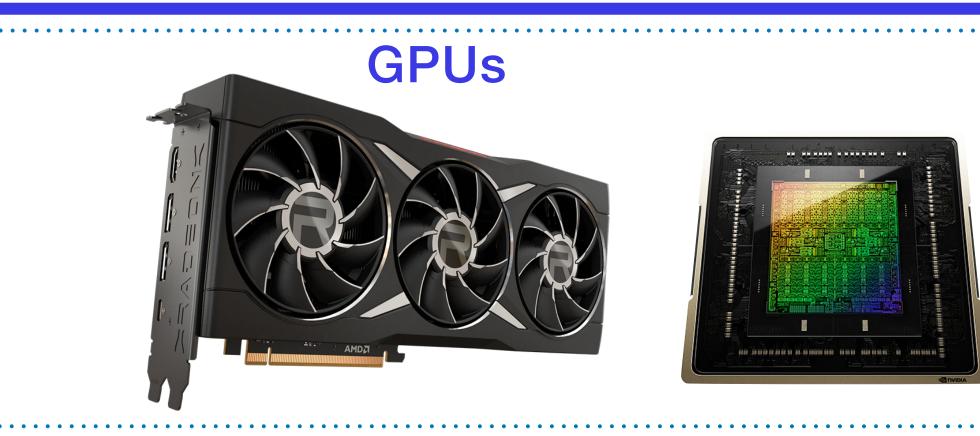


- LHC Run 4 dev. 2029-
 - Hough Transform
 - Convolutional Neural Networks
 - ?????

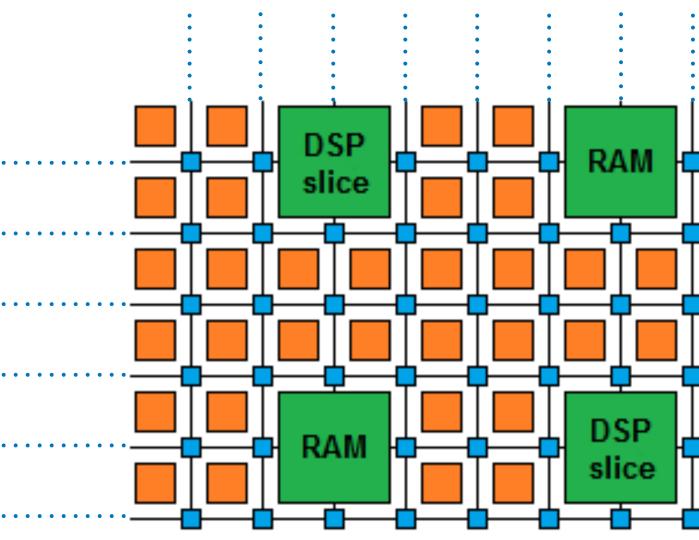
24

FPGAs for ML

- **GPUs** are very powerful for machine learning
 - Many more parallel arithmetic ops than a CPU
 - Very high memory bandwidth
- However FPGAs are also highly suited to ML tasks
 - massive **parallelism**, high **memory bandwidth**
- Outperform GPUs at maintaining high-throughput & low latency with (often) best 'performance per Watt'
- **Deterministic** latency requirement for low-level trigger
 - Not possible with GPUs/CPUs



FPGA diagram



LUTs - generic logic DSPs - for multiplication

BRAM - for local, high-throughput storage

High Level Synthesis

- FPGA programming requires expert engineering knowledge, long development cycles - you are describing a circuit
- Newer design tools from the FPGA companies HLS
- You describe algorithm, compiler decides circuit
 - Enables more physicists to contribute & accelerates development timelines
 - Allows us to bring more of the offline algorithms into the L1 trigger
 - e.g Kalman Filter, Particle Flow, etc
 - Machine Learning...

VHDL

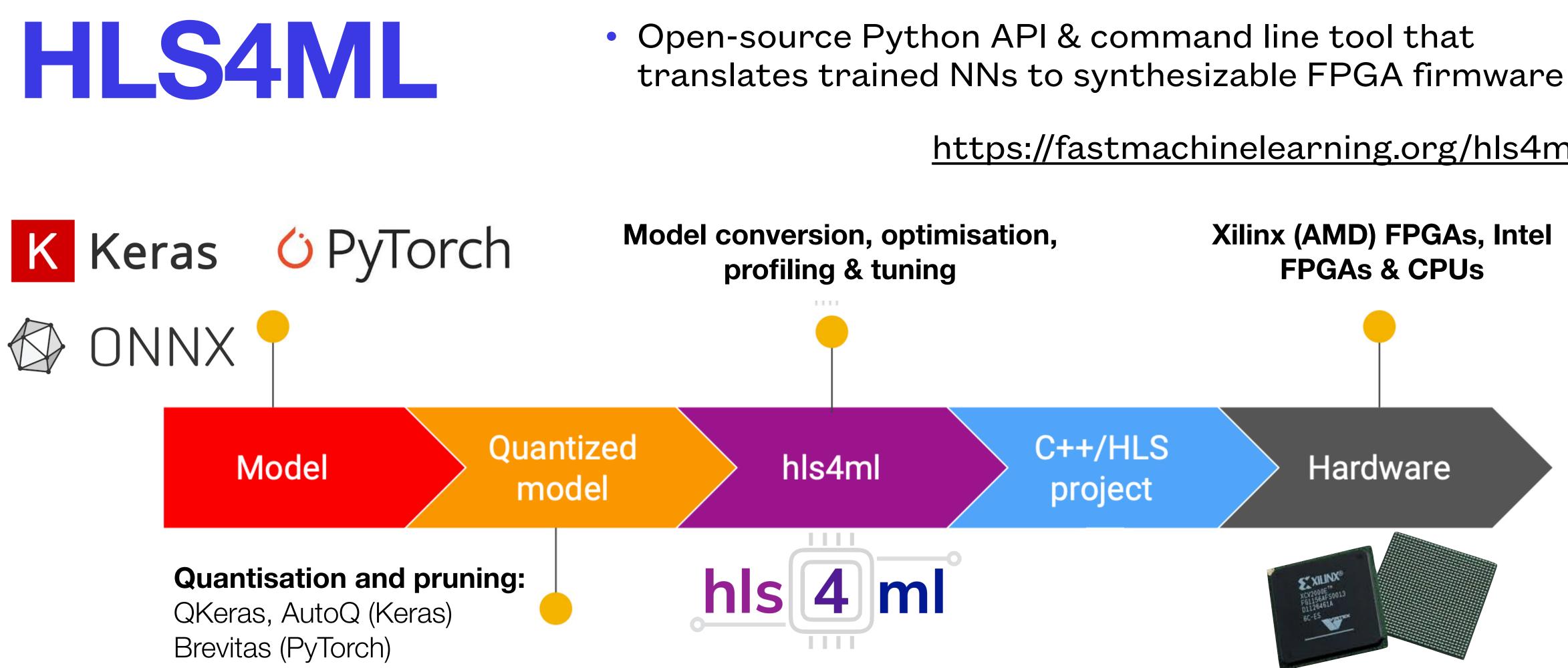
```
entity add is
port(
  clk : in std_logic;
      : in signed(31 downto 0);
  a
      : in signed(31 downto 0);
      : out signed(31 downto 0)
end add;
architecture rtl of add is
  if rising_edge(clk) then
    c <= a + b;
  end if:
end rtl;
```

HLS

```
int add (int a, int b){
  return a + b;
```

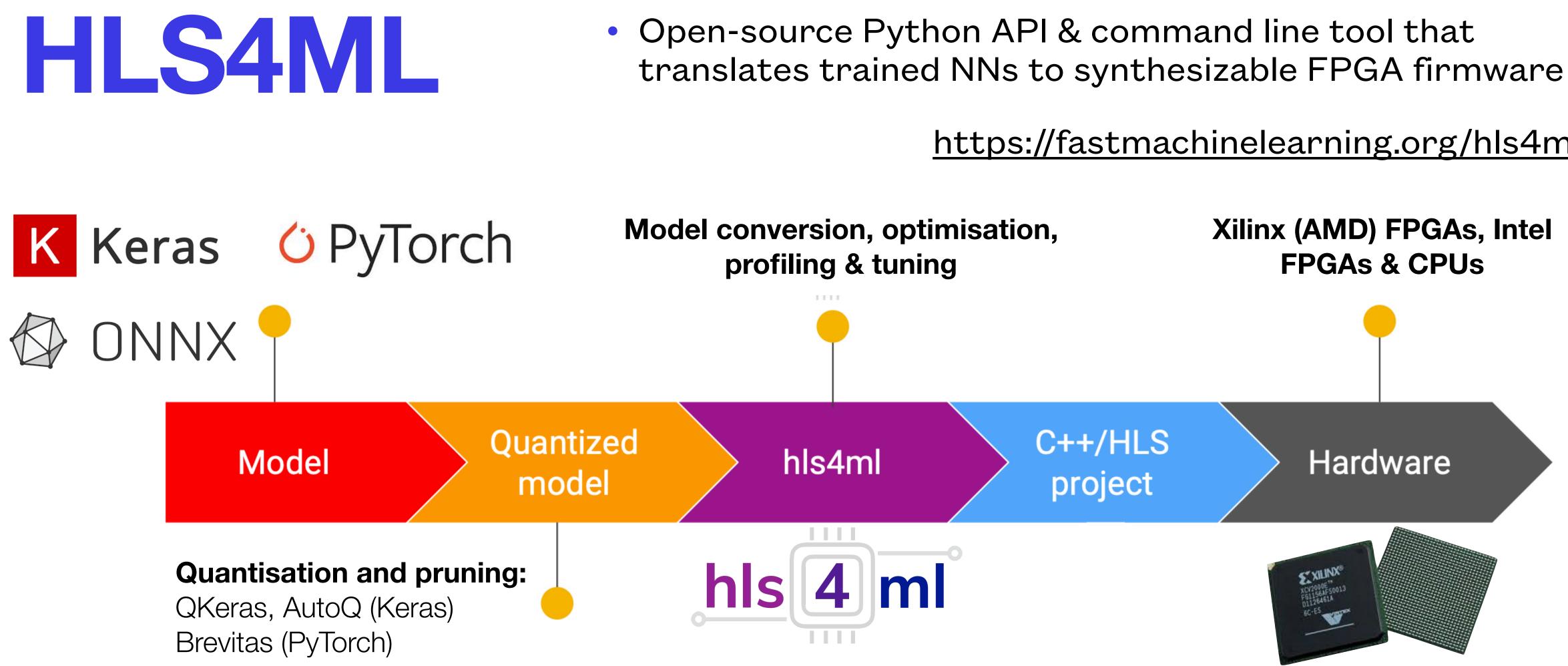
Still need to be mindful of design & use #pragma

//Use registers #pragma HLS array_partition variable=a,b,c complete //Execute loop iterations in parallel #pragma HLS unroll



- Can tune latency vs resource utilisation with per-layer 'reuse factor'
- Weights stored on-chip -> very fast access times, limited capacity
- Excels at very low latency applications: planned to be widely used at High-Lumi LHC

<u>https://fastmachinelearning.org/hls4ml</u>



- Implementations of common ingredients layer types, activation functions
- Novel ingredients for fast, efficient inference binary/ternary NNs, heterogeneous quantisation 28

<u>https://fastmachinelearning.org/hls4ml</u>

HLS4ML

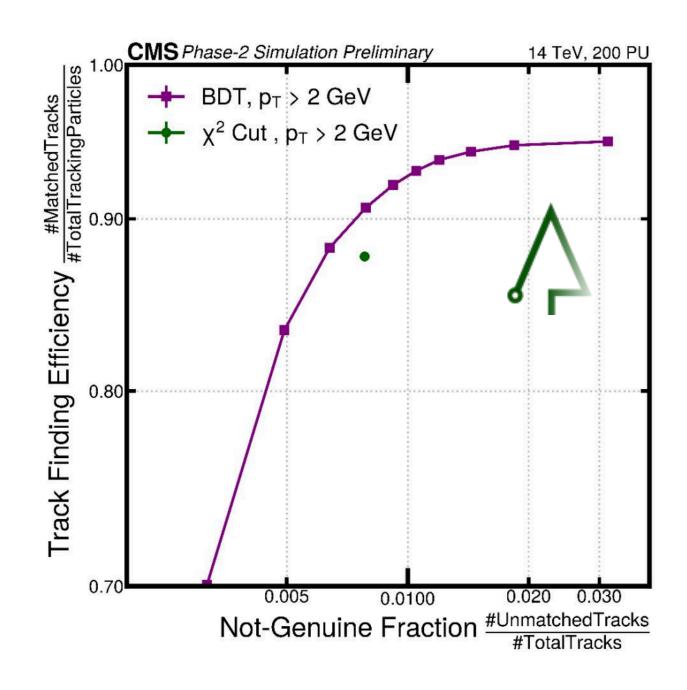
- Caveats:
 - Relies on Xilinx HLS (tool that produces FPGA code from C++), blackbox that can produce non-optimal results
 - Requires a bit more knowledge of FPGA design than some other solutions, but still accessible to non-Verilog/VHDL experts
 - Work on support for new backends & off-chip weights ongoing
- Ideal for L1-trigger applications: expected to be widely used for CMS Phase II trigger
- Many algorithms in development for CMS at the HL-LHC
 - Improving object reconstruction
 - Improving event selection of difficult signatures

https://fastmachinelearning.org/hls4

1	r	Υ	ר	
Γ				

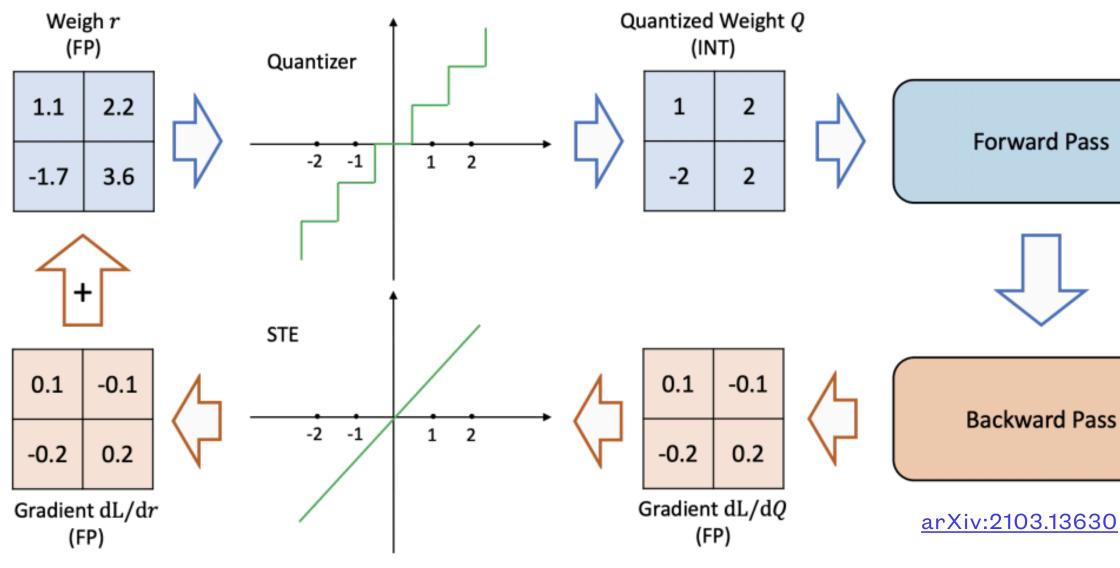
Conifer A

- Tools like <u>hls4ml</u> and <u>conifer</u> bring ML into FPGAs with submicrosecond latency
 - Conifer library maps BDT onto FPGA logic
- Example: identifying fake tracks from CMS Level 1 Track Finder (Phase 2 Upgrade)
- Fake tracks are identified in simulation as those not associated to a simulated particle
 - Often from combinatorics (200 pileup scenario), they harm trigger performance later
- A BDT with 60 trees and depth of 3 finds fakes better than simple cuts
- In this case 33 ns latency and < 1% resources of a VU9P

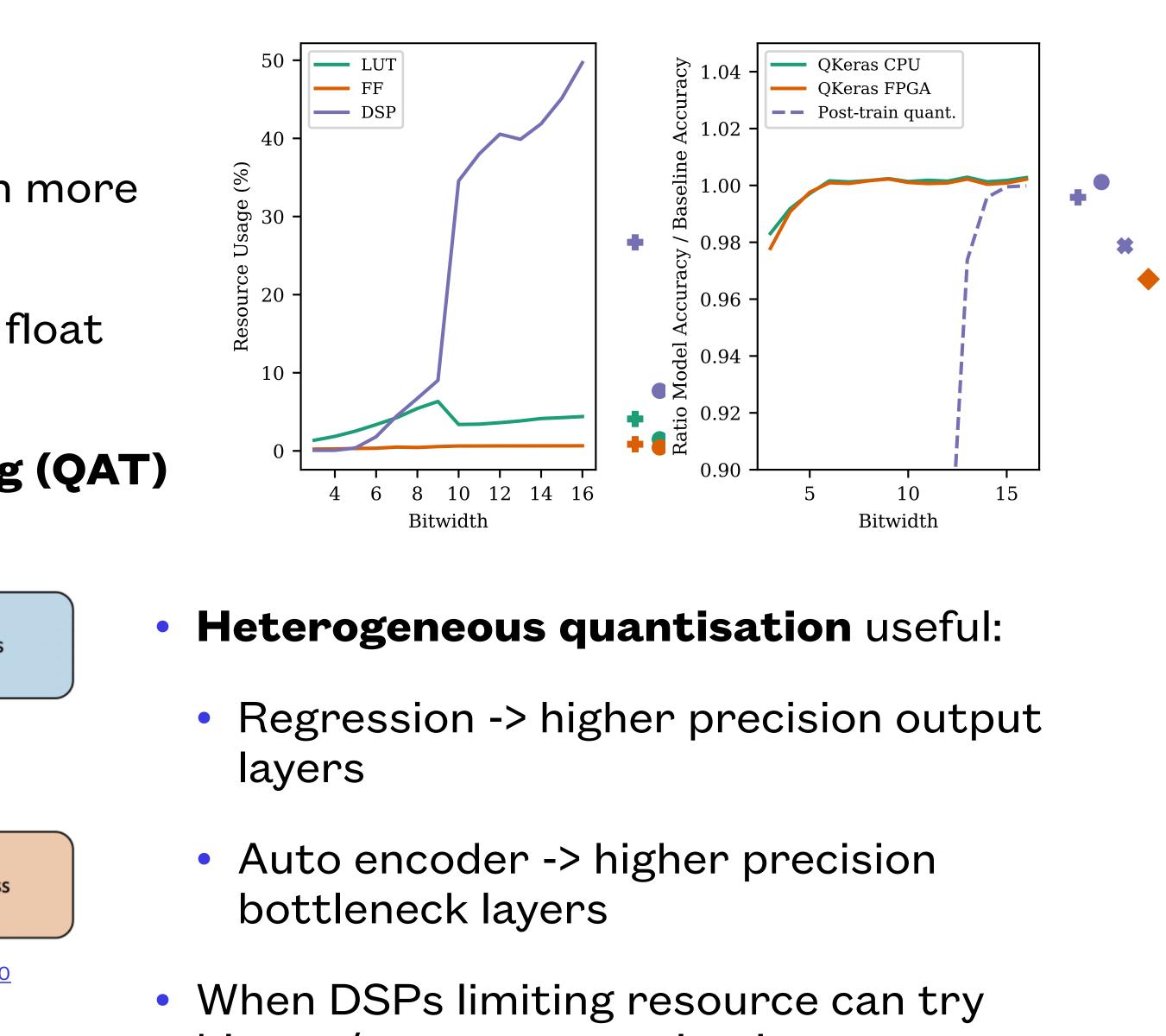


Quantization

- Like to avoid floating point in FPGAs much more resources & latency than fixed point
- Post-training quantisation represent the float values with some fixed point
- Better to use quantisation aware training (QAT)



AutoQ tool for training NNs with hardware-cost constraints [6]

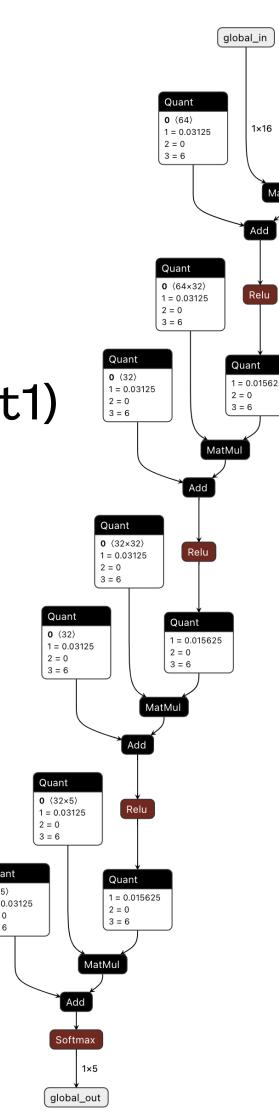


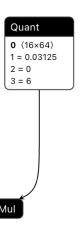
- binary / ternary quantisation

31

Representing Quantized NNs

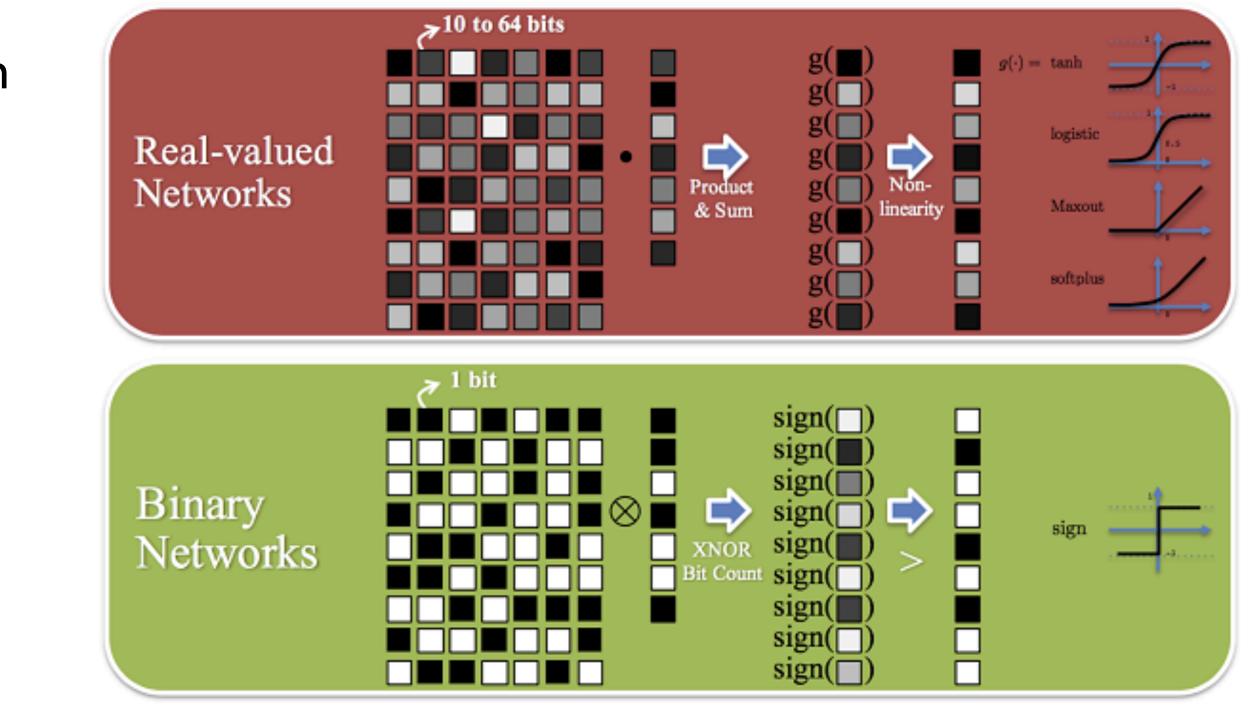
- Lots of tools like Tensorflow, PyTorch, TensorRT have support for low precision (including QAT)
- But they are typically restricted to common CPU/GPU types (float16, int8, int4, int1)
 - For dataflow (layer unrolled) FPGA inference, we would like more flexibility
- Collab w/ Xilinx Research Labs: HLS4ML team develop QONNX [7]
- Extend QONNX with Quant node
 - Flexible number of bits, zero-point, and per-channel scale factors
 - onnxruntime execution thanks to FINN (Xilinx RL NNs)
 - QONNX is exported by Brevitas, others are working on it, and we develop a QKeras to QONNX conversion
- github.com/fastmachinelearning/qonnx





Binary / Ternary neural networks

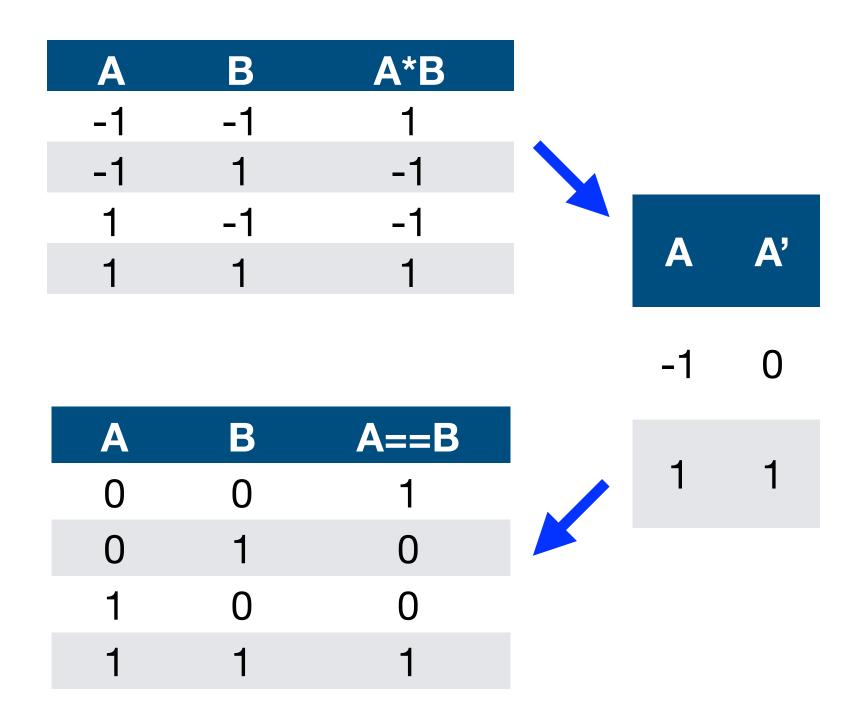
- DSP multipliers often limiting resource
- Can often go down to 1- or 2-bit weights with limited performance loss
- Can have very efficient computation in the FPGA (and CPU/GPU/smartphone)
- Binarize weights but not gradients during backpropagation
- Use Binary Tanh, Ternary Tanh or ReLU activation
- BNN: arxiv.1602.02830
- TNN: arxiv.1605.04711



intel.com [4]

BNN - Dense Layer

- DSPs often limiting FPGA resource for NNs
- Encode '-1' as '0'
- Multiplication become XNOR, sum becomes bitcount



Original: 16-bit weights $X_{n} = g_{n}(W_{n,n-1}x_{n-1} + b_{n})$

Activation function: precomputed, stored in BRAMs

Multiplication: DSPs

Bias addition: LUTs/FFs

Binarized: 1-bit weights

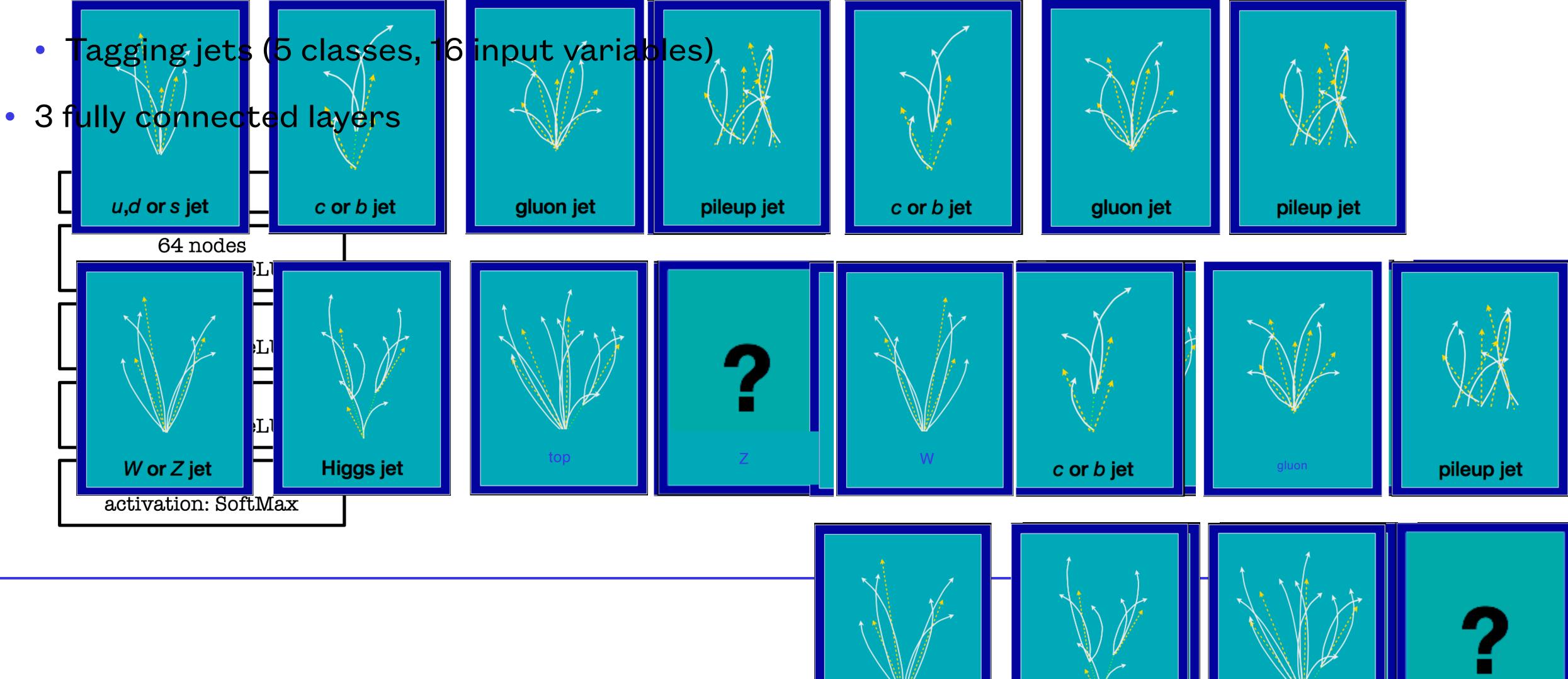
Activation function: simple binary function

XNOR: LUTs/FFs

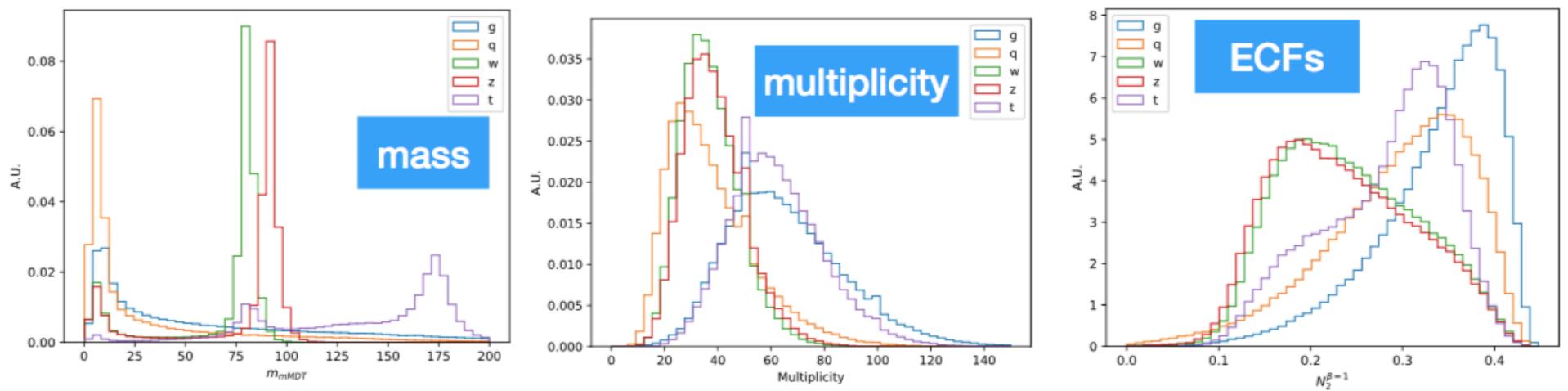
Fast ML in action (i.e examples⁺)

* absolutely non-exhaustive list

• HLS4ml tutorial example [2]



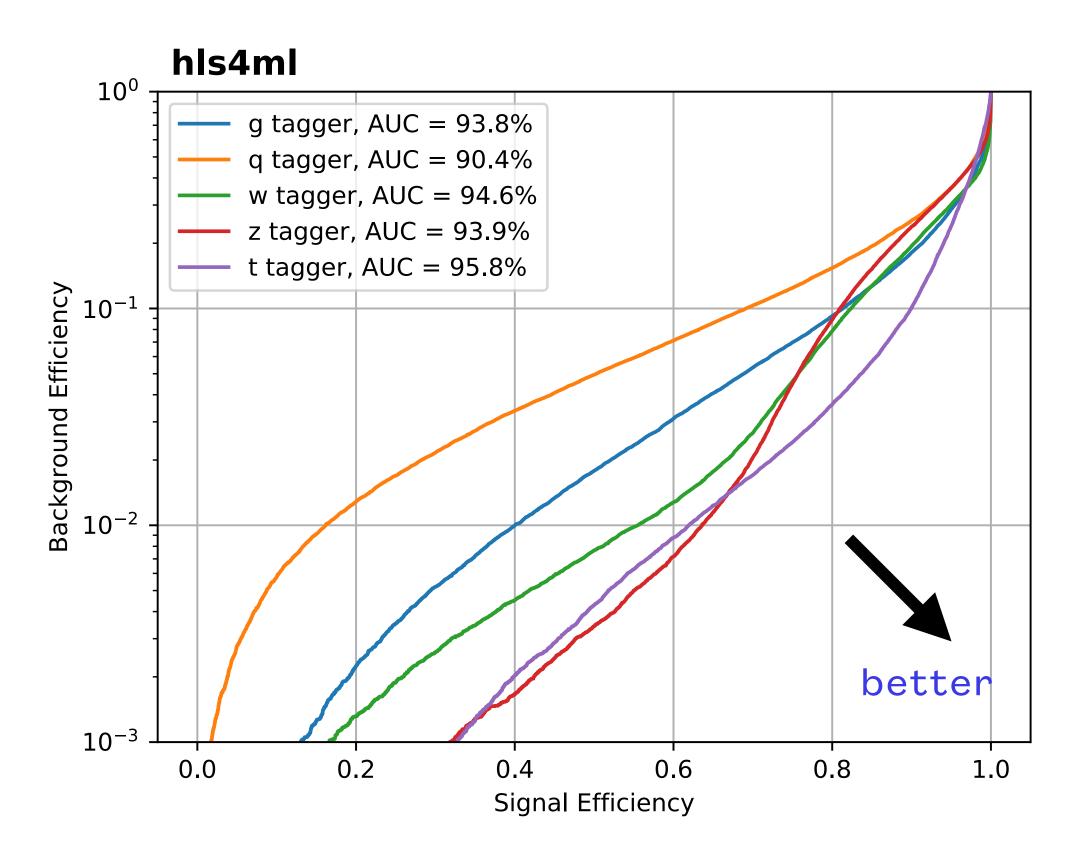
- Trained (on GPU) the five output multi-classifier on a sample of ~ 1M events with two boosted WW/ZZ/tt/qq/gg anti-kT jets
- 16 expert-level input variables, computed with FastJet:

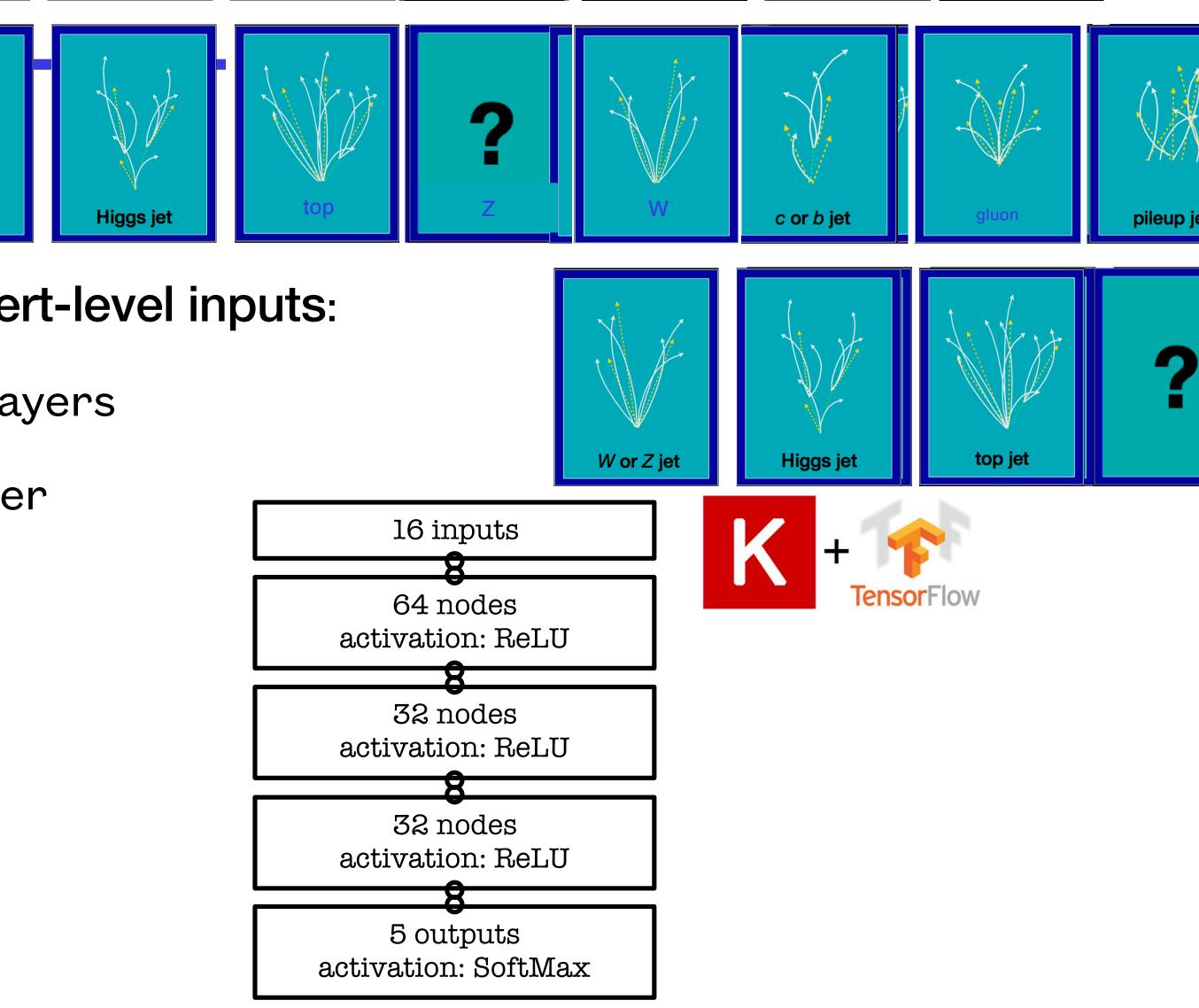


known to have high discrimination power from offline data analyses and published studies

energy correlation functions

- Fully connected neural network with **16 expert-level inputs**:
 - <u>Relu activation function</u> for intermediate layers
 - <u>Softmax activation function</u> for output layer



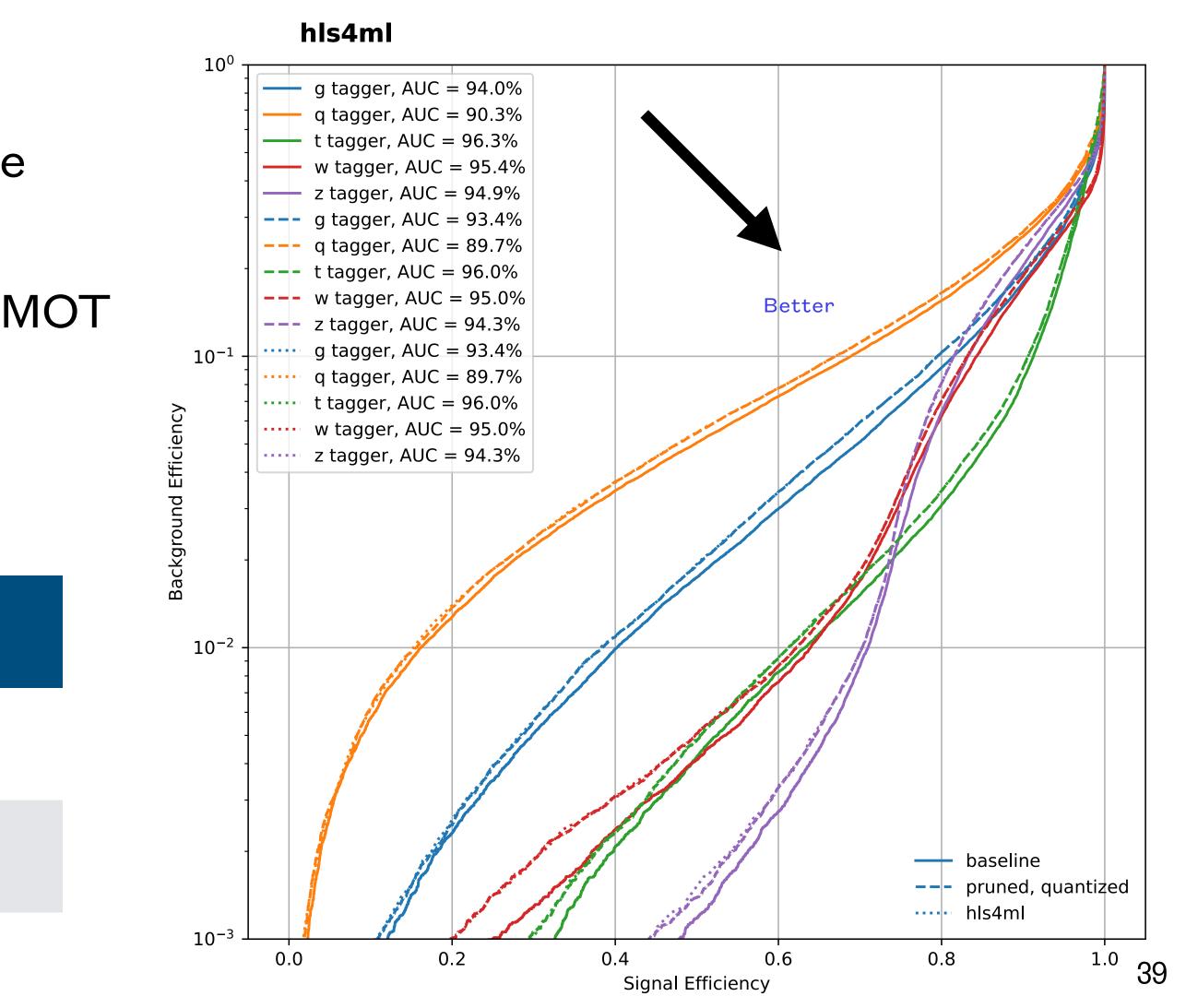


AUC = AREA UNDER ROC CURVE (100% IS PERFECT, 20% IS RANDOM)

Jet tagging w/ QAT & Pruning

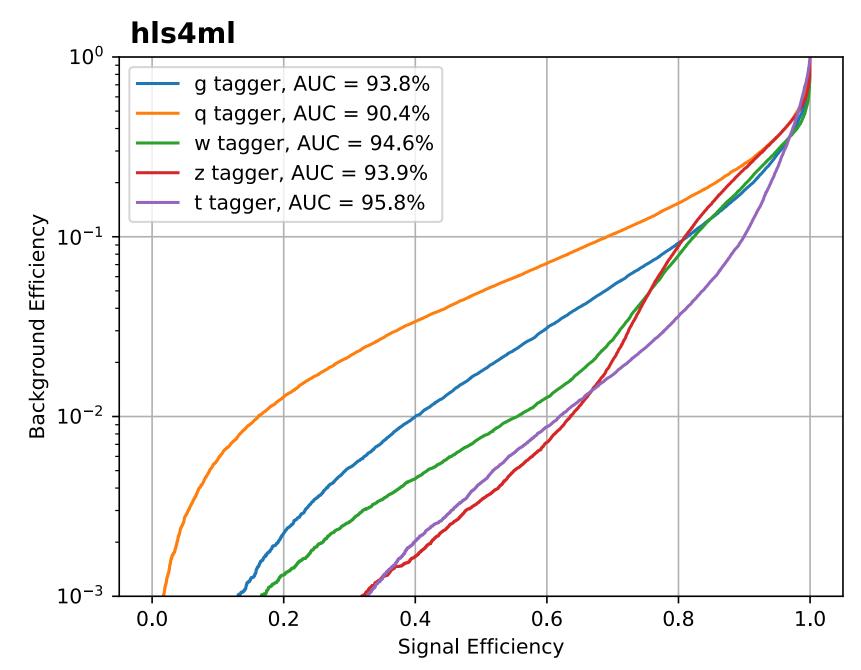
- A. Keras floating point training, 16b inference
- B. **QKeras** with 6 bits for weights, biases, activations & 75% sparsity target with TFMOT
- Minimal code changes to go A to B

Xilinx VU9P	Latency	DSP	LUT
Keras 16b	50 ns	1890 (15%)	5%
QKeras 6b	40 ns	22 (~0%)	1%



BNN - Jet Classification

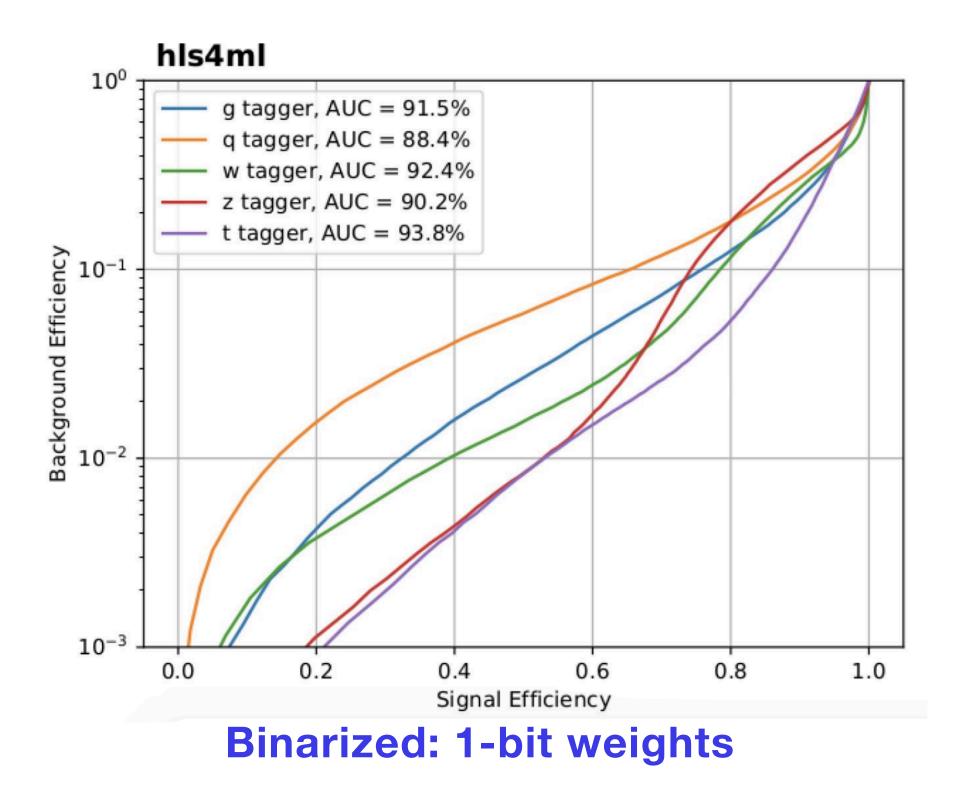
- and activations n neutrons 7x per layer
- Performed hyperparameter optimization to find most performant model within some constraints



Original: 16-bit weights

Average accuracy: 0.75

• Design an architecture to perform the same jet classification task but now with binary weights

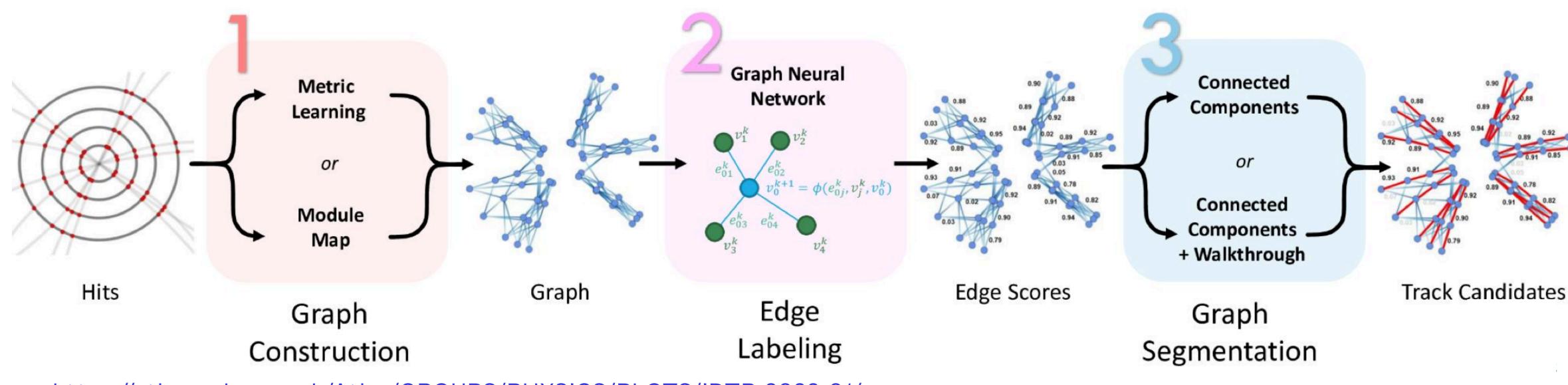


Average accuracy: 0.72

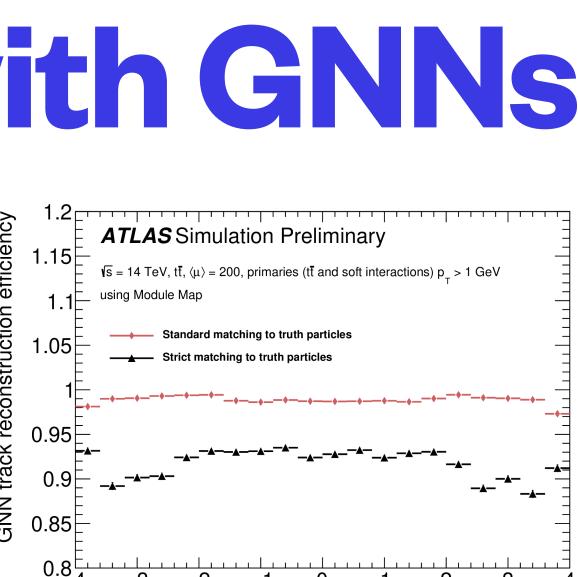
40

ATLAS event filter tracking with GNNs

- ATLAS upgraded tracker & trigger for HL-LHC : O(10k) particles per 25ns bunch crossing
- High particle density -> track reconstruction computationally intensive -> scalability challenges
 - Exploring ML/GNN solution on heterogeneous architecture CPU + GPU + FPGA
 - MLP converts hits in detector -> graphs where edges are possible track segments; edges classified by learned geometry
- GNN -> HLS4ML -> Intel S10 GX FPGA

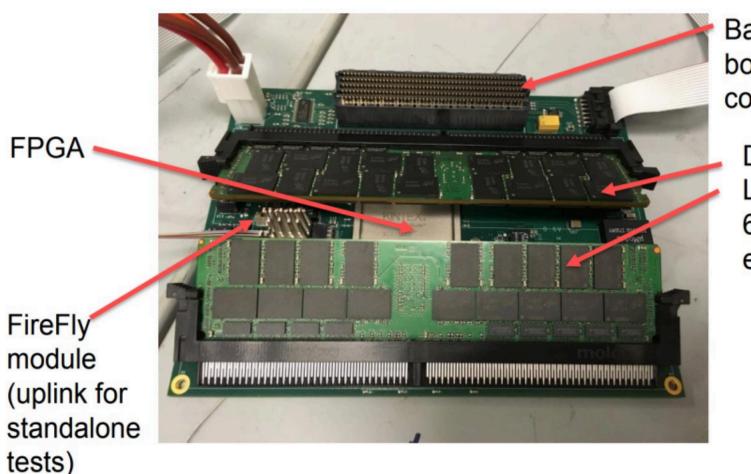


https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2022-01/



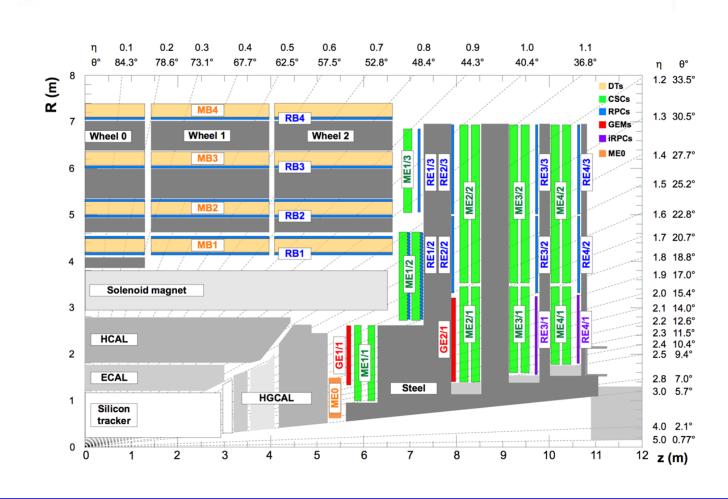
CMS Level 1 Trigger Endcap Muon Track Finder

- BDT to fit the muon momentum from hits in the muon stations
- Complicated geometry and magnetic field makes an ML solution useful
- Deployed using a 'large LUT' implemented in DDR on a mezzanine card to the FPGA
- BDT is evaluated for every possible input, with the output written at that position in the LUT



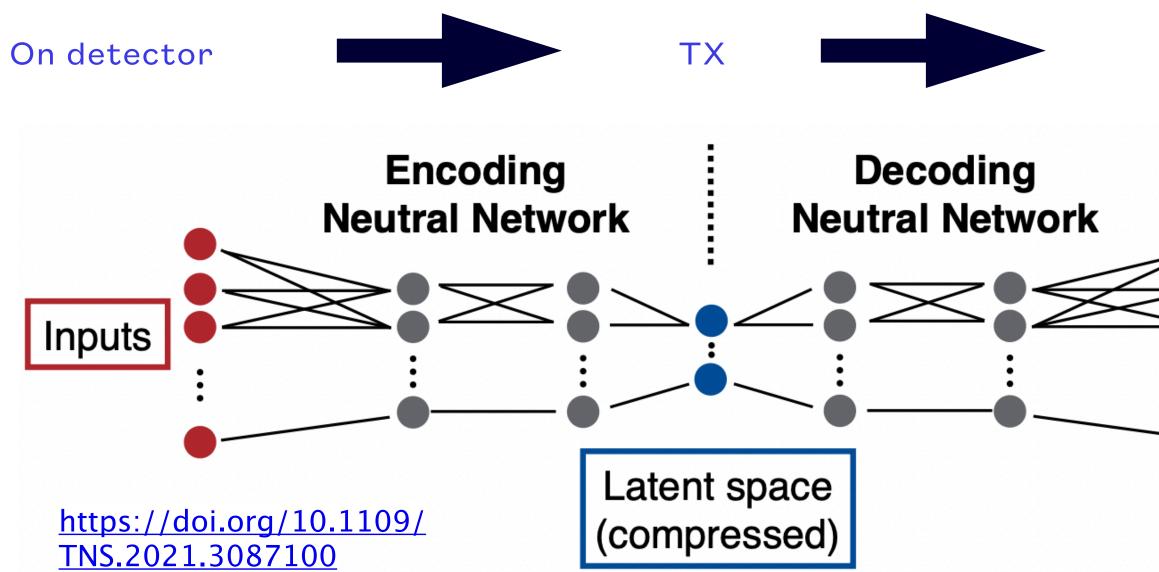
Base board connector

> DDR4 LRDIMMs 64 GB each

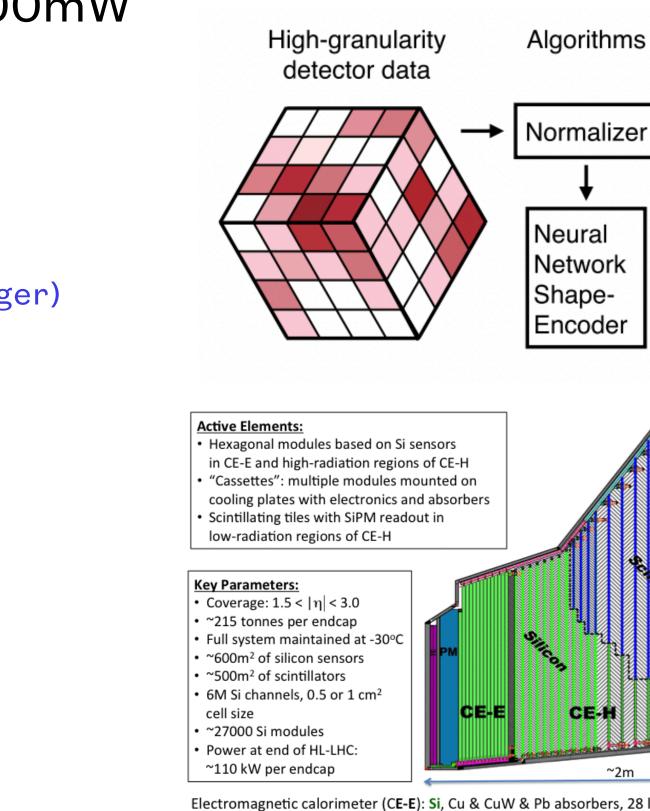


Autoencoder ASIC for CMS upgrade

- New high granularity calorimeter, 6.5M readout channels
- **ECON-T**: compress data **on detector** with AutoEncoder, decode off detector
- Inference on chip matches software implementation; costs 75-100mW
- Radiation tolerant (triplication), cooled to -30 $^{\circ}$ C, 1.5 μ s latency
- NN architecture fixed, weights & biases re-programmable



Off detector (trigger)



4x12

Input

image

^{0.8} 10-dim

latent

Recovered inputs

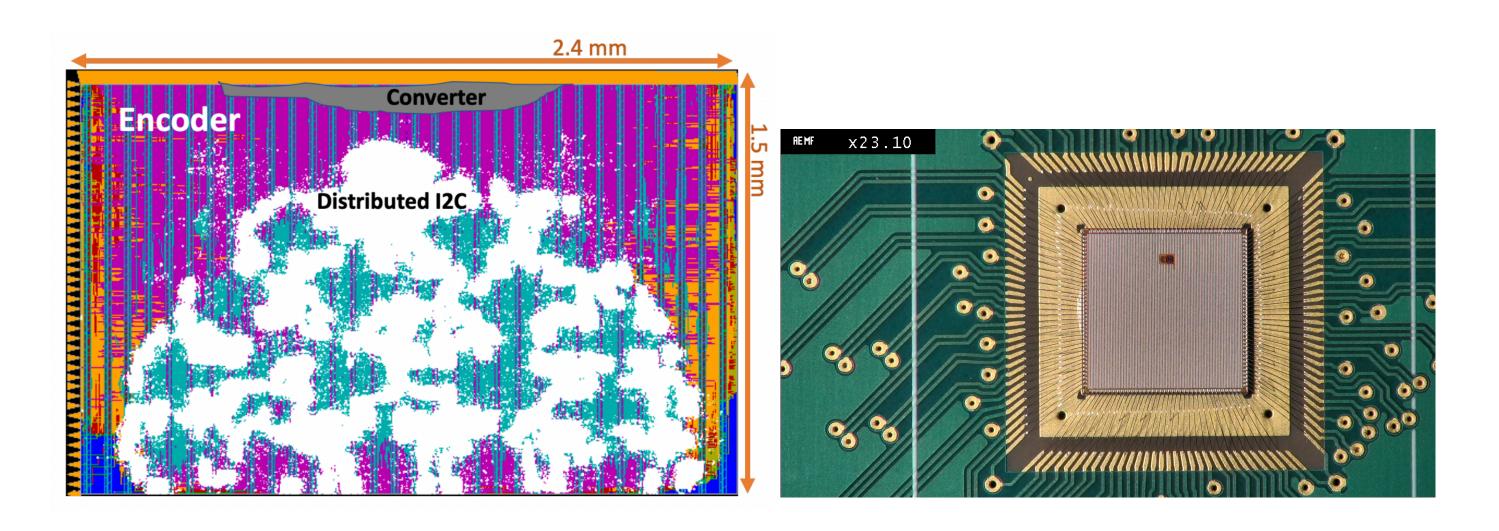
Output to

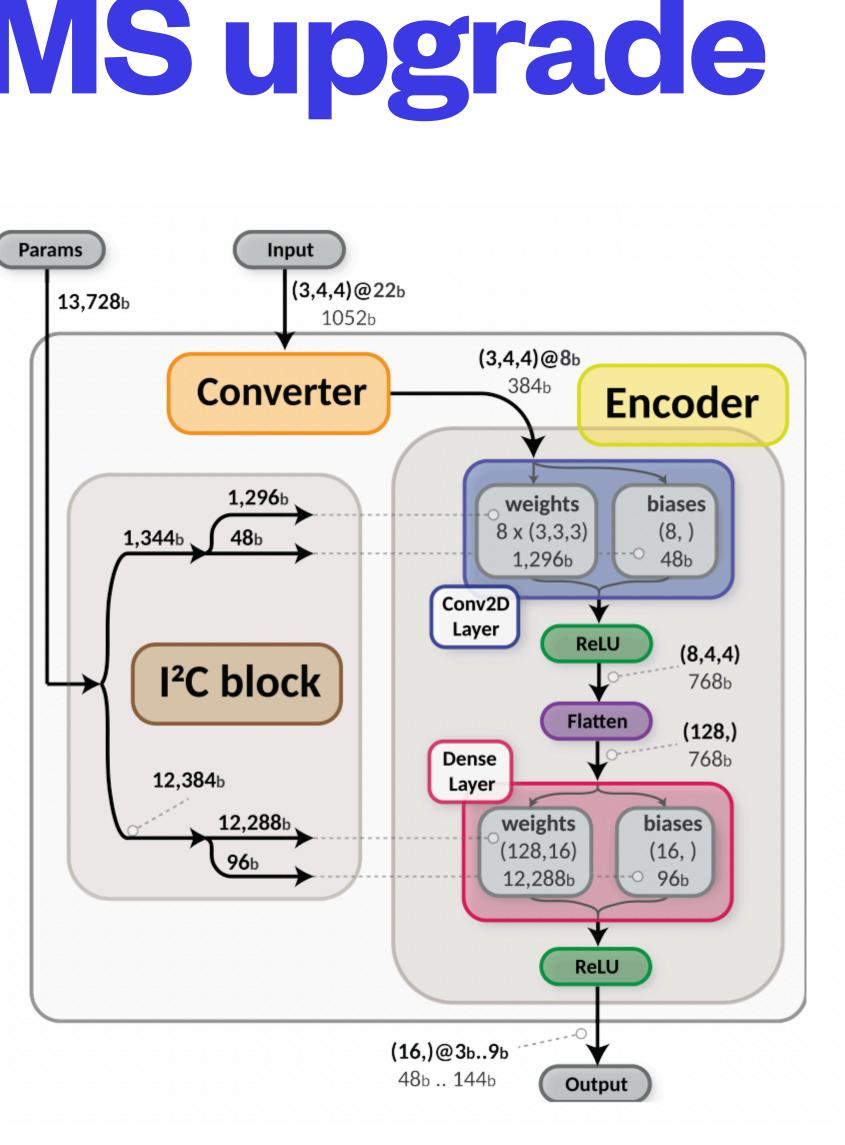
trigger path

max

Autoencoder ASIC for CMS upgrade

- New high granularity calorimeter, 6.5M readout channels
- ECON-T: compress data on detector with AutoEncoder, decode off detector
- Inference on chip matches software implementation; costs 75-100mW
- Radiation tolerant (triplication), cooled to -30 °C, 1.5µs latency
- NN architecture fixed, weights & biases re-programmable

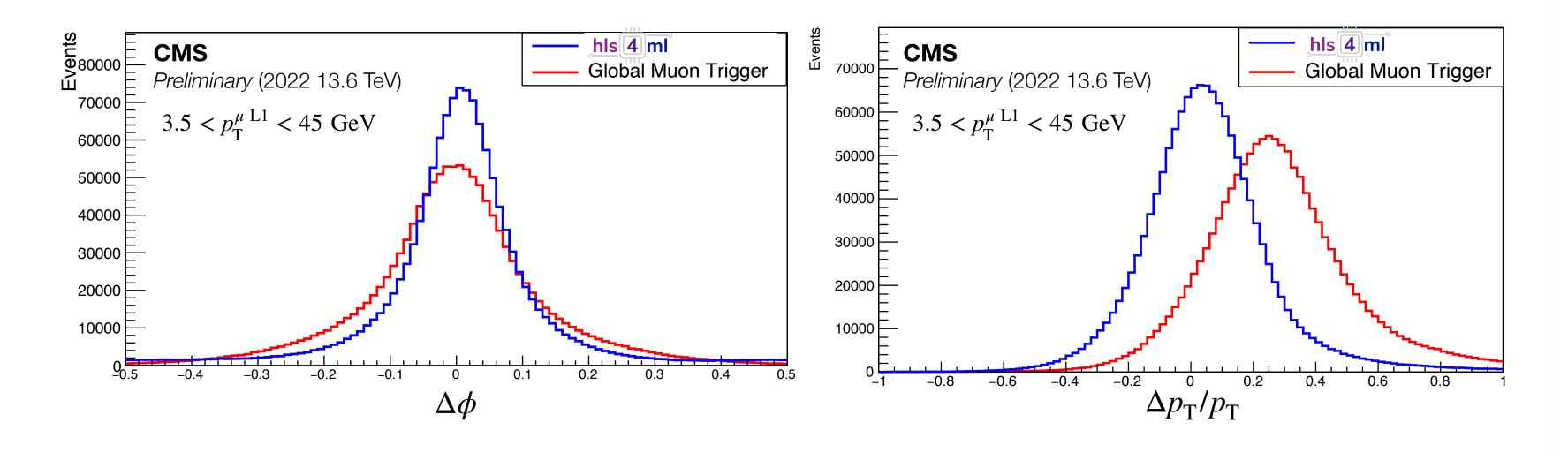


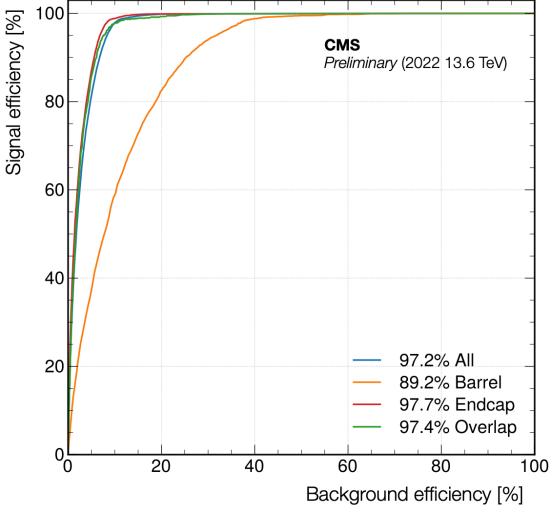


44

CMS L1 scouting: muon re-calibration

- L1 scouting at CMS acquires subset of granular data at full bunch crossing rate
 - Use ML to recover resolution / accuracy in comparison with full reconstruction
 - Fully-connected DNN for muon recalibration generated w/ HLS4ML; 4 layers with 8-256 nodes
 - Knowledge distillation used to obtain compression factor of ~200 with almost no performance loss: no pruning required
 - Runs on Micron SB852 (VU9P) & Xilinx VCU128 (VU37P) boards Improvement for all variables in comparison with raw trigger values



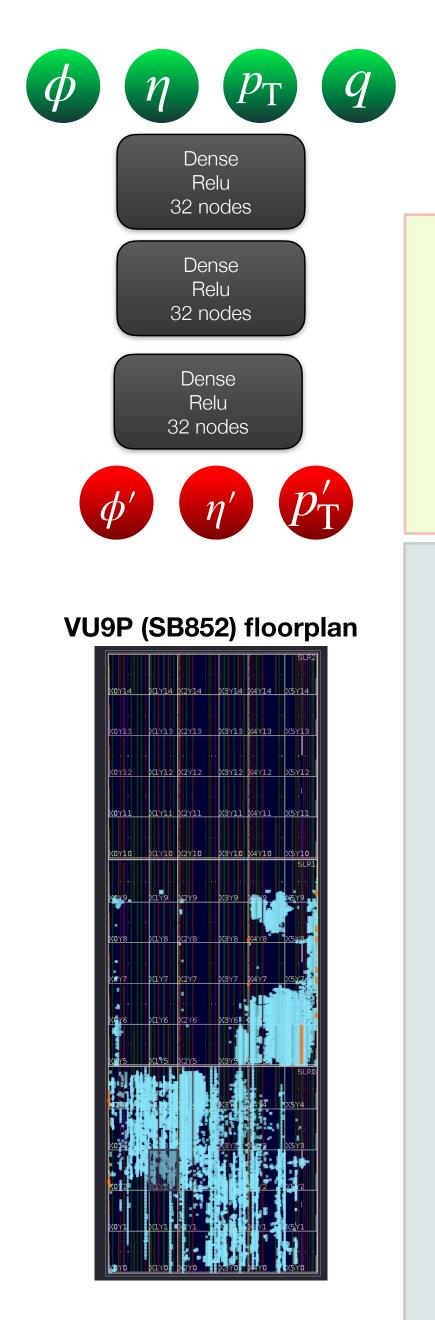


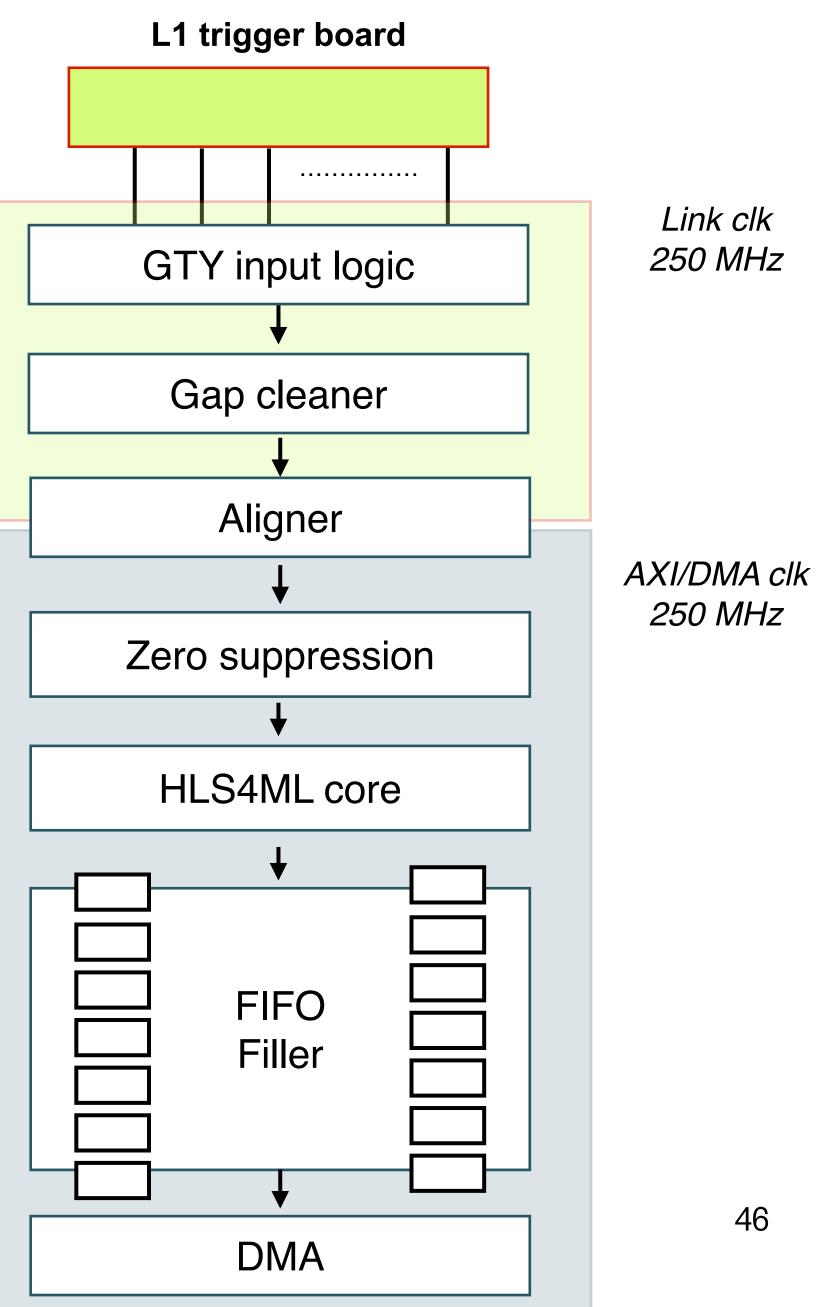
CMS L1 scouting

- Q6.12 precision, pruning factor 0.5
- Idea: 2 NN each process 4 muons / BX
- Latency $\lesssim 100~\text{ns}$ FIFO latency, can accept 2 muons / clock

	VU37P	VU9P
LUTs	57k / 4%	52k / 5%
BRAM (all infra)	584 / 29%	610 / 28%
DSP (all NN)	992 / 11%	1016 / 15%

post-implementation of full design w/ scouting fw & infrastructure



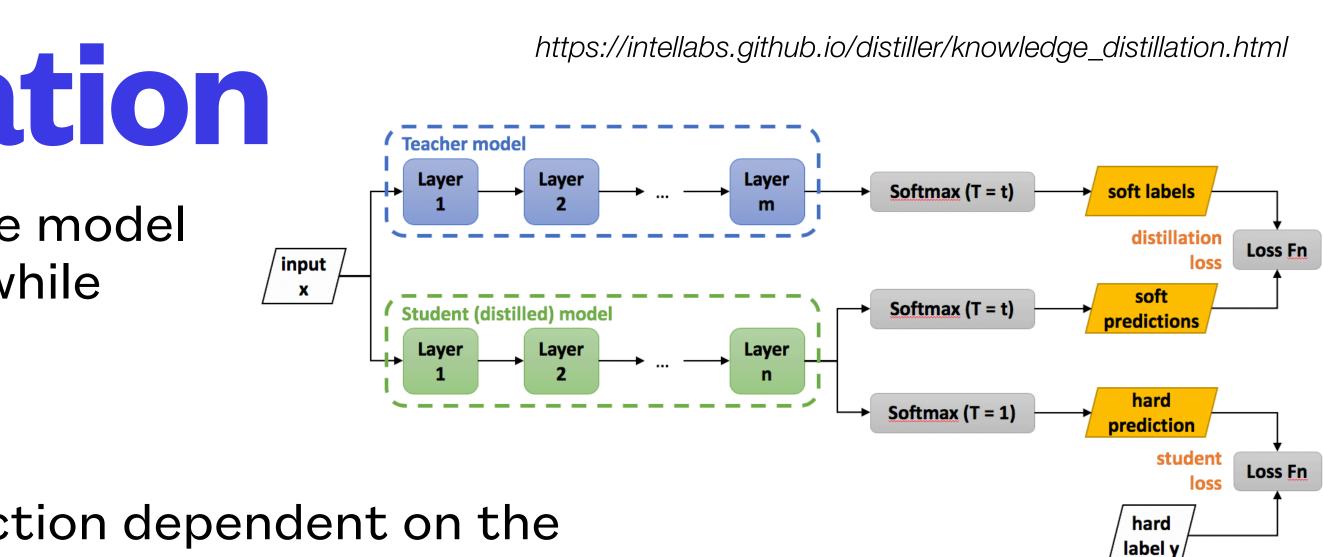


Knowledge distillation

- Process of transferring knowledge from large model to smaller model i.e reducing computations while maintaining performance
- Larger Teacher model pre-trained
- Smaller Student model trained with loss function dependent on the output of the teacher model: A*Loss(student, teacher) + B*Loss(student, truth)
- In CMS L1 Scouting: Applied to both re-calibration & classification: both models 4 layers; precision AP (18,5)

Performance N Neuror	N Neurons / layer	N parameters total	N narameters total		FWHM		
comparison			$\Delta \varphi$ [rad]	Δη	Δp _T [GeV]	under ROC curv	
Teacher	256	204 000	0.12	0.061	0.41	0.97	
Student	8	419	0.12	0.063	0.42	0.96	
Original baseline	16	1219	0.14	0.066	0.43	0.97	

• Compression factor of ~200 with almost no performance loss: no pruning required

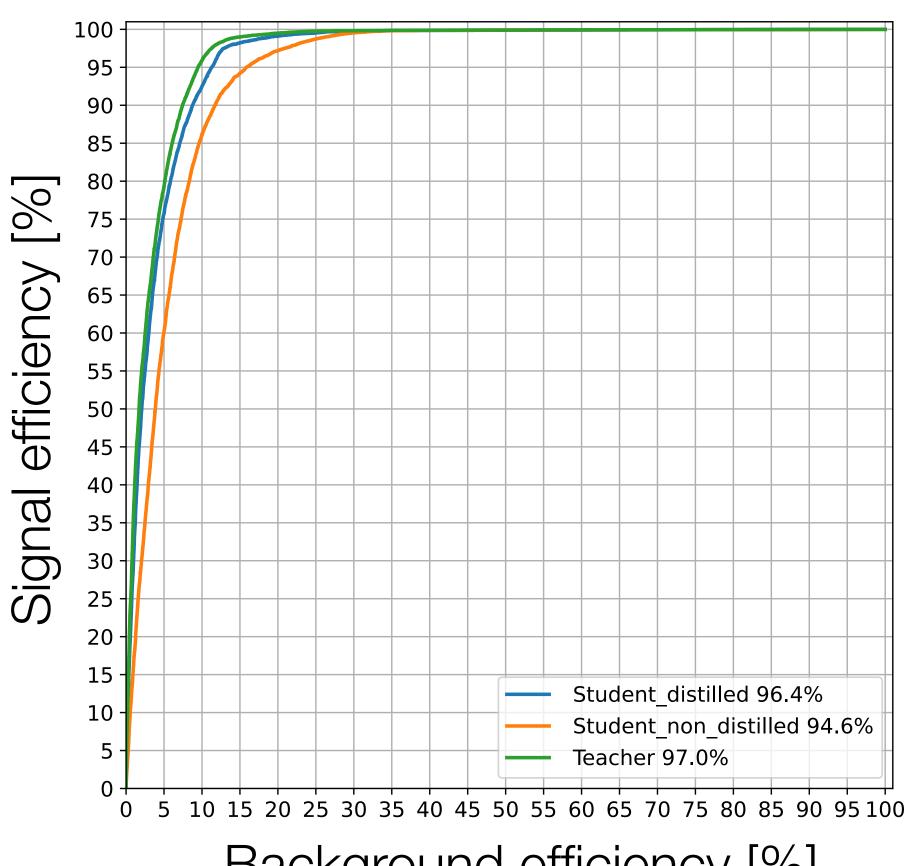


(ground truth)

Knowledge distillation

- Applied to both re-calibration & classification: both models 4 layers; precision AP (18,5)
- Same model architecture for re-calibration & classification
- 250 MHz clock
- Can easily fit multiple copies in FPGA

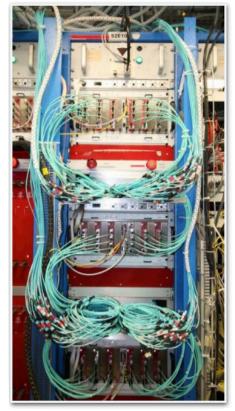
VU9P FPGA	DSP	Flip Flops	Look Up Table	BRAMS
Available	9024	2.6 M	1.3 M	2160
Used	72 (0.79%)	5677 (0.21%)	11.3 K (0.87%)	0

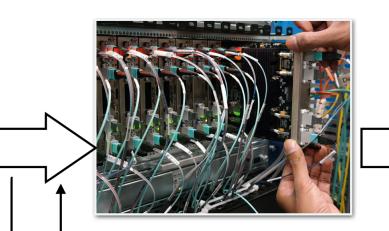


Background efficiency [%]

Anomaly detection in CMS trigger

- Unknown signature for new physics
- New signals may be difficult to trigger on with standard cuts-based selection
- **CICADA** [1]: (Calorimeter Image **Convolutional Anomaly Detection Algorithm**)
 - 2D CNN autoencoder runs on the calorimeter region energy deposit topologies
 - 18x14 pixel input; MSE loss from re-constructed image
 - Implemented in calorimeter trigger: anomaly rate of a few kHz

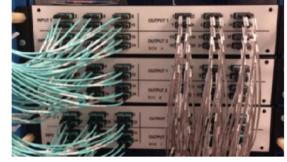




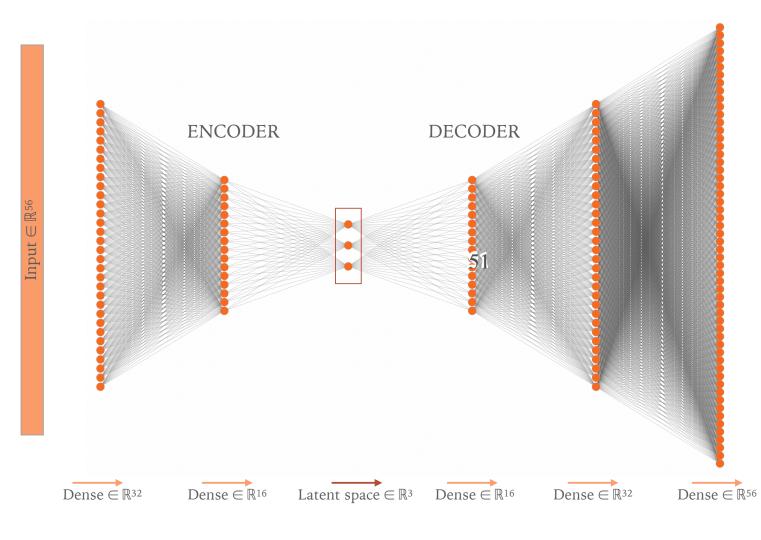
Layer-2

Global Trigger

Layer-1



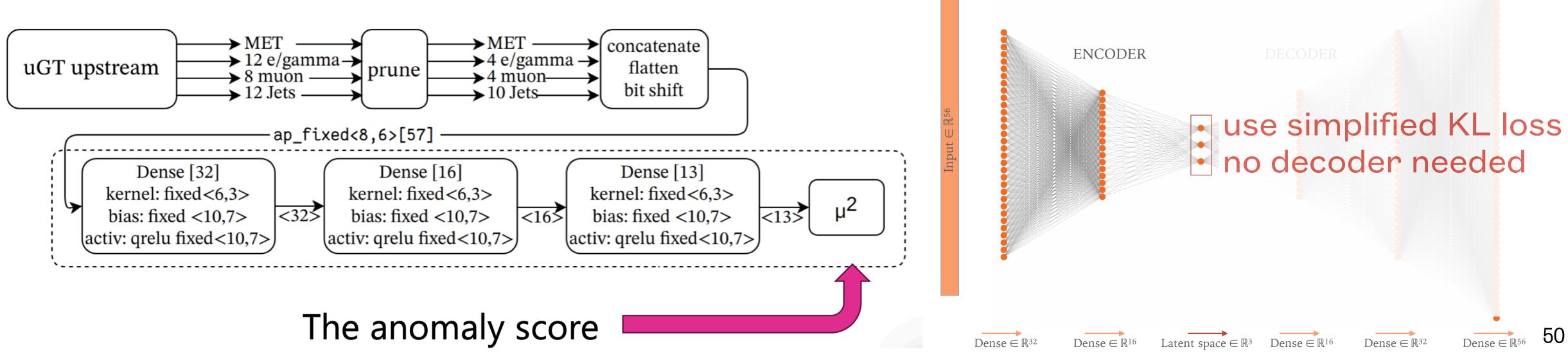
Time multiplexing routed trough 72 to 72 12-fiber MPO connector



^[1] https://cds.cern.ch/record/2879816

Anomaly detection in CMS trigger

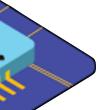
- **AXOL1TL** [2]: variational auto encoder to select anomalous events in real time
 - Trained on minimally biased, unfiltered data from detector, simplified KL loss
 - Virtex-7), meets strict timing and resource limitations; 50 ns latency / inference
 - something we have been missing?



[2] https://doi.org/10.1038/s42256-022-00441-3.

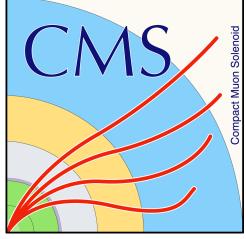
Firmware developed with HLS4ML on FPGA-based custom global trigger board (Xilinx)

• Physics performance improvements in (*beyond*) standard model signals - could we find



Summary

- Deploying ML into the realtime processing for Trigger and DAQ is becoming increasingly possible and relevant
- FPGAs *αnd* ML crucial to processing huge throughput of the HL-LHC
- New tricks of the trade for $f\alpha st$ ML inference with low latency: quantisation, knowledge distillation
- Many examples at LHC experiments just a sub-set shown
- Full exploitation of ML inference at the edge is necessary to continue advancing our understanding of the universe
- Many more ideas for what can be done up to and including at the HL-LHC



Thomas James, <u>tom.james@cern.ch</u>

CERN openIab, CTO for AI and Edge Devices

Applied Physicist, CMS detector

Links and additional reading

- <u>https://fastmachinelearning.org/hls4ml</u> [1]
- [2] https://github.com/fastmachinelearning/hls4ml-tutorial
- [3] <u>https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html</u>
- [4] <u>https://software.intel.com/en-us/articles/accelerating-neural-networks-with-binary-arithmetic</u>
- [5] https://arxiv.org/abs/1804.06913
- [6] https://www.nature.com/articles/s42256-021-00356-5
- [7] github.com/fastmachinelearning/qonnx

[8] <u>https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-</u> eli5-way-3bd2b1164a53

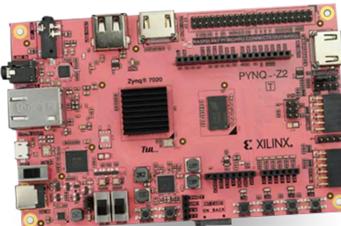
[9] <u>https://www.eidosmedia.com/blog/technology/machine-learning-size-isn-t-everything</u>

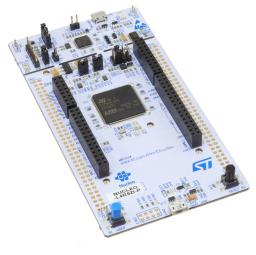
52

BACKUP: Fast ML benchmarking

- Common FastML
- MLCommons recently added 'Tiny' category to MLPerf benchmark (<u>link</u>)
- hls4ml submission targeted pynq-z2
- Fully on-chip hls4ml implementation is efficient for low power inference

Benchmark CIFAR-10 T		ToyADMOS					
Team	Device	Accuracy	Latency (ms)	Power (W)*	AUC	Latency (ms)	Power (W)*
his4mi	Pynq-z2	77%	7.9	~ 1.5	0.82	0.096	~ 1.5
Latent Al	Raspberry Pi 4	85%	1.07	~ 4 - 5	0.85	0.17	~ 4 - 5
Harvard	Nucleo- L4R5ZI	85%	704		0.85	10.4	
Peng Cheng Lab	PCL Scepu02	85%	1239.16		0.85	13.65	

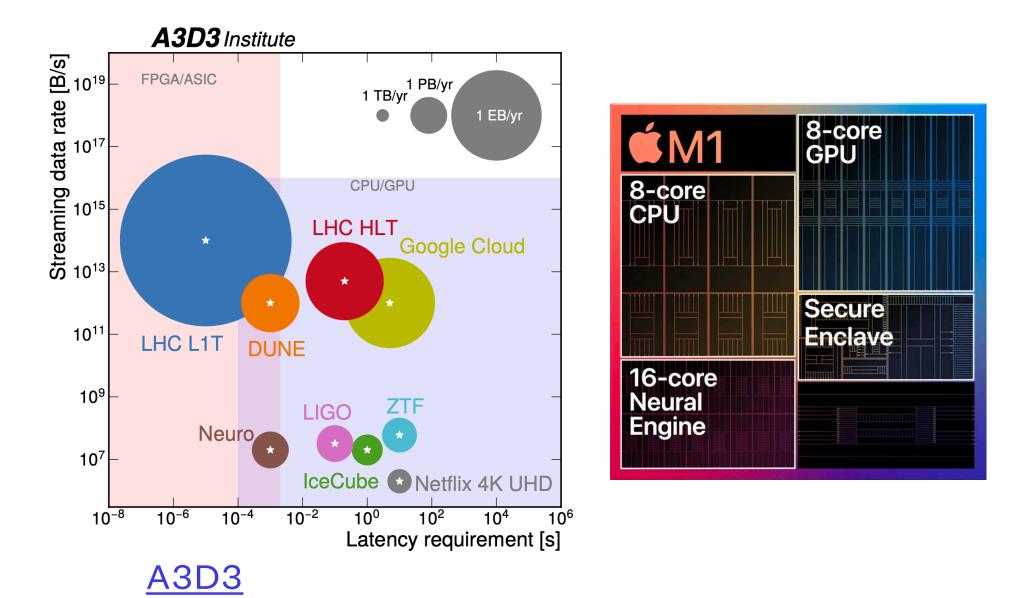


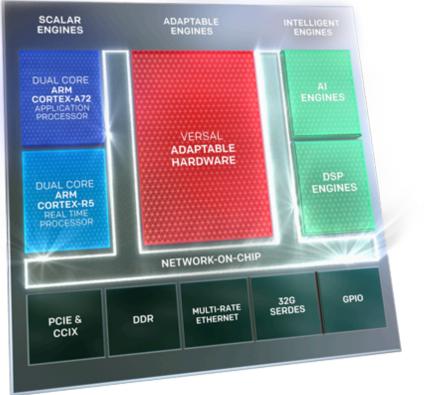


53

BACKUP: ML Specific Processors

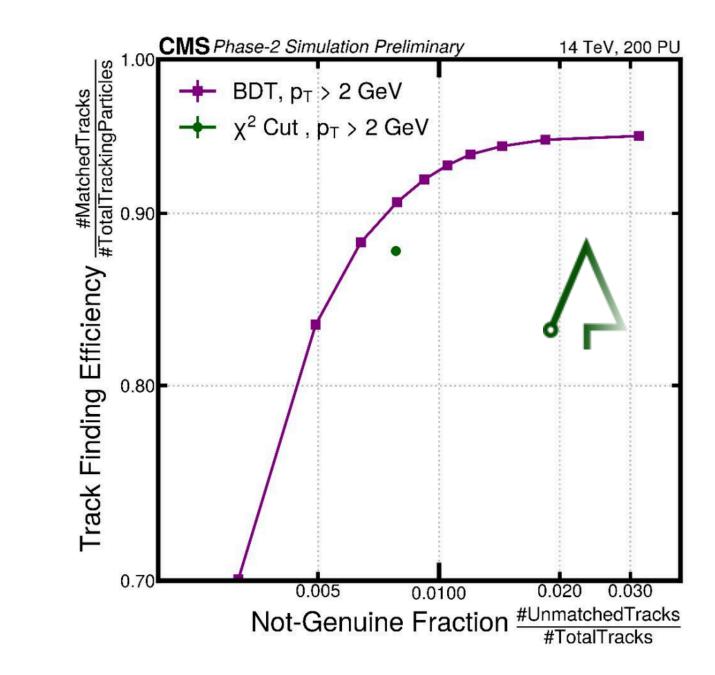
- There are some processors out there specifically designed for Machine Learning / Al
- e.g. Tensor Processing Unit (TPU) from Google, Intelligence Processing Unit (IPU) from Graphcore
- Devices aiming at low power embedded
 - Internet of Things, Smartphones
- Xilinx Versal ACAP for FPGAs with embedded Vector units, Vector/NN units in CPUs Many different things out there, each targeting a specific optimisation:
 - Best overall throughput
 - Lowest latency
 - Lowest power / smallest footprint
- Choose appropriate device for your task





ML in L1T FPGAs

- Tools like <u>hls4ml</u> (more later) and <u>conifer</u> bring ML into FPGAs with sub-microsecond latency
- Example: identifying fake tracks from CMS Level 1 Track Finder (Phase 2 Upgrade)
- Fake tracks are identified in simulation as those not associated to a simulated particle
 - Often from combinatorics (200 pileup scenario), they harm trigger performance later
- A BDT with 60 trees and depth of 3 finds fakes better than simple cuts
- conifer library maps BDT onto FPGA logic
 - In this case 33 ns latency and < 1% resources (VU9P)
- Many algorithms in development for Phase 2
 - Improving object reconstruction (as here)
 - Improving event selection of difficult signatures



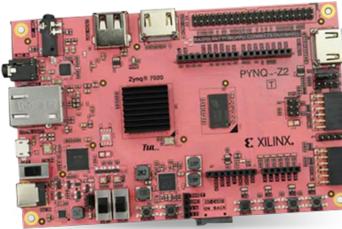
55

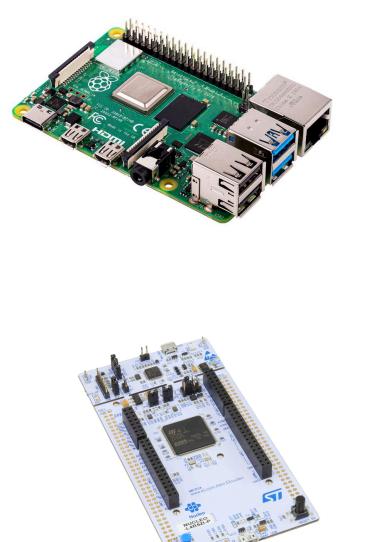
Fast ML benchmarking

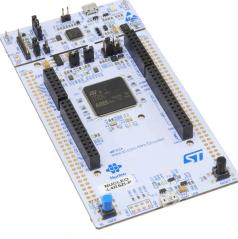
- Common FastML
- MLCommons recently added 'Tiny' category to MLPerf benchmark (<u>link</u>)
- hls4ml submission targeted pynq-z2

• •	-ully on-chip his4ml implementation is efficient for low power inference							
	Benchmark		CIFAR-10		ToyADMOS			
	Team	Device	Accuracy	Latency (ms)	Power (W)*	AUC	Latency (ms)	Power (W)*
	hls4ml	Pynq-z2	77%	7.9	~ 1.5	0.82	0.096	~ 1.5
	Latent Al	Raspberry Pi 4	85%	1.07	~ 4 - 5	0.85	0.17	~ 4 - 5
	Harvard	Nucleo- L4R5ZI	85%	704		0.85	10.4	
	Peng Cheng Lab	PCL Scepu02	85%	1239.16		0.85	13.65	

Illy on-chin ble/ml implementation is affiniant for law new on informa-

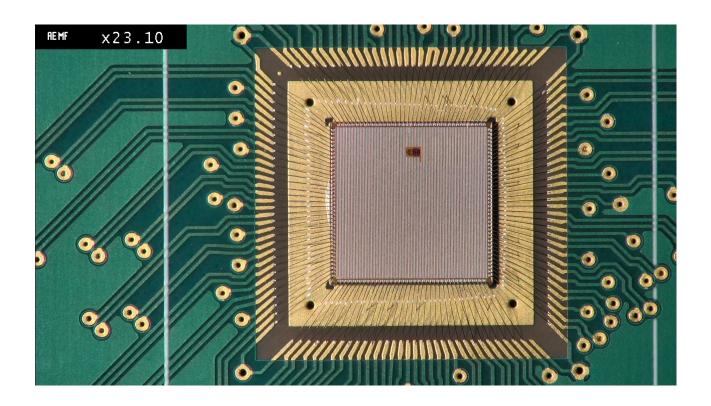


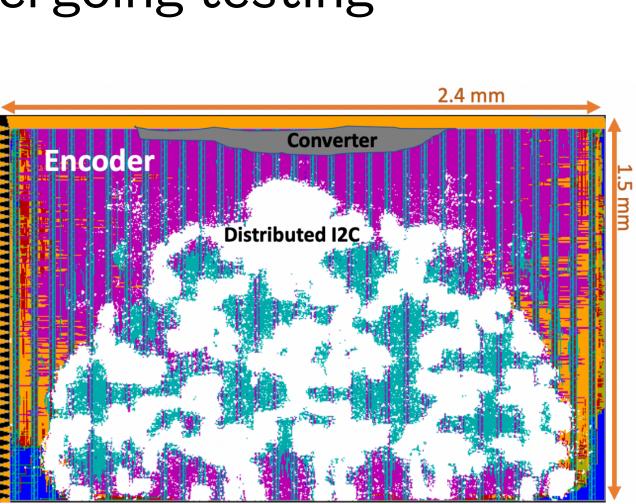




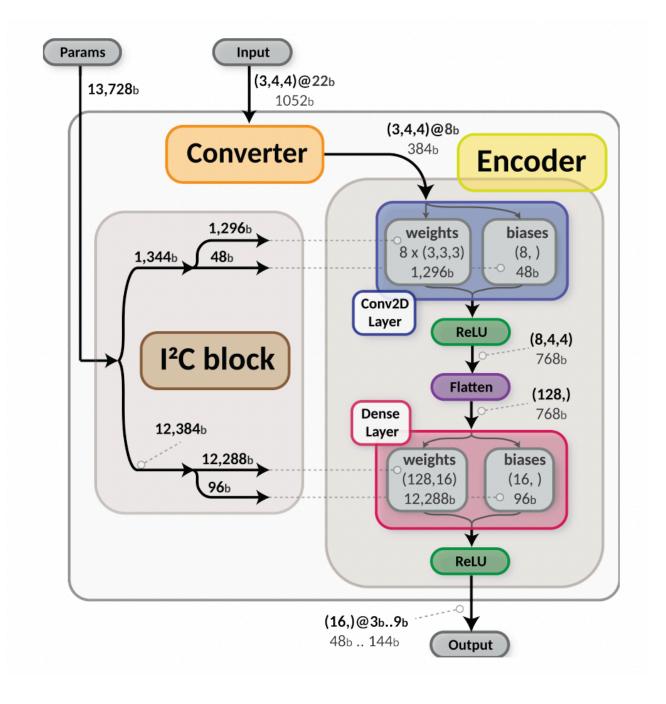
ECON-T ASIC for CMS HGCal

- hls4ml (more later)
 - NN architecture is fixed, weights can be reprogrammed (e.g. after NN retraining)
 - ECON-T also includes non-ML baseline compression algorithms
- Decoder block would run in trigger FPGAs
- Device manufactured and undergoing testing



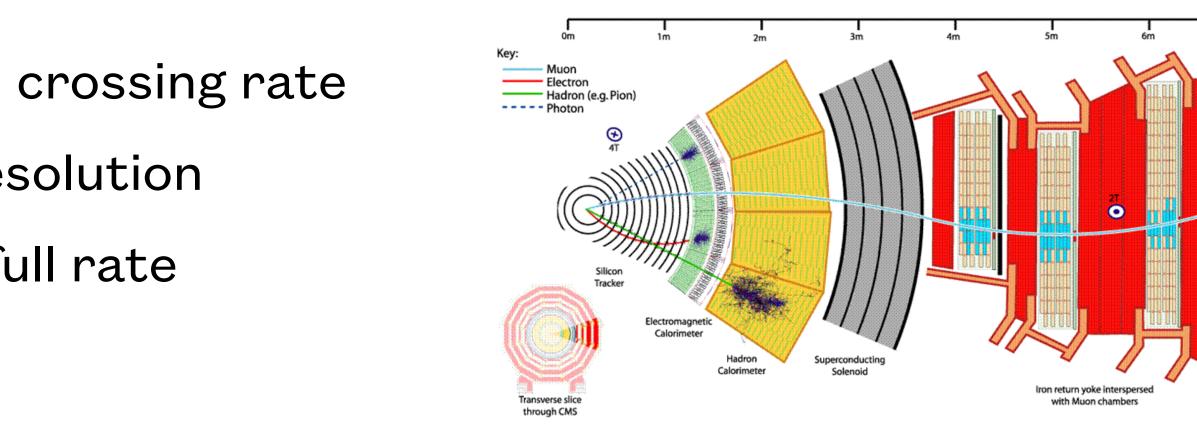


Neural Net encoder IP block created for ECON-T ASIC with Catapult HLS (Mentor/Siemens) and

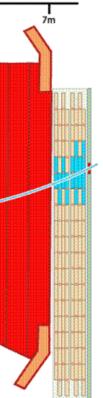


L1 Scouting

- Stream processor / accelerator hybrid
- What does L1 accept miss?
- Can we acquire L1 trigger data at full bunch crossing rate
 - subset of detector information, limited resolution
- Allows for analysis of certain topologies at full rate
 - semi real-time analysis and/or
 - storing of tiny event record
- Demonstrated for first time at end of 2018
- Upgraded w/ new boards in 2021 validated with LHC test beams
- trigger outputs included

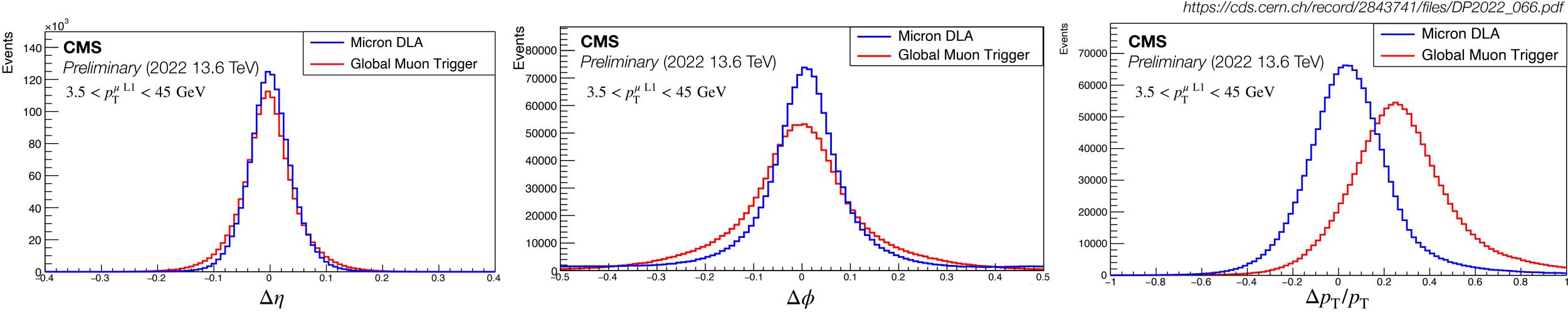


For LHC Run 3 (2022) - prompt & displaced muons, jets, electrons/photons, taus and global



CMS L1 scouting: muon re-calibration

- > L1 scouting at CMS acquires subset of granular data at full bunch crossing rate what does L1 accept miss?
- > Use ML to recover resolution / accuracy in comparison with full reconstruction
- $\Delta \eta$, $\Delta \varphi$, Δp_T is the difference between the prediction (or GMT) values, and the offline reconstructed global muon tracks for matched muons ($\Delta R < 0.1$ at 2nd muon station)



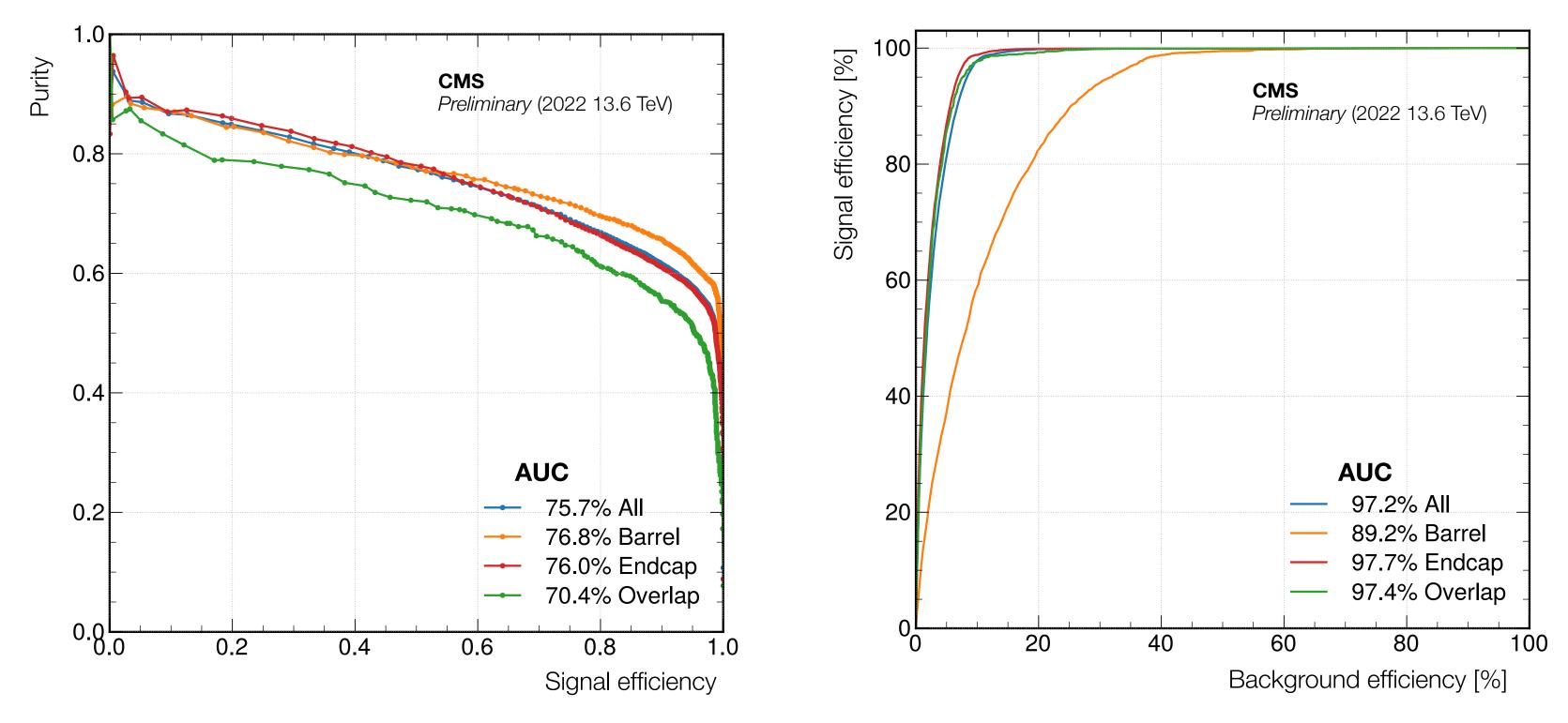
- Target: centred on zero & higher peak
- > NN shows improvement for all variables in comparison to raw trigger values

CMS L1 scouting: muon re-calibration

- Integrated NN for muon recalibration generated w/ HLS4ML
- Runs on Micron SB852 & Xilinx VCU128 boards
- Q6.12 precision, pruning factor 0.5
- 2 NN each process 4 muons / BX
- Latency ≤ 100 ns FIFO latency, can accept 2 muons / clock

L1 dimuon classifier

- >
- Trained/tested with 2022 data 305k pairs (identical pre-removed)
- Huge gains in purity for small efficiency cost

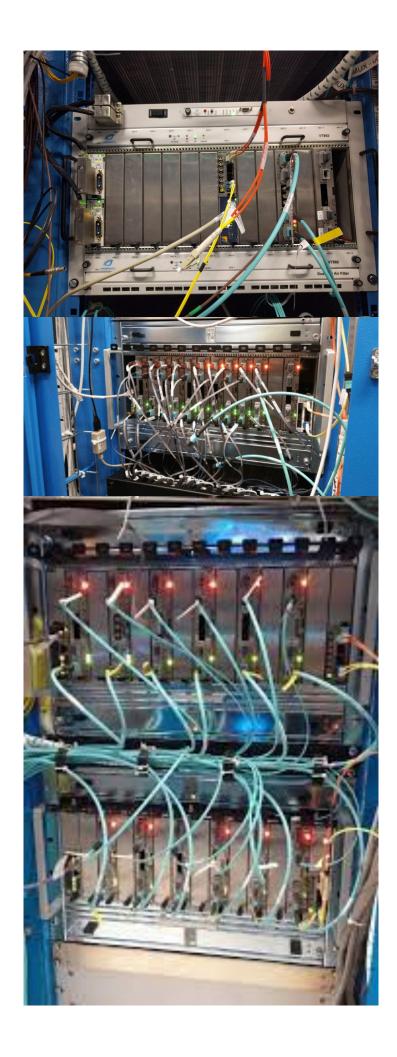


https://cds.cern.ch/record/2843741/files/DP2022_066.pdf

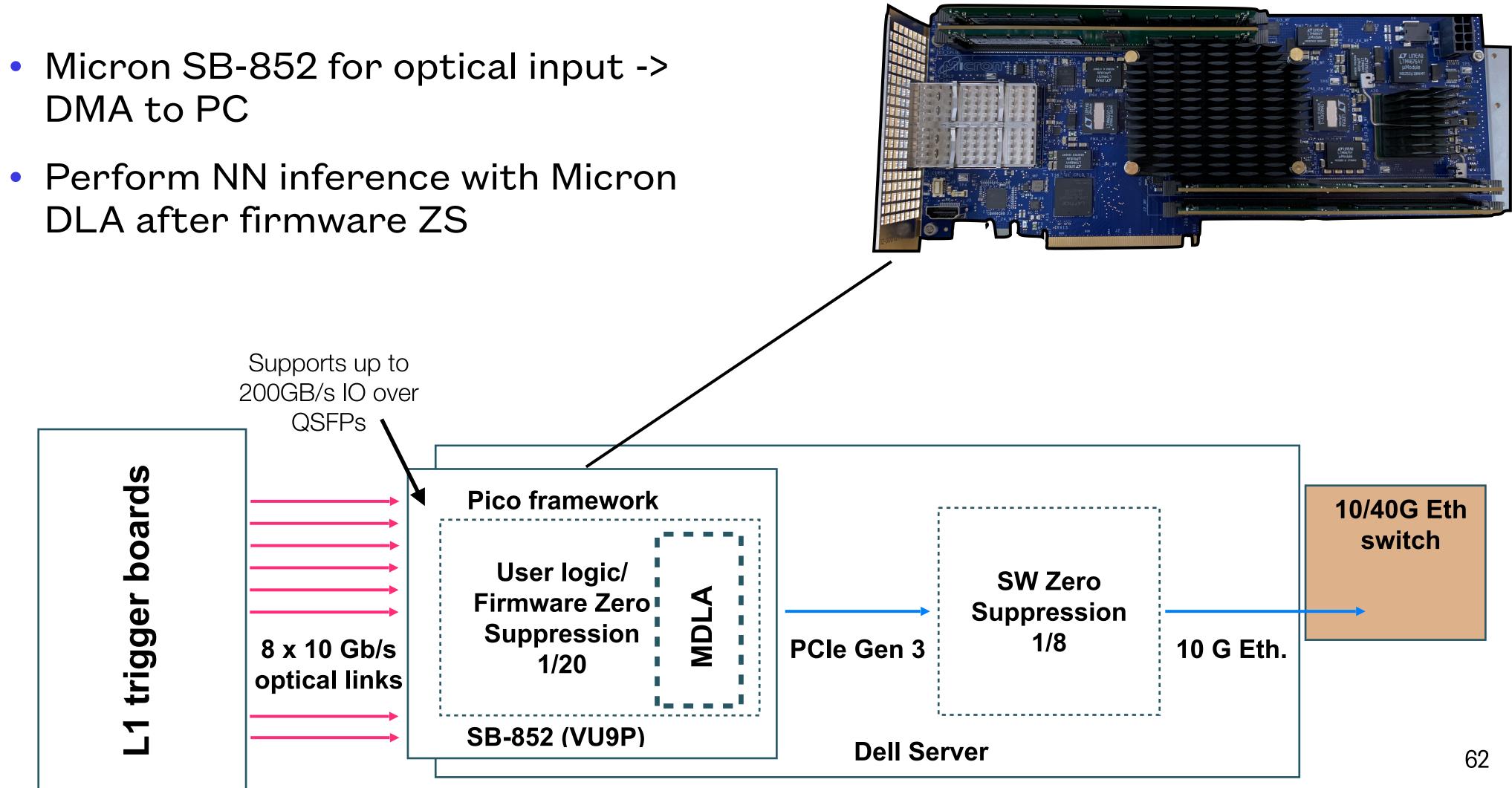
Acts on muon pairs: rejects misconstructed pairs of L1 muons not found in offline recoile L1 duplicates

ф ф	n n	p _T p _T	Qual Qual	
	28 nodes	Dense BN Relu		
	12 nodes	Dense BN Relu		
	20 nodes	Dense BN Relu		
	1 nodes	Dense BN Sigmoid		
		Class		

L1 Scouting with SB-852

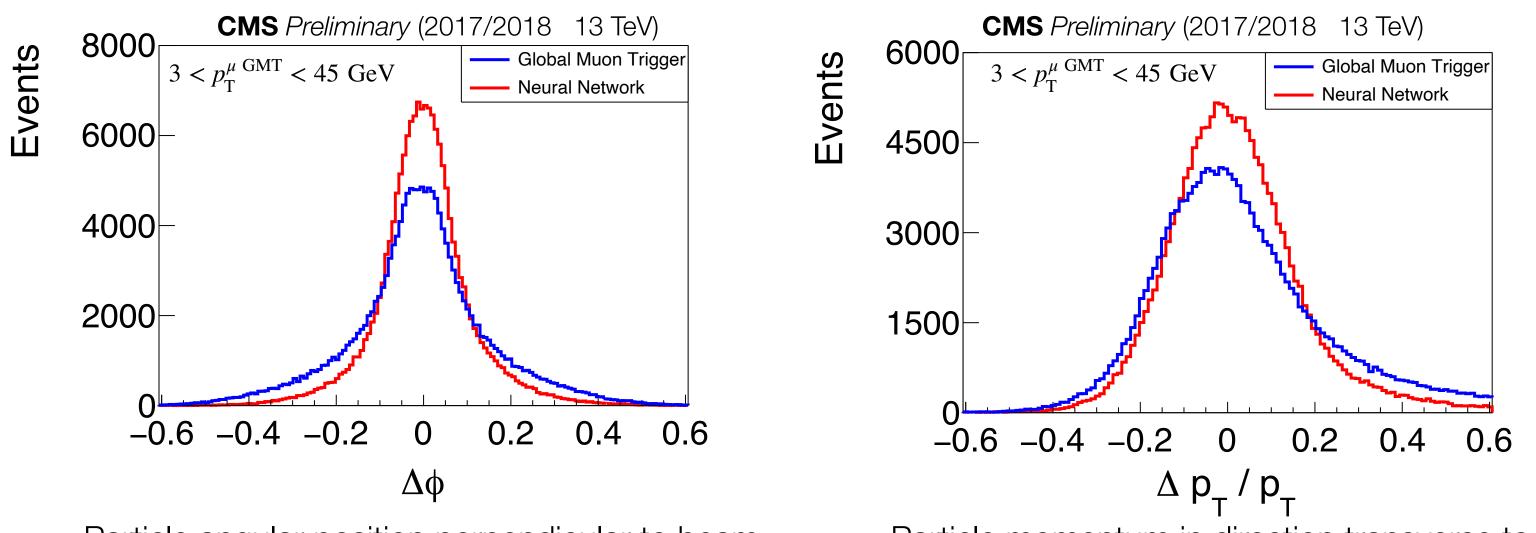


- DMA to PC
- DLA after firmware ZS



Why ML for L1 scouting?

- Use of classical (FF-DNN) neural networks to 'recalibrate' L1 information to improve their utility for an online analysis
- Inputs L1 objects e.g GMT muons:
- Target Offline fully reconstructed objects



Particle angular position perpendicular to beam

Particle momentum in direction transverse to beam

 p_{T} Φ Q η Dense 128 nodes ΒN Relu Dense 128 nodes BN Relu Dense 128 nodes BN Relu Dense 128 nodes ΒN Relu

10'

 ψ_{reco} η_{reco} $p_{\text{T reco}}$

 \mathcal{A}'

Muon re	ecalibra	tio
N DLA clusters	Inference rate	Αν

4 cluster	5.6 MHz
2 cluster	2.8 MHz
1 cluster	1.4 MHz

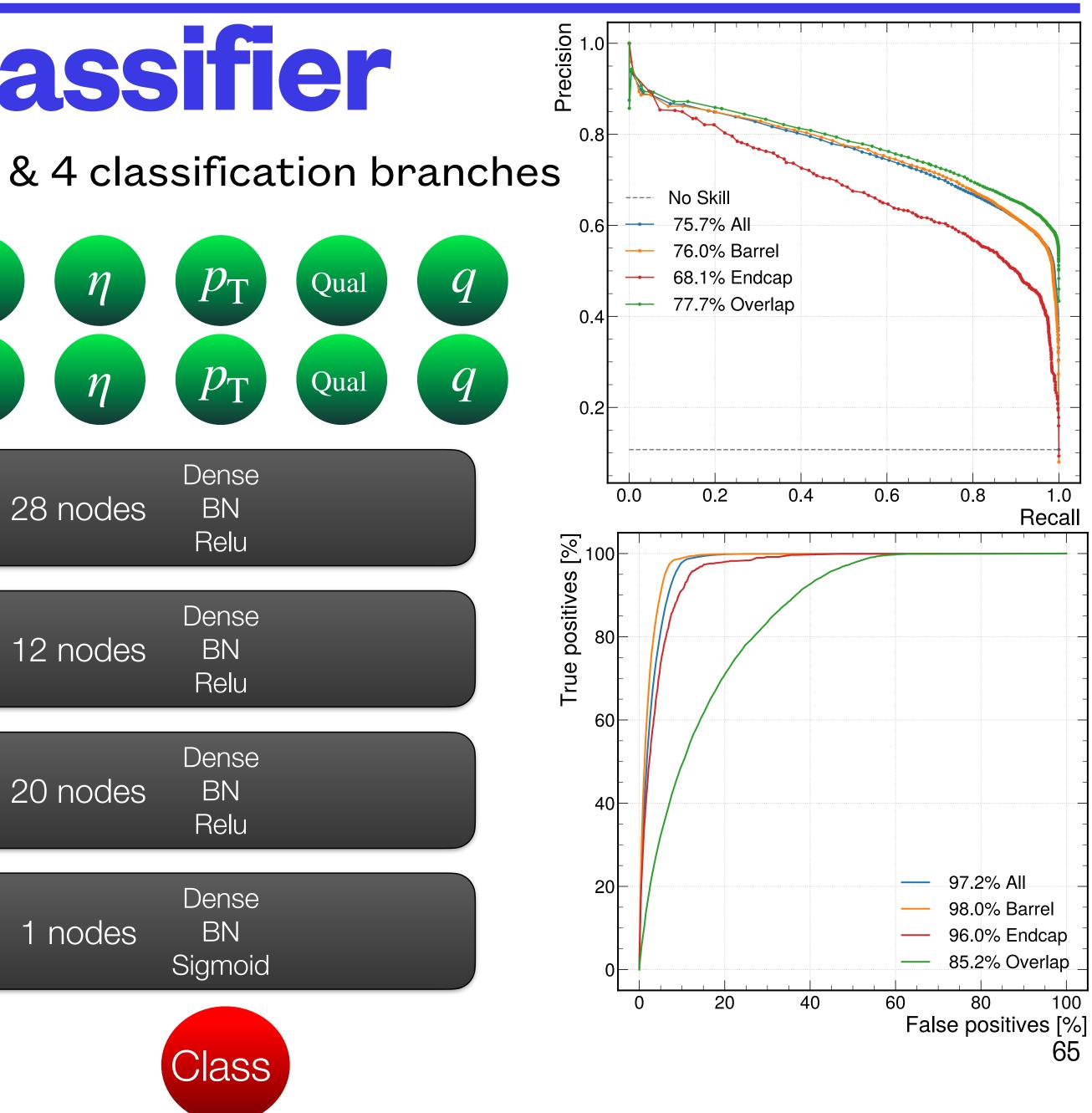
- 4 clusters maximum in VU9P FPGA
- Majority of latency from data/weights transfer RAM/FPGA, batching implemented to remove this bottleneck (batch size 1280)

Precision |hw - Keras sw|

Model w/ integer inputs, no batch norm

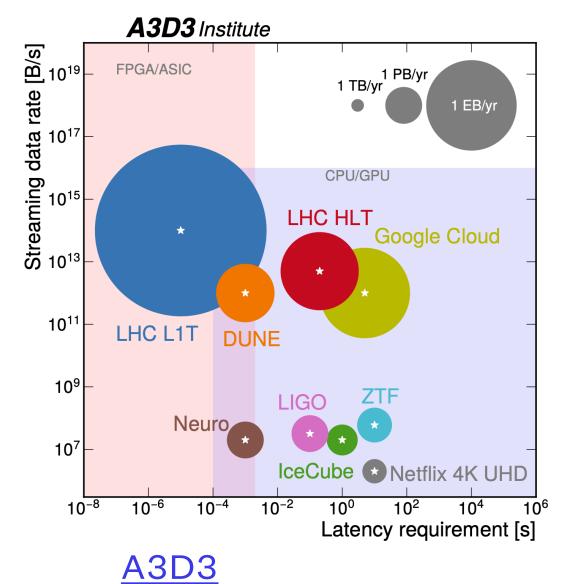


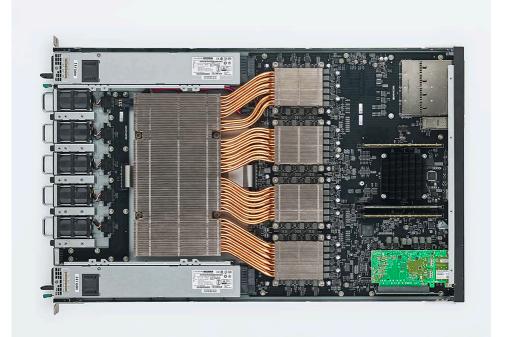
Fake muon pair classifier • Network consists of 8 recalibration branches & 4 classification branches Trained/tested with Run 3 Zero-bias data Φ 64-inputs | 8-muons $(\phi,\eta,p_{\mathrm{T}},q,Q,BXN,BXC1,BXC2)_{\mu_{1},\ ...\ ,\mu_{8}}$ μ_1 μ_2 μ_3 μ_4 μ_5 μ_6 μ_7 $\mu_{1,2}$ $\mu_{3,4}$ $\mu_{5,6}$ $\mu_{7,8}$ μ_8 Inputs $|R_7|$ C_1 C_2 C_4 $|R_2|$ C_3 $|R_1|$ $|R_8|$ $(\Delta\phi\;\Delta\eta\;\Delta p_{ m T})_{\mu_1,\;...\;,\mu_8}$ **Labels of 4 pairs Classification Recalibration**

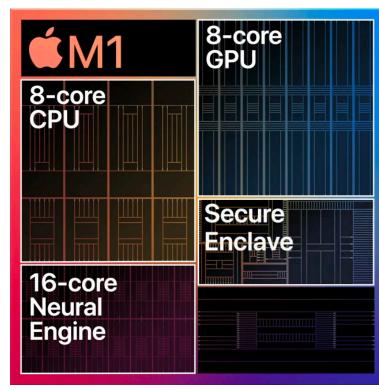


ML Specific Processors

- There are some processors out there specifically designed for Machine Learning / Al
- e.g. Tensor Processing Unit (TPU) from Google, Intelligence Processing Unit (IPU) from Graphcore
- Devices aiming at low power embedded
 - Internet of Things, Smartphones
- Xilinx Versal ACAP for FPGAs with embedded Vector units, Vector/NN units in CPUs Many different things out there, each targeting a specific optimisation:
 - Best overall throughput
 - Lowest latency
 - Lowest power / smallest footprint
- Choose appropriate device for your task

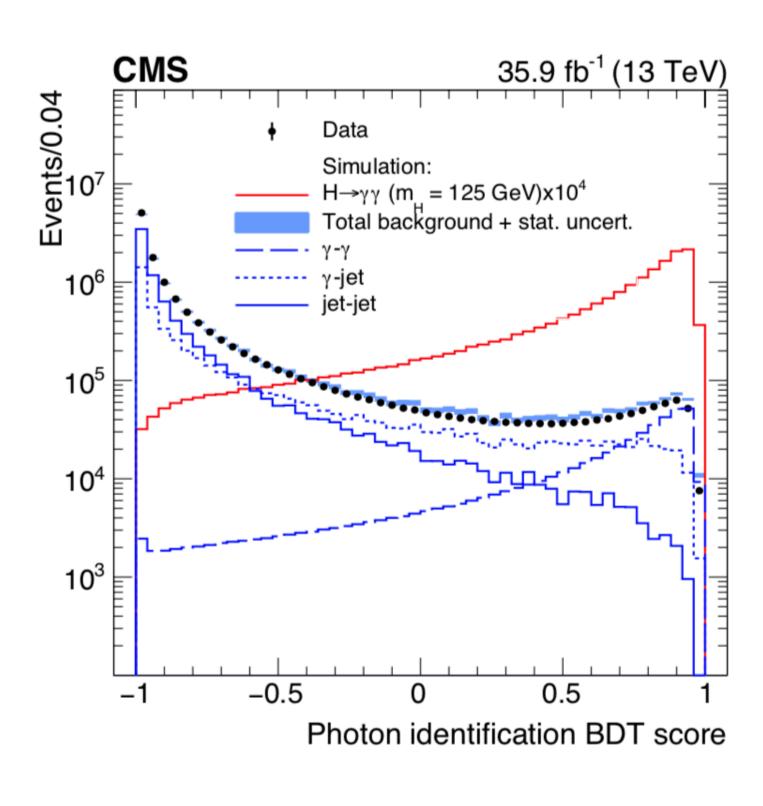






BDTs for Higgs

- Several BDTs involved in the analysis of Higgs boson decay to two photons using high-level variables
 - e.g. particle mass, η , isolation
- To separate signal photons from background (photons from jets)
- Choosing the most likely vertex for the photons (they are neutral, so no tracking)
- A diphoton quality BDT (separating signal like $\gamma \gamma$ events from background)
- Used to increase the purity of the selected diphoton dataset
- Increase in sensitivity due to ML equivalent to having 50% more data (and no ML)

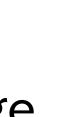


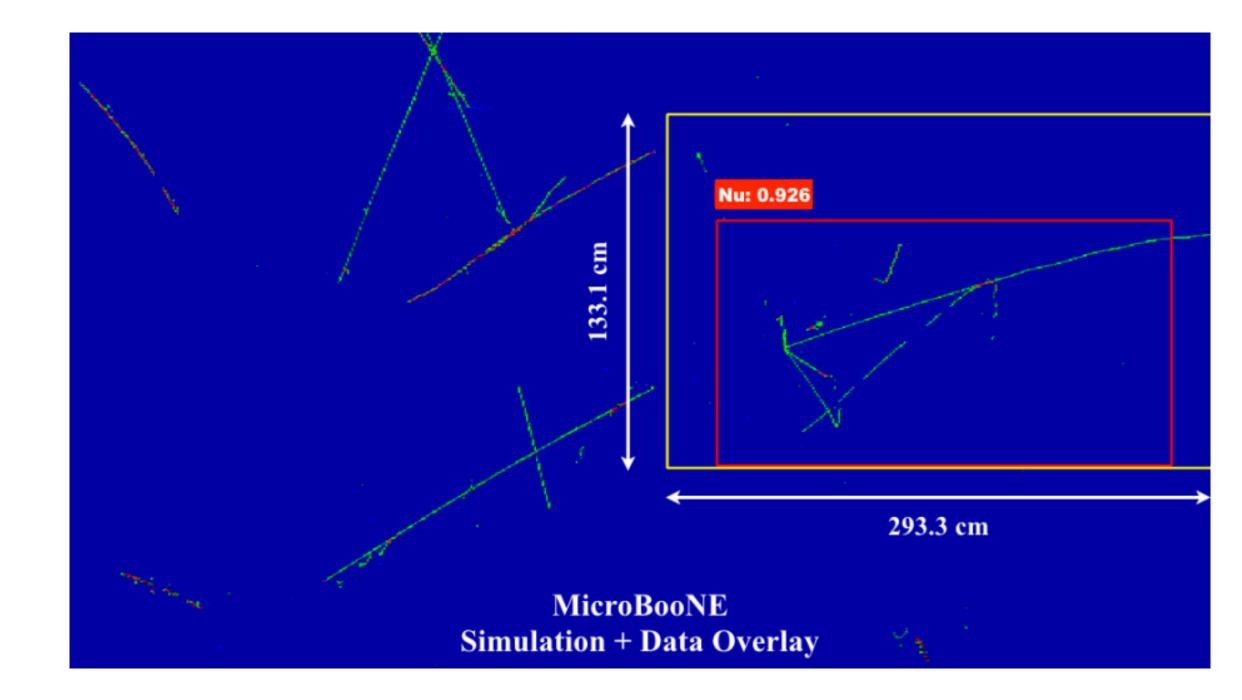
arXiv:1804.02716v2

Neutrino Detector Reconstruction

- From MicroBooNE, Liquid Argon timeprojection chamber (LArTPC) neutrino experiment
- Using a CNN to identify neutrino interactions using a CNN
- e.g. simulated neutrino interaction yielding 1 μ,
 3 p, 2 π. Background from cosmic data

- Yellow box is 'truth' box containing all charge deposits from simulated interactions
- Red is bounding box predicted by CNN





<u>arxiv:1611.05531</u>

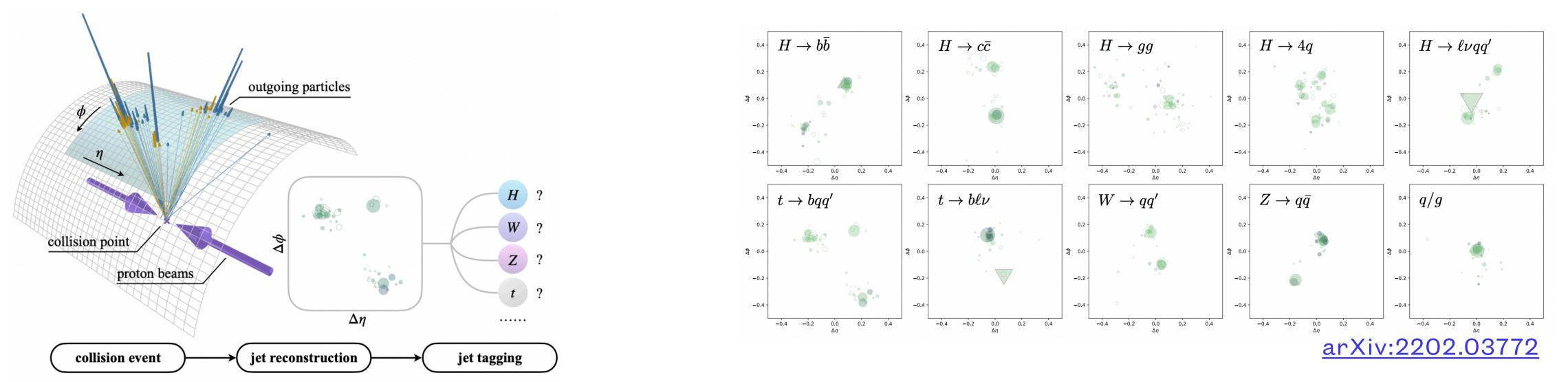
Jet Tagging

- Big successes in HEP from ML for jet ID, example: DeepJet from CMS
- 1x1 CNN layers for 'feature engineering' (combining variables of single particles)
- LSTM recurrent networks iterate over particles sequentially
- Finally Dense layers combine features learned from the previous steps and the global variables



Jet Tagging

- the jet?
- - High-level observables reconstructed with classical means -> fed into MLP
 - Make images from individual particles by applying a grid -> Convolutional NN
 - Make lists of particles (often p_T ordered) -> Recurrent NN or Transformer
 - Represent particles as a graph (point cloud with connections) -> Graph NN

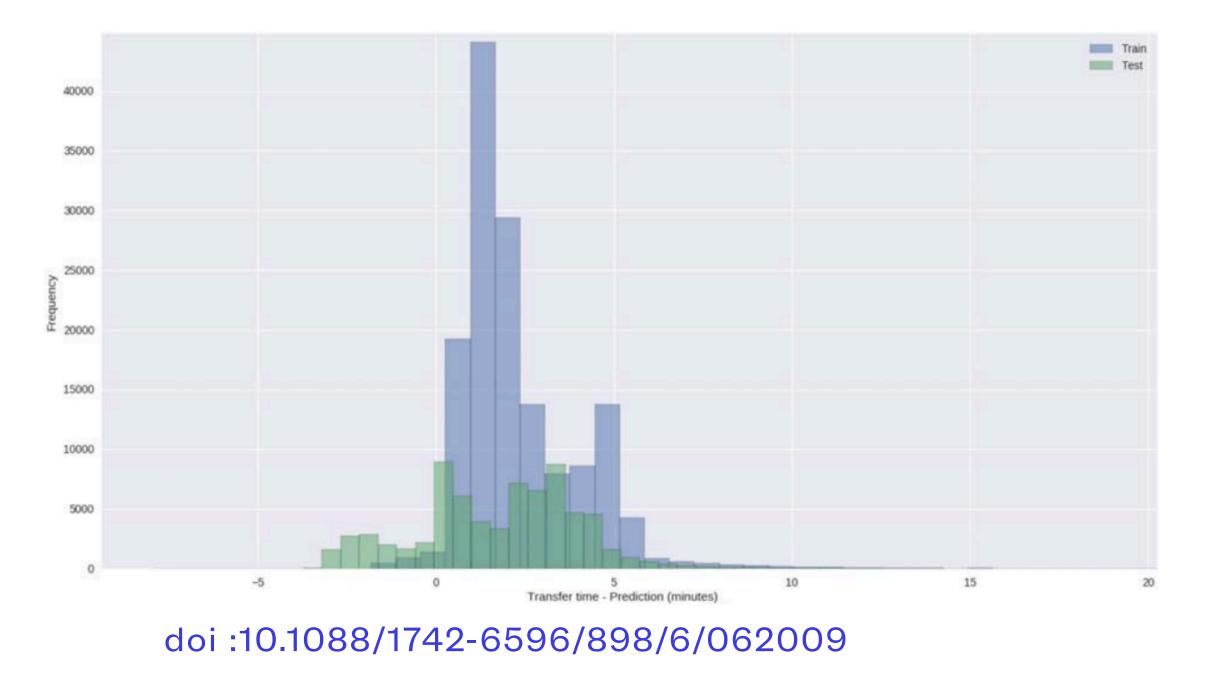


Jet tagging is an area of HEP rich in ML: given the final state observables, what type of particle initiated

• How to represent the jet? Lots of approaches have been tried, relating to the different NN architectures

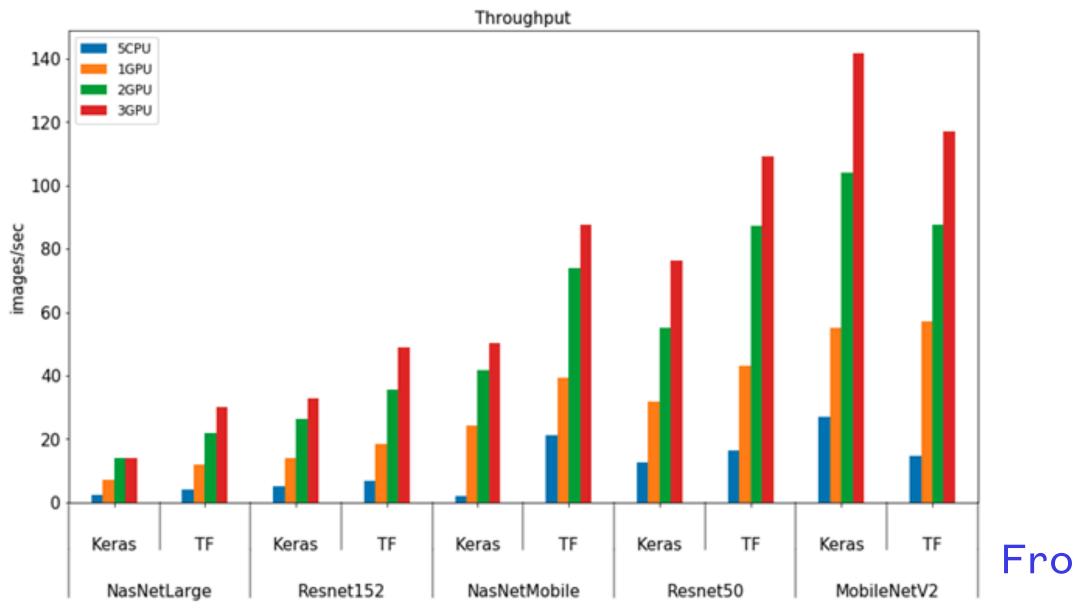
ML For Networking

- From ATLAS, predicting the transfer time of files between sites
- One metric in determining the network-aware scheduling of GRID jobs and file storage
- Uses a Long Short Term Memory (LSTM)
- Inputs: source, destination, activity, bytes, start timestamp, and end timestamp



GPUs for ML

- Biggest gains for GPUs are seen in training, but they also outcompute CPUs in inference
 - But remember you have to get the data to the device
- Here, running inference on K80 GPUs, measuring images / second (throughput)



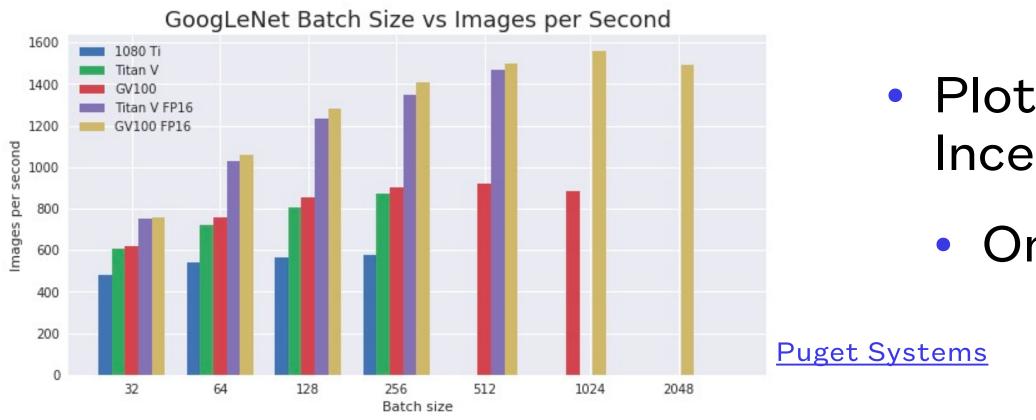
<u>mlperf.org</u> has nice benchmarking of different hardware (not only GPUs) running on different models

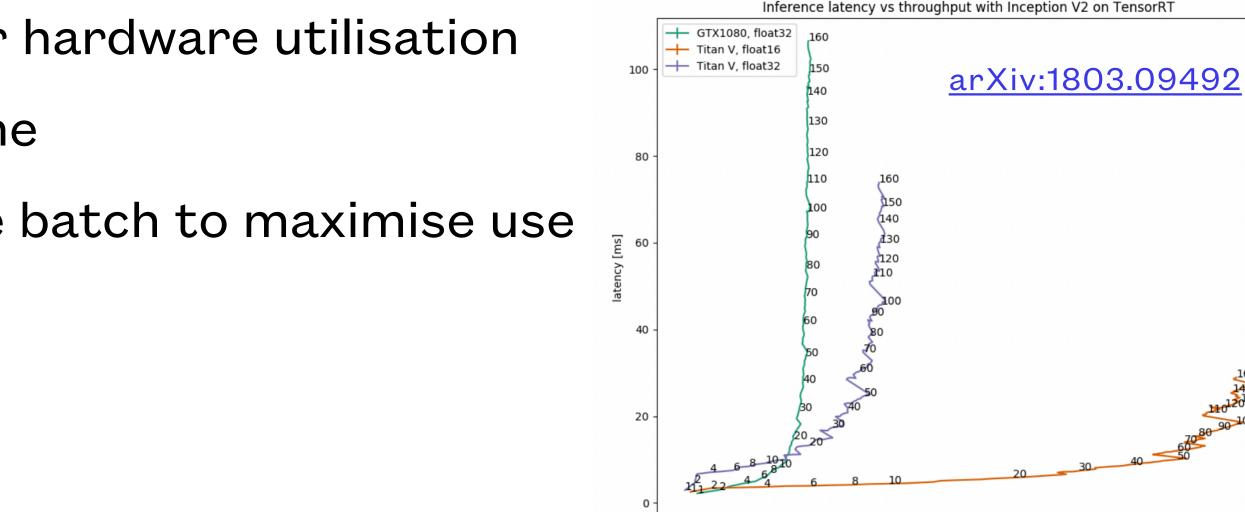
From Microsoft Azure

72

GPUs for ML - batching

- "Batching" is a common technique for better hardware utilisation
 - Relevant both at training and inference time
- Send several data samples to the GPU in one batch to maximise use of memory bandwidth and compute
- Is the constraint latency or throughput?
 - If strictly latency: low batch size
 - If throughput: high batch size
 - Both: batch size where throughput saturates





 Plot: throughput vs latency at different batch sizes for Inception V2 (large computer vision CNN)

2000

3000

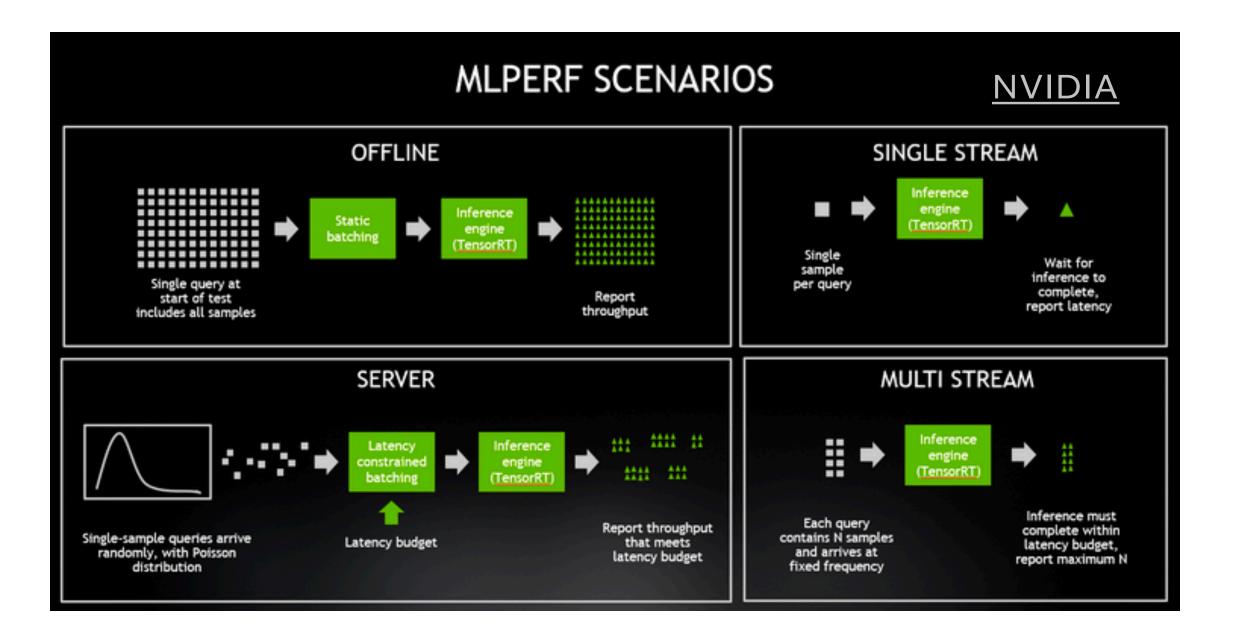
hroughput

On different GPUs and different precisions

5000

GPUs for ML - batching

- Whether or not you can profit from batching depends also on:
 - Is the main constraint on throughput or latency? (Or both?)
 - The data source: do data arrive at fixed intervals (bottom right image), or stochastically (bottom left)?
 - Can you afford to wait to accumulate several samples before sending them to the GPU?



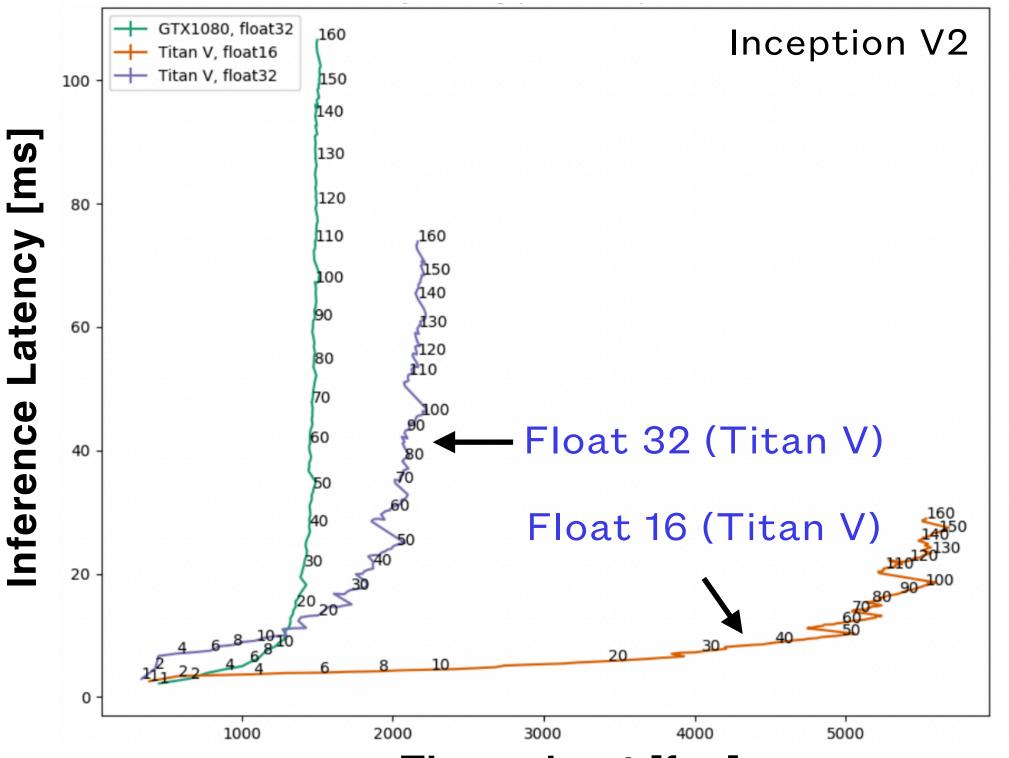
74

Quantization

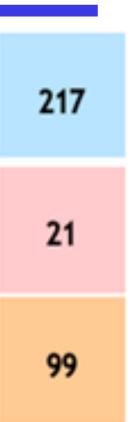
- Many GPUs support Int8, float16, bfloat16 precision with many more OPS than float32
 - **Post Training Quantization (PTQ)** train with FP32 then scale & round to lower precision
 - Quantization Aware Training (QAT) train with lower precision
 - TensorRT (NVIDIA GPU),
 - TensorFlow Lite (Google),
 - torch.quantization (PyTorch)
- Choice of precision depends on target hardware and requirements

0.34	3.75	5.64		64	134
1.12	2.7	-0.9		76	119
-4.7	0.68	1.43	Quantization	3	81

FP32



Throughput [fps]

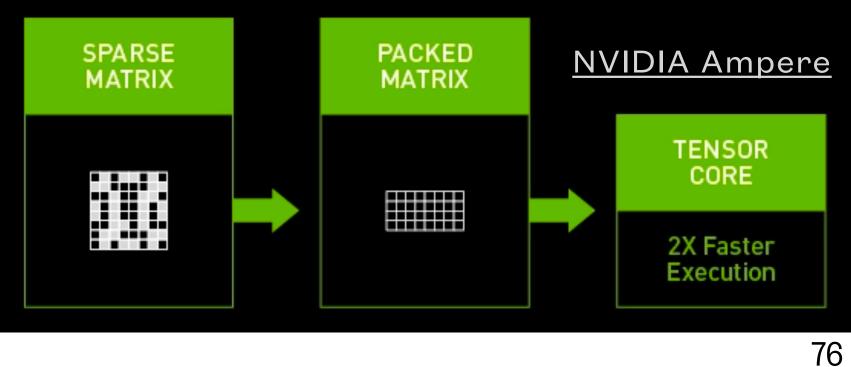


INT8

Pruning/Sparsity

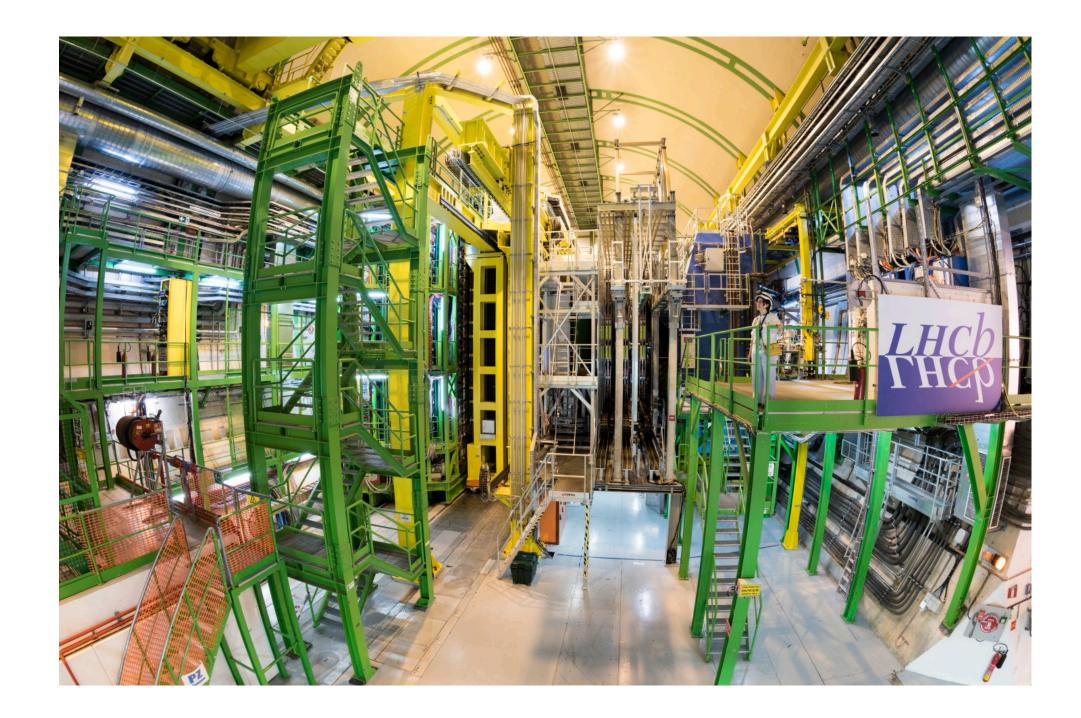
- A Neural Network often contains many redundant connections
- Pruning = remove some connections from final model
- Can reduce the model size (memory footprint)
- Some processors can accelerate sparse networks
 - Basically don't do the multiply by O computations
- Different methods:
 - Regularisation (penalise low value weights, then make them 0)
 - Target sparsity, e.g. sparsity ramp up with TFMOT
 - Structured pruning remove continuous blocks of weights;
 - Filter pruning entire filters of CNN
- Applies also to BDTs (λ , α in xgboost)
- Can be coupled with Quantisation Aware Training





LHCb, Bonsai BDT

- In LHCb, Bonsai BDT has been used since the beginning of LHC data taking in their online software event selection
- Bonsai BDT is a technique to compress BDTs into a binned parameter space for faster execution
- Was used in the main selection path for most LHCb analyses



Data Quality Monitoring

- Using an Autoencoder for anomaly detection
 - Network has a 'bottleneck' that learns an abstract representation of the data
 - After bottleneck, decoder network tries to reproduce the input image
 - For anomalous input, the recreated image is not similar to the original input, and flagged
- Applied to CMS muon drift tube system, able to identify failures not spotted by previous, rule based system

