Front-end Electronics &

Analog-Digital Converters

Suerfu Burkhant (KEK)

ISOTDAQ 2024 @ Hefei, China

By now, you have already mastered these...

C++ index.cpp M ×

You, 14 seconds ago | 1 author (You)

- #include <iostream>
- using namespace std;
- 5 vint main()
 - string hello = "hello";
 string world = "world";
 - cout << hello << world << endl; return 0;

It's time to learn this!

3

• Voltage dividers

- Voltage dividers
- Impedances

Circuit Element	Symbol	Current-Voltage Relationship in Time	Impedance R	
Resistor	+	V = IR		
Capacitor $\downarrow \rightarrow \downarrow + $		$I = C \frac{dV}{dt}$	<u>1</u> <i>jω</i> C <i>jω</i> L	
		$V = L \frac{dI}{dt}$		

- Voltage dividers
- Impedances
- RC circuit

- Voltage dividers
- Impedances
- RC circuit
- Op-amp

- Voltage dividers
- Impedances
- RC circuit
- Op-amp
- Negative feedback

- Voltage dividers
- Impedances
- RC circuit
- Op-amp
- Negative feedback
- Charge-sensitive pre-amplifiers
 - remember this slide from Timing for DAQ?

- Voltage dividers
- Impedances
- RC circuit
- Op-amp
- Negative feedback
- Charge-sensitive pre-amplifiers
- Fourier transform

- Voltage dividers
- Impedances
- RC circuit
- Op-amp
- Negative feedback
- Charge-sensitive pre-amplifiers
- Fourier transform
- Nyquist-Shannon sampling theorem
 - You will or have already seen it in Lab 8.

Art of Electronics

An example by boost-converter

V = L dl/dt — volt-second balance Vo/Vi = 1/(1- δ) But where is f, L, R, C, ...

Art of Electronics

Analog circuit is more than remembering the topologies of different circuits.

It is more about realizing the different trade-offs and balances between different elements.

"No one can gain without sacrificing something."

Front-end electronics, what is it?

Front-end electronics is a set of *analog signal conditioning circuitry* that interfaces to ADCs.

• Frequently consisting *amplifiers* and *filters*

Many interesting properties are hidden as analog information. However, analog signal is VERY susceptible to noise and disturbances, so one needs to leave dangerous analog world as quickly as possible.

Is front-end electronics needed?

- Detector response is often seen as a current source.
- Voltage is produced when it charges up "some" capacitance.
- The size of voltage signal is simply Q/C:
 - it takes about 30 eV to ionize air => 1 MeV energy deposit will produce 30000 electrons.
 - detector capacitance is on order 10 pF => $V \sim 0.5 mV$

Can you measure this signal easily?

Is front-end electronics needed?

- Detector response is often seen as a current source.
- Voltage is produced when it charges up "some" capacitance.
- The size of voltage signal is simply Q/C:
 - it takes about 30 eV to ionize air => 1 MeV energy deposit will produce 30000 electrons.
 - detector capacitance is on order 10 pF => V ~ 0.5 mV
 - \circ a 2-V, 12-bit digitizer has resolution $\sim 0.5~{
 m mV}$

The maximum signal produced by an energy deposit as large as 1 MeV produces voltage signal as large as the smallest bit of a modern 12-bit flash ADC.

Is front-end electronics always needed?

- In a scintillator, about 30 eV is needed to create a photon.
 - 1 MeV energy deposit will produce 30000 electrons.
 - secondary electron emission produces ~ 2¹² = 1000 electrons per primary electron (12-stage dynode)
 - detector capacitance is on order 10 pF => V ~ 0.5 V

Q1: Can you measure this signal easily?

Q2: What's the difference between the previous example?

Three flavors of detectors - electron

Ionization chamber

No gain

Very good linearity

Proportional CounterGeSome gainHeGood linearityNe

Geiger counter

Huge gain

Three flavors of detectors - photon

Phototube

No gain

Very good linearity

Photomultiplier tube

Some gain

Good linearity

SPAD

Huge gain

Three flavors of detectors - phonon

Transition Edge Sensor

No gain

Very good linearity

SNSPD

Huge gain

Three flavors of detectors - phonon

Transition Edge Sensor

No gain

Very good linearity

If you have any good idea, let's *INVENT THE FUTURE TOGETHER!* SNSPD

Huge gain

To amplify or not to amplify?

Some detectors come with "*intrinsic gain mechanism*", and *usually* require none or little external gain, but this is not always true.

- SiPM works in the Geiger mode, but often a preamplifier is used to amplify/improve timing characteristics
- Sometimes PMTs require lower working voltages due to
 - heat load
 - \circ breakdown
 - dark rate
 - suppress dynode afterglow

- Two resistors in series: voltage divider
- For a capacitor: $Z = 1/i\omega C$
 - a capacitor looks like infinite resistance at DC
 - \circ $\,$ a capacitor looks like short circuit at HF $\,$
- When you see a capacitor near a resistor, there is likely a time constant RC
- You cannot avoid tax and capacitance.

- Operational amplifier (op-amp) is a device that
 - \circ amplifies V₊ V₋ by a large factor called open-loop gain
 - input terminal can be viewed as a very large resistor (little current flows into)

- Operational amplifier (op-amp) is a device that
 - \circ amplifies V₊ V₋ by a large factor called open-loop gain
 - input terminal can be viewed as a very large resistor (little current flows into)
 - \circ gain drops as frequency goes up
 - gain x bandwidth is often a constant (GBW)
 - trades gain for speed

- Operational amplifier (op-amp) is a device that
 - \circ amplifies V₊ V₋ by a large factor called c
 - input terminal can be viewed as a very large resistor (little current flows into)
 - gain drops as frequency goes up
 - gain x bandwidth is often a constant (GBW)
 - trades gain for speed
- Almost always used with feedback loop

Oversimplified Rules of Op-amp

Op-amp will do whatever it can at the output terminal to

- make voltage at + and terminals equal
- *no current* flows into + and terminals

Current Shunt Feedback

What impedance will the input see?

Is it larger than or smaller than Rf?

Current Shunt Feedback

What impedance will the input see?

Is it larger than or smaller than Rf?

A: input will see *Zin = Zf/(1+A)*

If Z = R, it looks like small R.

If $Z = 1/i\omega C$, it looks like a **large C**.

A Realistic Model of Detector

• Detector response is a current source

integral => total energy

- Detector always have some capacitance
 - pn junction, cables, between pins
- The current/charge needs to go somewhere
 - \circ capacitor
 - \circ resistor

A Realistic Model of Detector

- Time constant τ = Ri x Cd
 - if *τ* is large, charge will accumulate on the capacitor and then discharges slowly through the resistor
 - Vo = Q/Cd
 - if τ is small, instantaneously discharges through the resistor
 - Vo = $i(t) \times Ri$

• Voltage Amplifier:

- current flows through a load resistor, which gets amplified
- Pro: simple, robust, easy to implement
- Con: signal limited by R_{Load}

- Trans-Impedance Amplifier:
 - current flows into virtual ground, which flows through Rf
- Pro: fast (do you see why?), can be implemented w/ COTS, controllable signal w/ Rf
- Con: oscillation, bandwidth and time constant limited by Rf

- Charge-Sensitive Amplifier:
 - current gets integrated onto feedback capacitor (remember 1/(1+A)?)
 - do you want a small Cf or a large Cf?
- Pro: output is independent of detector capacitance
- Con: needs a reset circuit to discharge the capacitor

- Preamplifiers are not necessarily implemented with op-amps.
 - It may come in discrete components
 - Cascode / common-base amplifiers still very often
- Or it may come in ASICs in demanding/large scale applications.

Shape or not to Shape - What is your data?

 Sometimes waveform digitization is preferred because it keeps the maximum possible information => VSA/TIA

Shape or not to Shape - What is your data?

- In other cases, you simply want a single number representing energy/time/position etc.
 - signal needs to be integrated (CSP/CSA)
 - the output waveform is not the most friendly to work with

What is Pulse Shaping?

- Intuitively, you want the pulse to return to baseline asap.
- Fundamentally, signal and noise are both represented by some "spectrum" in the Fourier space
- To improve SNR, frequencies outside ROI should be filtered.

What is Pulse Shaping?

- Hybrid circuitry that encodes the analog value into a digital value
- Important parameters:
 - sampling frequency
 - resolution/bit-depth

• There also exists a trade-off

Can I substitute MCU for ADC?

- ATMEGA328P: ~ \$2.8
 - 6-channel, 12-bit, 15 ksps

Can I substitute MCU for ADC?

- ATMEGA328P: ~ \$2.8
 - 6-channel, 12-bit, 15 ksps
- Searching for ADCs with similar specs on Digikey...

R O	and the second	LTC2309CUF#TRPBF IC ADC 12BIT SAR 24QFN Analog Devices Inc.	3,604 In Stock	1 : \$9.28000 Cut Tape (CT) 2,500 : \$5.06818 Tape & Reel (TR)	K	TUTTO	LTC2309CF#PBF IC ADC 12BIT SAR 20TSSOP Analog Devices Inc.	1,687 In Stock	1 : \$6.52000 Tube
R	and the second	LTC2309IUF#PBF IC ADC 12BIT SAR 24QFN Analog Devices Inc.	8,645 In Stock	1 : \$11.11000 Tube	R	TUTTO	LTC2309IF#PBF IC ADC 12BIT SAR 20TSSOP Analog Devices Inc.	3,682 In Stock	1 : \$11.11000 Tube
E D	TUTTO	LTC2309HF#PBF IC ADC 12BIT SAR 20TSSOP Analog Devices Inc.	899 In Stock	1: \$11.73000 Tube	× Ø	and the second	LTC2309IUF#TRPBF IC ADC 12BIT SAR 24QFN Analog Devices Inc.	1,728 In Stock	1 : \$11.11000 Cut Tape (CT) 2,500 : \$6.06606 Tape & Reel (TR)

- Hybrid circuitry that encodes the analog value into a digital value
- Important parameters:
 - sampling frequency
 - resolution/bit-depth
 - SNR = 6.02N + 1.76dB
 - ENOB
- There also exists a trade-off

- Hybrid circuitry that encodes the analog value into a digital value
- Important parameters:
 - sampling frequency
 - resolution/bit-depth
 - SNR = 6.02N + 1.76dB
 - ENOB
- There also exists a trade-off

6.02 x 12 + 1.76 = 74 !

Microcontroller will give you a result whenever asked.

It is great for turning lights on and off.

But don't use it to claim new physics.

- Flash ADC:
 - fastest
 - difficult to scale/increase resolution
 - power-hungry
- Mostly ~100s MHz to a few GHz
- Warning: new ADC architectures are emerging!
 - Radio industry has rolled out 12-bit, 10-GHz folding ADC (ADC12DJ5200RF).

- SAR ADC (Suc. Approx. Register):
 - medium speed
 - medium resolution
 - power-efficient, small-form factor

- ADCs in microcontrollers are mostly this type.
- Warning: an ADC not comparable to that of a MCU will cost 10+ times more.

- Sigma-Delta:
 - \circ slowest
 - best resolution
 - complex not power-efficient

How does Sigma-Delta achieve this?

 It is mostly used where precise information about a slowly-varying signal is needed

- Sigma-Delta:
 - \circ slowest
 - best resolution
 - complex
 not power-efficient
- It is mostly used where precise information about a slowly-varying signal is needed.

Sampling and Aliasing

"A sine wave can be perfectly reconstructed if it is sampled at at least twice its frequency."

Aliasing refers to a high-frequency signal appearing to be a lower frequency when undersampled.

Q1: does this always happen? Q2: why does this happen?

What is Digitization?

Digitization = $f(t) \times delta \ comb$

FT of delta-comb is another delta-comb.

In freq. domain, convoluting with another delta-comb

Filter before digitize!

Is Aliasing Bad?

Aliasing can help sample a higher frequency signal using an ADC with less sampling rate.

How is this achieved? => a technique called "undersampling".

The only requirement is Nyquist frequency larger than the *bandwidth* of the signal.

The signal needs *bandpass-filter*.

Summary

- Analog/front-end electronics is often a balance between gain and bandwidth.
- Three commonly used topologies for preamplifiers, each with different characteristics.
- Sometimes waveform digitization is performed, sometimes the signal is integrated and then filtered for best SNR.
- Use a dedicated ADC!
- In sampling, it is bandwidth that really matters, not the absolute sampling rate and signal frequency.