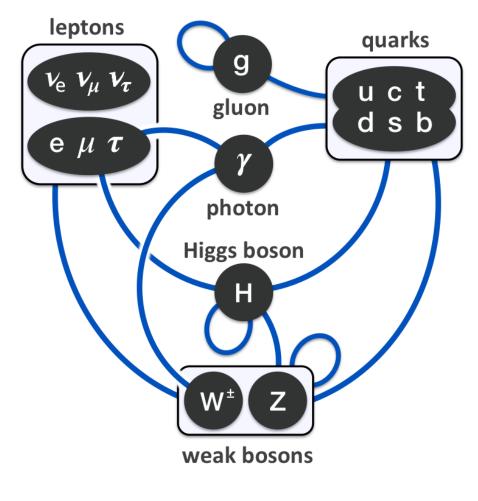


$t\bar{t}H$ and tH Production with $H \rightarrow b\bar{b}$ at the CMS Experiment


ABHISEK DATTA

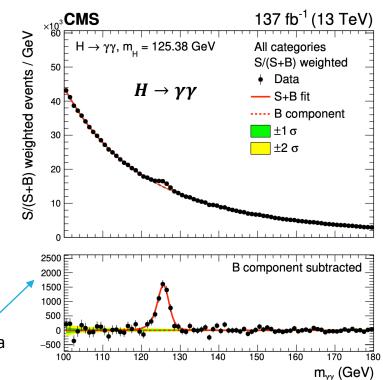
UNIVERSITY OF CALIFORNIA, LOS ANGELES (UCLA)

NOVEMBER 14, 2023

November 14, 2023

The Standard Model and the Higgs Boson

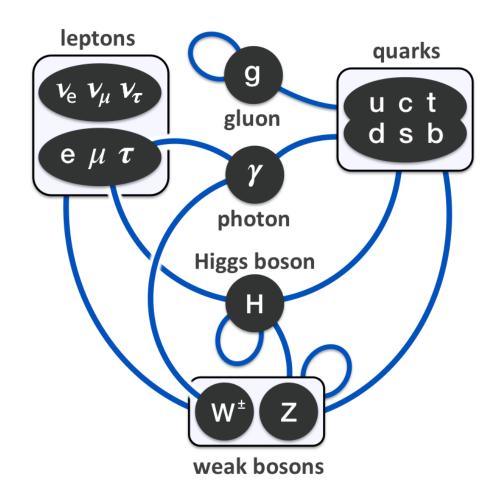
- In the Standard Model, the Higgs boson responsible for generating mass of:
 - Vector bosons via electroweak symmetry breaking
 - Fermions via Yukawa coupling (mass ∝ coupling strength)


Higgs boson discovery in 2012 by CMS¹ and ATLAS²

- $H \rightarrow \gamma \gamma$
- $H \to ZZ^* \to 4l$

Observed mass of Higgs boson ~125 GeV

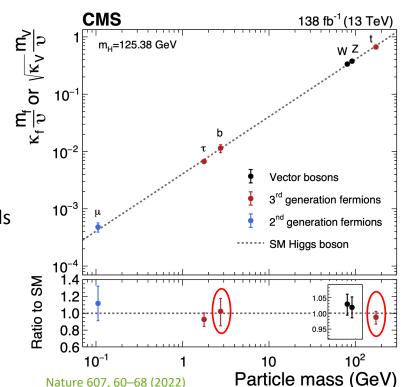
¹CMS : <u>Phys. Lett. B 716 (2012) 30–61</u> ²ATLAS : <u>Physics Letters B 716 (2012) 1–29</u>


Latest results using Full Run-2 data J. High Energ. Phys. 2021, 27 (2021)

https://commons.wikimedia.org/wiki/File:Elementary_particle_interactions_in_the_Standard_Model.png

November 14, 2023

The Standard Model and the Higgs Boson



- In the Standard Model, the Higgs boson responsible for generating mass of:
 - Vector bosons via electroweak symmetry breaking
 - Fermions via Yukawa coupling (mass ∝ coupling strength)

Latest measurements of coupling strengths between the Higgs boson and vector bosons & fermions:

 κ_b and κ_t : many BSM models can lead to modifications of Higgs boson couplings to fermions

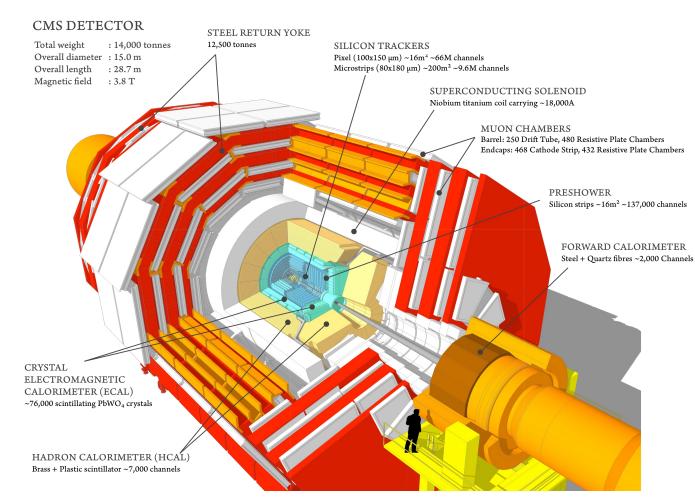
 \rightarrow higher precision needed

https://commons.wikimedia.org/wiki/File:Elementary_particle_interactions_in_the_Standard_Model.png

Large Hadron Collider (LHC)

A proton-proton (also heavy ion) collider lying in a 27 km tunnel below France and Switzerland

Data collected in Run-2 (2016-2018):

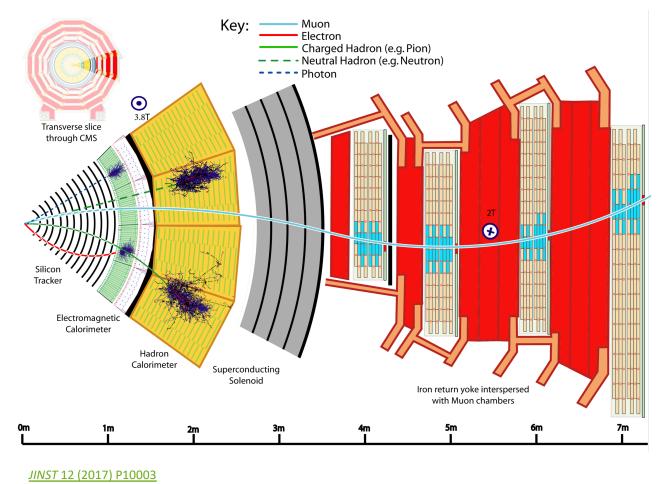

- Center-of-mass energy $\sqrt{s} = 13 \text{ TeV}$
- Collision rate of 40 MHz
- Integrated luminosity = 138 fb^{-1}

4 experiments at the LHC :

- CMS (Compact Muon Solenoid)
- ATLAS (A Toroidal LHC ApparatuS) •
- ALICE (A Large Ion Collider Experiment)
 - LHCb (LHC-beauty)

November 14, 2023

Compact Muon Solenoid (CMS)


CMS detector in the cavern at CERN

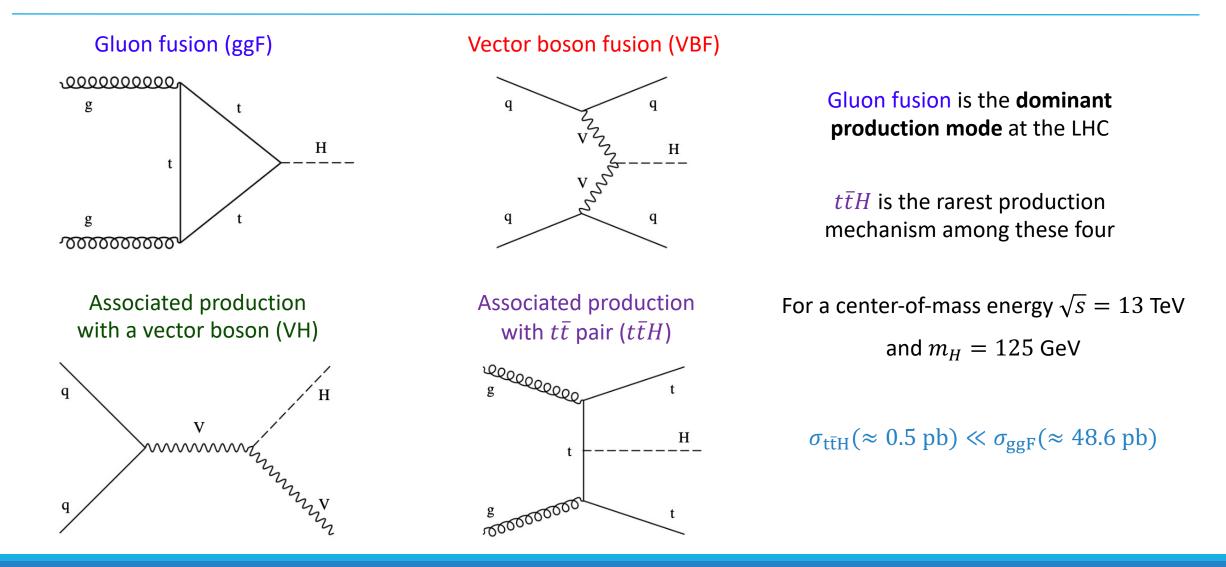
https://cms.cern/detector

November 14, 2023

Particle and Event Reconstruction

Particle reconstruction using particle-flow (PF) technique

Different physics-objects identified:


- Electrons reconstructed using tracks (from tracker) and energy deposits from ECAL
- Photons reconstructed from energy deposits in ECAL
- Muons reconstructed matching tracks from tracker and muon chambers
- Jets (of quarks and gluons) clustered from tracks and deposits in ECAL and HCAL
 - Jets originating from b-quarks b-tagging
- Missing momentum (p_T^{miss}) from momentum imbalance in the transverse plane (e.g. neutrinos)

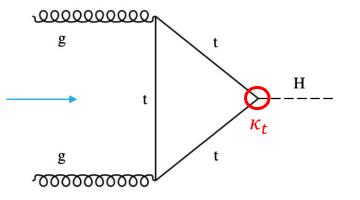
Two Levels of Triggers:

- Level-1: hardware level, reduces rate from 40 MHz to 100 kHz
- High Level Trigger (HLT): software level, further reduces to 1 kHz

November 14, 2023

Higgs Boson Production at the LHC

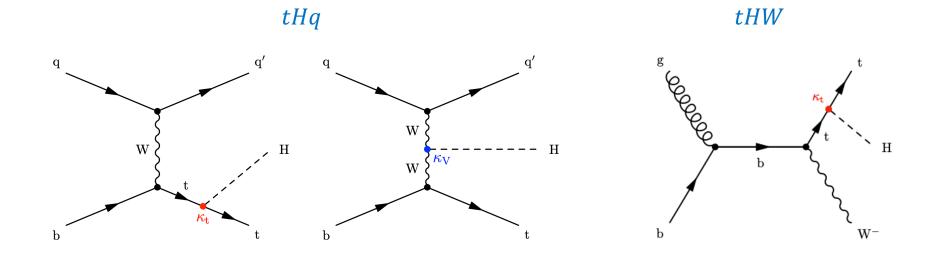
November 14, 2023


Why $t\bar{t}H$ and tH?

• $t\bar{t}H$ is the **best direct probe** of the **Top-Higgs coupling** (κ_t) at **tree level**

 $\sigma_{\mathrm{t\bar{t}H}} pprox 0.503~\mathrm{pb}$

Possible to measure Top-Higgs coupling from gluon fusion, but only under the assumption of no BSM contributions to the top-loop



Observing a $t\bar{t}H$ production rate different from the Standard Model prediction can indicate the presence of BSM physics

BSM: Beyond the Standard Model

Why $t\bar{t}H$ and tH?

- $t\bar{t}H$ is the **best direct probe** of the **Top-Higgs coupling** (κ_t) at **tree level**
- tH provides additional sensitivity to sign of κ_t and κ_V due to interference terms (while $t\bar{t}H$ only sensitive to κ_t^2)
- Also sensitive to *CP-odd* contribution in **Top-Higgs Yukawa coupling**

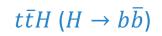
 $\sigma_{tHq} pprox 0.074 \ {
m pb}$ $\sigma_{tHW} pprox 0.015 \ {
m pb}$

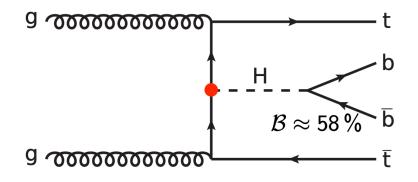
Cross-section even smaller than $t\bar{t}H$ in SM

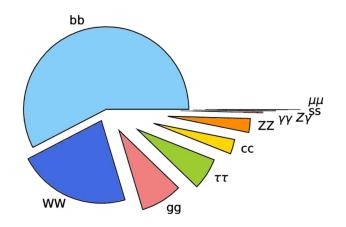
$t\bar{t}H$ and tH with $H \rightarrow b\bar{b}$

• $t\bar{t}H$ is the **best direct probe** of the **Top-Higgs coupling** (κ_t) at **tree level**

Many possible decay channels for the Higgs boson:

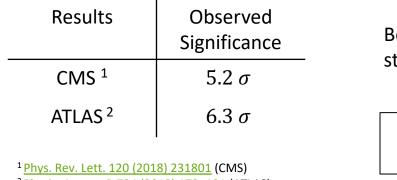

- $H \to b\overline{b}$
- $H \to WW^*, \tau\tau, ZZ^*$
- $H \rightarrow \gamma \gamma$


$H \rightarrow b\overline{b}$ final state chosen for this analysis:


- Largest branching fraction of 58%
- Fully reconstructable Higgs boson final state
- All Higgs-fermion (even 3^{rd} generation t and b) vertices

Goal: Measurement of the $t\bar{t}H$ production cross-section w.r.t. SM prediction i.e. the signal strength $\mu_{t\bar{t}H}$

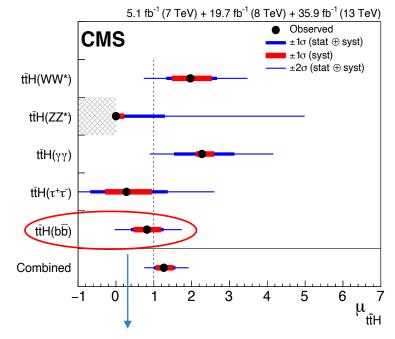
$$\mu_{t\bar{t}H} = \frac{\sigma(t\bar{t}H)}{\sigma_{SM}(t\bar{t}H)} \cdot \frac{\mathcal{B}(H \to b\bar{b})}{\mathcal{B}_{SM}(H \to b\bar{b})}$$



November 14, 2023

Previous Results on $t\bar{t}H$ and tH

 $t\bar{t}H$ observation by the combination of all decay channels at both CMS and ATLAS in 2018


Using partial Run-2 ($\sqrt{s} = 13$ TeV) + Run-1 ($\sqrt{s} = 7$ and 8 TeV) data :

² <u>Physics Letters B 784 (2018) 173–191 (ATLAS)</u>

Best-fit signal strength from CMS: $\mu_{t\bar{t}H} = 1.26^{+0.31}_{-0.26}$

 $t\bar{t}H$ signal strength consistent with SM expectations

 $t\bar{t}H(H \rightarrow b\bar{b})$ results using 2016 data

<u>J. High Energ. Phys. **2019**, 26 (2019)</u> J. High Energ. Phys. 2018, 101 (2018)

Previous result for $tH (H \rightarrow b\overline{b})$ production from CMS:

Upper Limits using 2016 data :

- SM (Standard Model) scenario : 89.5 $\times \sigma_{SM}$ (41.4 exp.)
- ITC (Inverted Top Coupling) scenario : 5.83 $\times \sigma_{ITC}$ (2.94 exp.)

November 14, 2023

•

Topic of the Week, LPC, Fermilab

Phys. Rev. D99 (2019) 092005

Observation from CMS¹

$t\bar{t}H(H \rightarrow b\bar{b})$ Using Full Run-2 Data

Following the $t\bar{t}H$ discovery, the focus is now on more precise measurements of $t\bar{t}H$ production in each decay channel

Focus of

today's talk

For the $t\bar{t}H(H \rightarrow b\bar{b})$ channel, using full Run-2 (2016 – 2018 : 138 fb⁻¹) data

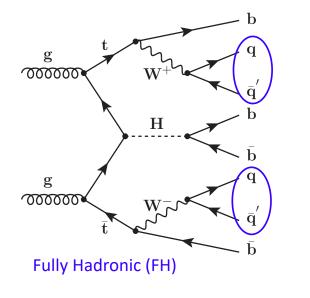
Published in 2023 (CMS-PAS-HIG-19-011) —

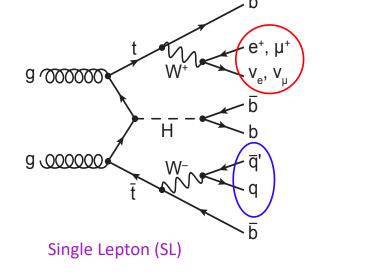
Paper in preparation

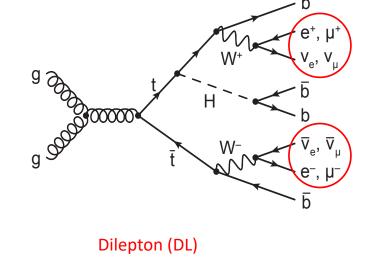
Major improvements in the analysis:

- Better modeling of the major irreducible $t\bar{t} + b\bar{b}$ background for $t\bar{t}H(H \rightarrow b\bar{b})$ with improved simulation
- Refined neural network classifiers (for signal to background discrimination)
- New triggers to increase signal efficiency in the different final states
- Better identification of jets arising from b-quarks from both improved algorithms and also upgrades in the pixel tracking detector of CMS
- Additional interpretations including differential measurements and coupling constants

Preliminary result using 2016 + 2017 data only: **published in 2019** (<u>CMS-PAS-HIG-18-030</u>)


Final States Signatures


Different final states depending on $t\bar{t}$ decay :


- Fully Hadronic (FH)
- Single Lepton (SL) : e , μ
- Dilepton (DL) : *ee* , *eμ* , *μμ*

Event Selection requires :

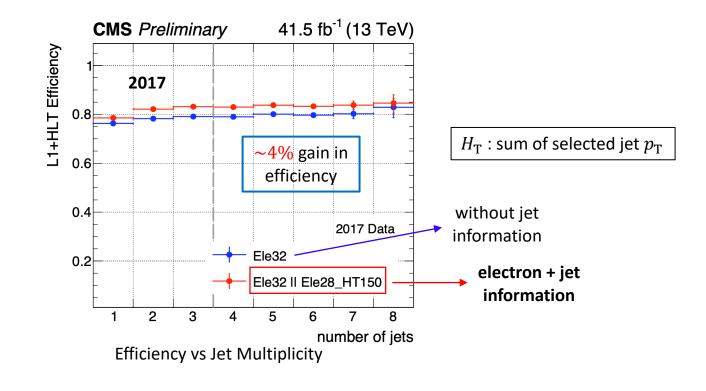
- 0/1/2 leptons depending on the channel
- Multiple jets (including b-tagged jets)

Important role in final state selection:

- Triggers
- b-tagging

Worked on improving both in the past during my PhD:

- Developed trigger algorithms for the single lepton channel
- Contributed to the excellent operation of the pixel detector crucial for b-tagging


November 14, 2023

Development of Single Electron Triggers

Developed new Single Electron triggers for 2017 and 2018 data taking for the $t\bar{t}H(H \rightarrow b\bar{b})$ analysis :

- Used **both** electron and jet information in the final states to design new triggers
- Allows keeping the $p_{\rm T}$ threshold low for the electron
- Retains signal efficiency at higher luminosity with negligible increase in data rates

This trigger also **used** in other Higgs and Top analyses

Results public : <u>CMS DP -2019/026</u>

Candidate $t\bar{t}H(H \rightarrow b\bar{b})$ Events in CMS

Candidate $t\bar{t}H(H \rightarrow b\bar{b})$ events after reconstruction and selections

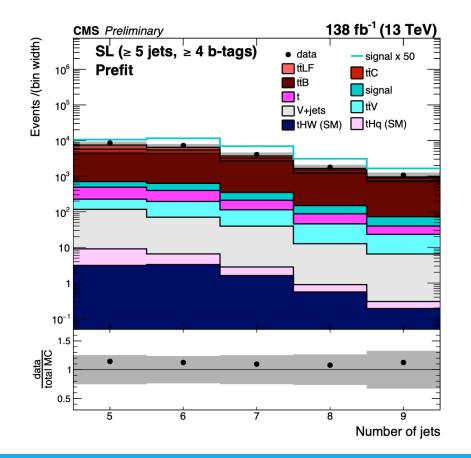
Single Lepton (SL) Channel

Dilepton (DL) Channel

CMS Experiment at LHC, CERN

Run/Event: 305840 / 1047490792

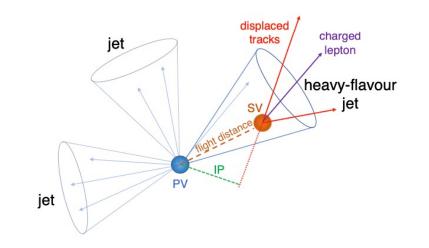
Lumi section: 575


Data recorded: Sun Oct 29 20:22:01 2017 CET

СM

November 14, 2023

Challenging Final State


- Very busy final state with lots of jets and b-jets
- Small signal ($t\bar{t}H$ and tH) cross-section compared to large irreducible backgrounds ($t\bar{t} + b\bar{b}$)

Identifying jets originating from b-quarks essential

b-tagging algorithms based on:

- Long lifetime of B-hadrons
- Secondary vertex displaced (~0.5 mm) from the interaction point

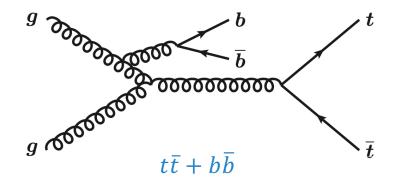
Full Run-2 analysis uses improved DeepJet b-tagging algorithm:

- Improves b-tagging efficiency by 5-10% at same mis-tag probability
- Operate at 75-80% signal efficiency, 1.5-2% mis-tag probability for light-flavored jets

More details <u>here</u> and <u>here</u>

November 14, 2023

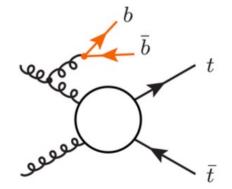
Major Background Processes


- $t\bar{t}$ +jets (all channels):
- Modeled from simulation
- Divided into three sources depending on flavor of additional particle-level jets:
 - $t\bar{t} + B$: >= 1 additional b-jet irreducible background (mostly $t\bar{t} + b\bar{b}$):
 - Modeling challenging due to complex multi-parton states and multiple, very different scales $(t\bar{t}, b\bar{b})$
 - Large modeling uncertainties, crucial for $t\bar{t}H(b\bar{b})$ measurement
 - Current measurements $\sim 20-40\%$ larger than prediction
 - $t\bar{t} + C$: >= 1 additional c-jet but no b-jet
 - $t\bar{t} + LF$: all other events (LF: light flavor)

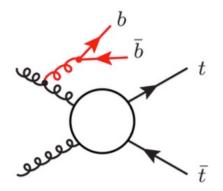
QCD Multijet (Fully Hadronic channel):

- Dedicated background rejection
- Data-driven background estimation using Control Regions

Minor backgrounds (all channels):


- Single-top, diboson, $t\bar{t} + V$, V +jets
- Modeled from simulation

November 14, 2023


$t\bar{t} + B$ Background Model

One of the major improvements of the Full Run-2 analysis is the improved modeling of the $t\bar{t} + B$ irreducible background

In earlier versions of the analysis (including the 2016+2017 published analysis), $t\bar{t} + B$ processes described by:

- $t\bar{t}$ +jet Matrix Element (ME) at NLO (5FS): additional b-jets from parton shower (PS)
- Subject to PS and large/not well-defined uncertainties of PS tuning parameters

In the full Run-2 analysis, $t\bar{t} + B$ processes described by:

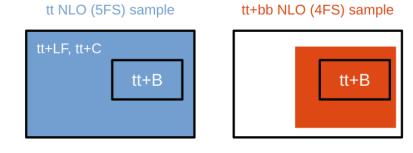
- $t\bar{t}b\bar{b}$ ME at NLO (4FS)*: additional b-jets from ME
- NLO+PS accuracy for $t\bar{t}$ + 1 and 2 b-jet observables

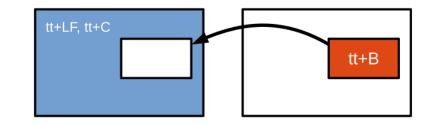
Theoretically preferred option for $t\bar{t} + B$ modeling: improvement (w.r.t. to $t\bar{t}$ 5FS) in event kinematics 4FS: 4 flavor scheme 5FS: 5 flavor scheme

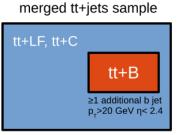
NLO: Next to Leading Order

* Eur. Phys. J. C 78 (2018) 502

November 14, 2023

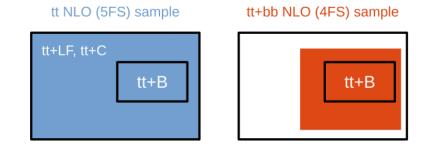

$t\bar{t} + B$ Background Model

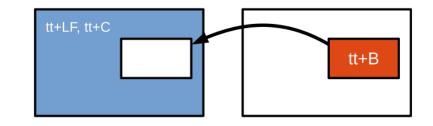

One of the major improvements of the Full Run-2 analysis is the improved modeling of the $t\bar{t} + B$ irreducible background

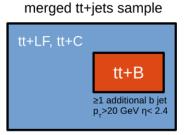

- Based on theory recommendations, new $t\bar{t}b\bar{b}$ simulation (4FS):
 - NLO accuracy simulation using Powheg-Box-Res (<u>Jezo et al</u>) with OpenLoops (<u>Buccioni et al</u>) in the 4FS

New Merged $t\bar{t}$ + Jets Background Model used in the Full Run-2 Analysis:

- $t\bar{t} + C, t\bar{t} + LF$ taken from $t\bar{t}$ NLO (5FS) sample
 - Overall $t\bar{t}$ + Jets normalization: Inclusive $t\bar{t}$ + Jets cross-section (NNLO+NNLL)
- $t\bar{t} + B$ taken from $t\bar{t}b\bar{b}$ NLO (4FS) sample
 - $t\bar{t} + B$ component normalized to $t\bar{t}$ NLO (5FS) MC prediction
 - $t\bar{t} + B$ and $t\bar{t} + C$ normalizations freely floating in the fit


Entire tt+jets phase-space


$t\bar{t} + B$ Background Model


One of the major improvements of the Full Run-2 analysis is the improved modeling of the $t\bar{t} + B$ irreducible background

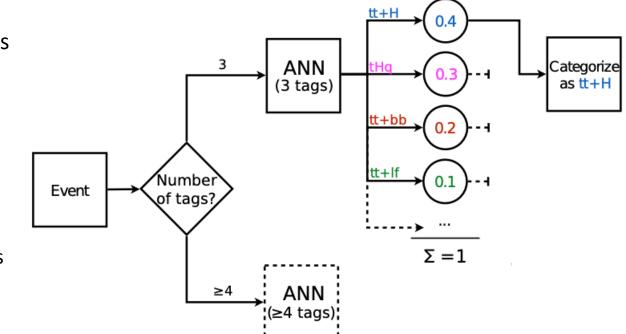
Background model carefully validated:

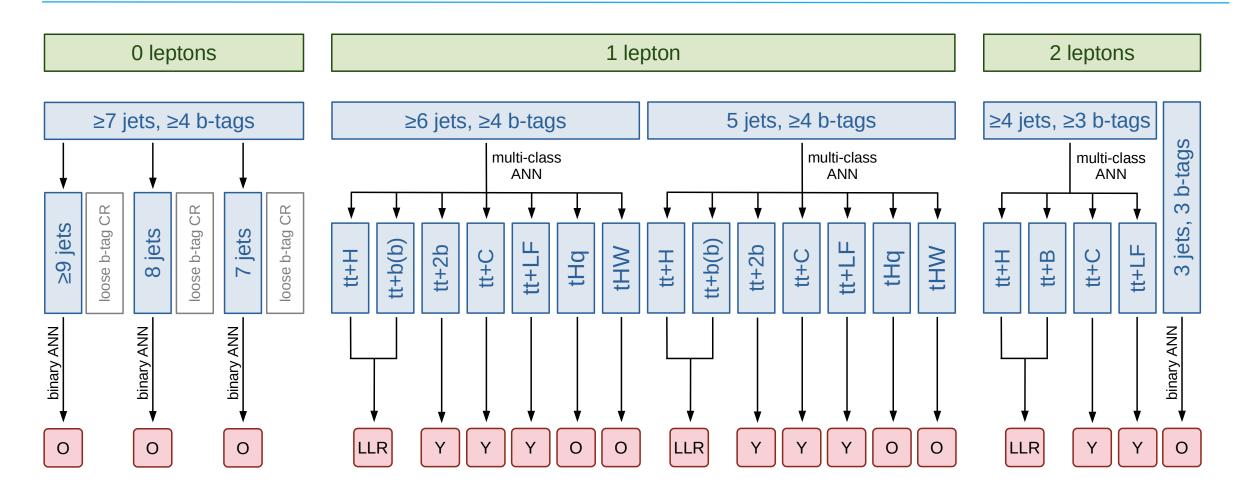
- Good description of event kinematics on using $t\bar{t}b\bar{b}$ NLO (4FS)
- Dedicated modeling uncertainties decorrelated between $t\bar{t} + B$ and other $t\bar{t}$ events
 - Pulls and impacts well understood
- Goodness-of-fit tests
- Bias tests on the signal strength
 - Test for potentially mismodelled $t\bar{t} + B$ background using toy data
 - Fit model was found to be robust against potential deviations of the $t\bar{t} + B$ in data from the nominal prediction

Entire tt+jets phase-space

* Eur. Phys. J. C 78 (2018) 502

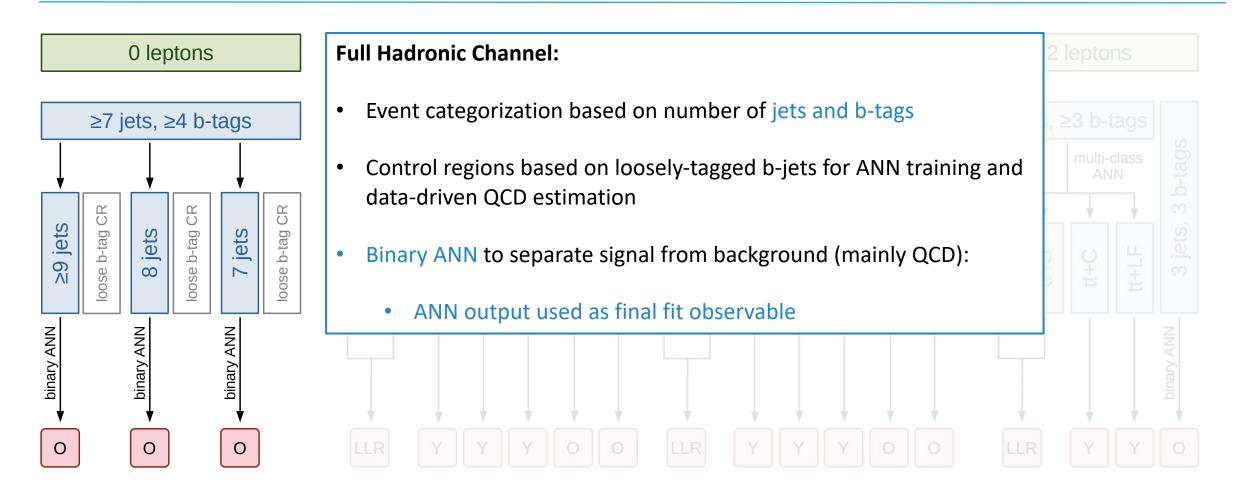
November 14, 2023

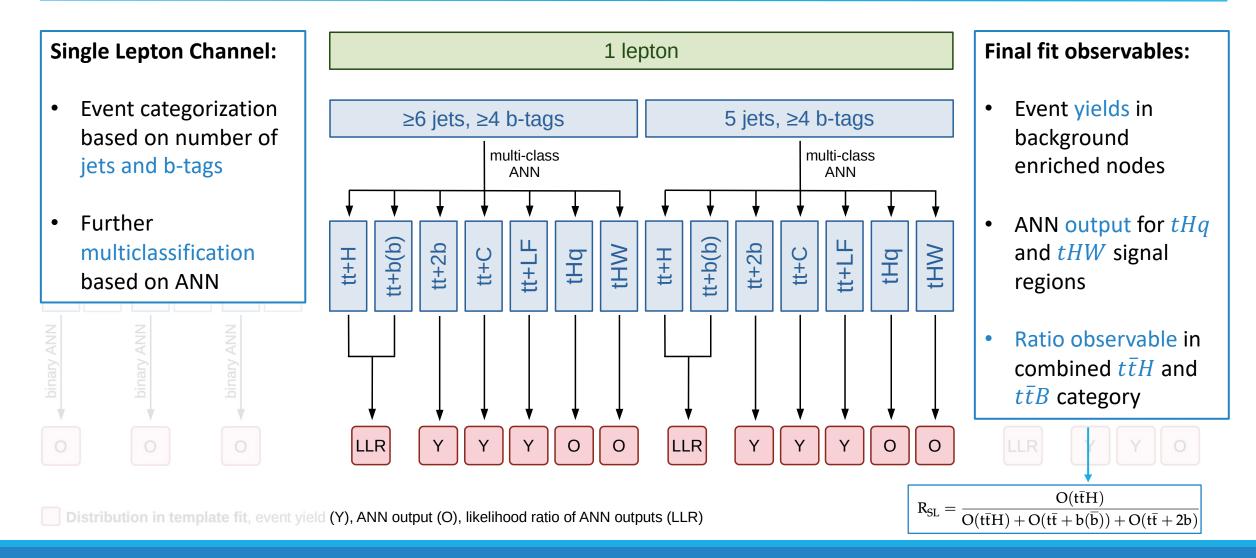

Analysis Strategy


The analysis strategy relies on Event Categorization and Artificial Neural Networks (ANN)

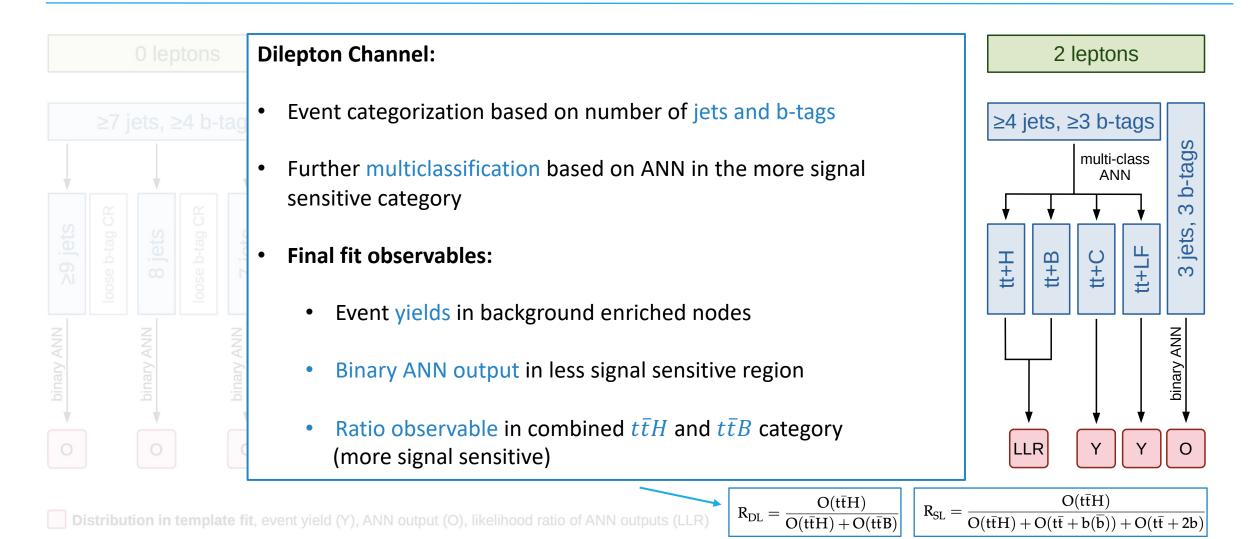
- Event categorization to form signal and control regions (to constrain background):
 - Based on jet and b-tag multiplicity
 - Based on multi-class ANNs
- Artificial Neural Networks (ANN):
 - Trained to separate signal from dominant background
 - Binary or multi-class depending on channel/category
 - Used for event categorization and as final discriminants

ANN Training:

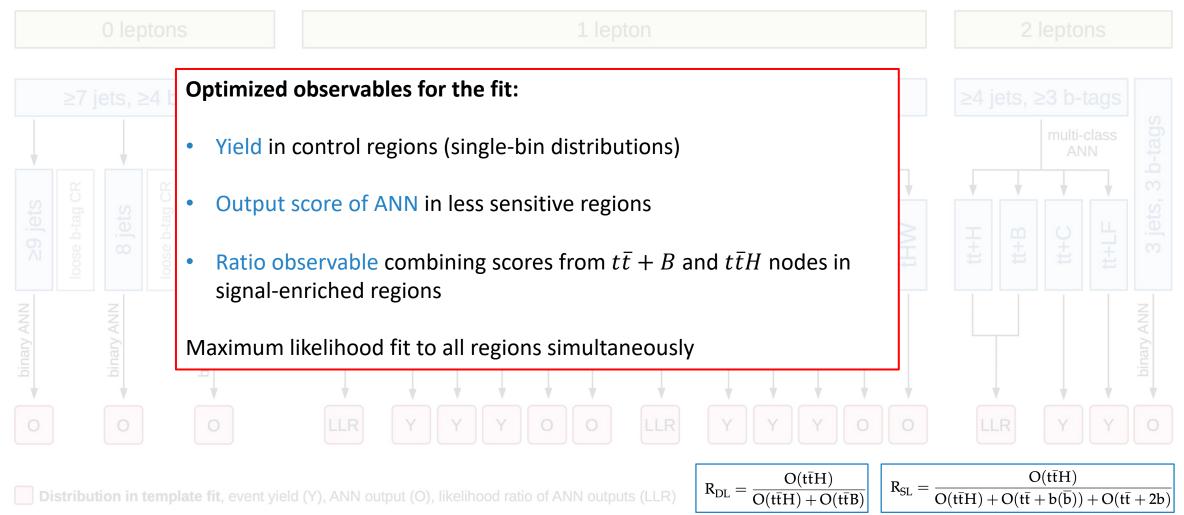

- Trained on several kinematic variables
 - Modelling of input variables validated with goodness-of-fit tests
- Usually trained on Monte-Carlo, except QCD (trained in a QCD enriched control region)
- One ANN training valid for all years in each channel and category


Distribution in template fit, event yield (Y), ANN output (O), likelihood ratio of ANN outputs (LLR)

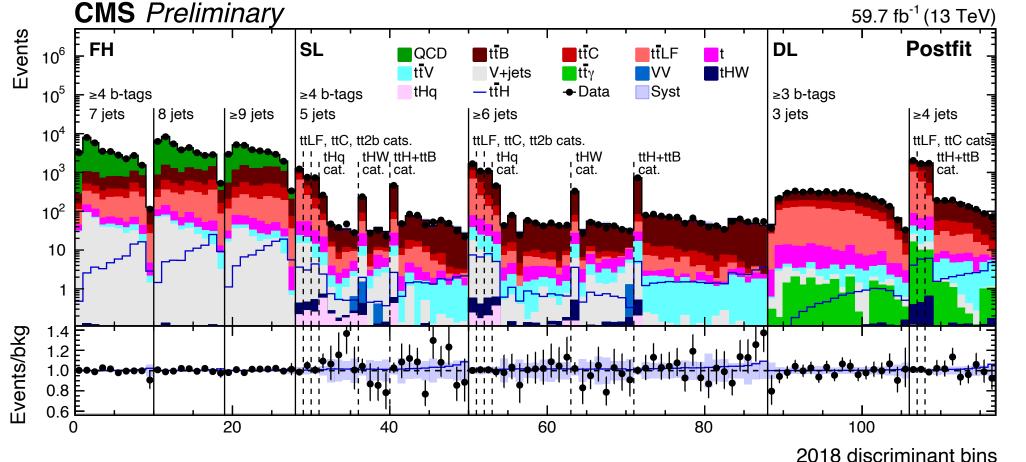
November 14, 2023



Distribution in template fit, event yield (Y), ANN output (O), likelihood ratio of ANN outputs (LLR)


November 14, 2023

November 14, 2023


November 14, 2023

November 14, 2023

Inclusive $t\bar{t}H$ Results: Postfit Distributions

Postfit distributions from 2018 (2016 and 2017 in backup):

Expect a **total** of $\sim 1100 \ t\bar{t}H$ events

Fitted observables in this plot are the event yields, ANN outputs and ratio observables

November 14, 2023

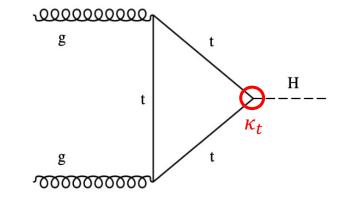
Inclusive $t\bar{t}H$ Results: Signal Strength

Full Run-2 Results

CMS Preliminary					138 fb ⁻¹ (13 TeV)		
		1 1 1	μ	tot	stat	syst	
FH	H	H-1	0.84	+0.49 -0.46	+0.25 -0.25	+0.42 -0.39	
SL	H		0.46	+0.33 -0.33	+0.21 -0.21	+0.25 -0.26	
DL	H-■-H	- - - - - - - - - - - - - - - - - - -	-0.23	+0.41 -0.42	+0.31 -0.31	+0.26 -0.29	
2016	H		0.49	+0.42 -0.40	+0.25 -0.25	+0.33 -0.32	
2017	H+100+1		0.32	+0.38 -0.37	+0.24 -0.24	+0.29 -0.28	
2018	H		0.23	+0.34 -0.34	+0.21 -0.21	+0.27 -0.27	
Combined	H		0.33	+0.26 -0.26	+0.17 -0.16	+0.21 -0.21	
	0	· · · · ·	5		· · ·	10	
$\hat{\mu} = \hat{\sigma} / \sigma_{SM}$							

Uncertainties are correlated among channels and years

$t\bar{t}H$ signal strength:


- $\mu_{t\bar{t}H} = 0.33 \pm 0.26$, 1.3 σ obs. (4.1 σ exp.) significance
- SM compatibility p-value: 2% (2.4 σ)
- Compatibility to 2016 CMS publication (SL+DL): 41% (0.8 σ)

Agreement with ATLAS Full Run-2 result:

• $\mu_{t\bar{t}H} = 0.35 + 0.35 - 0.34$

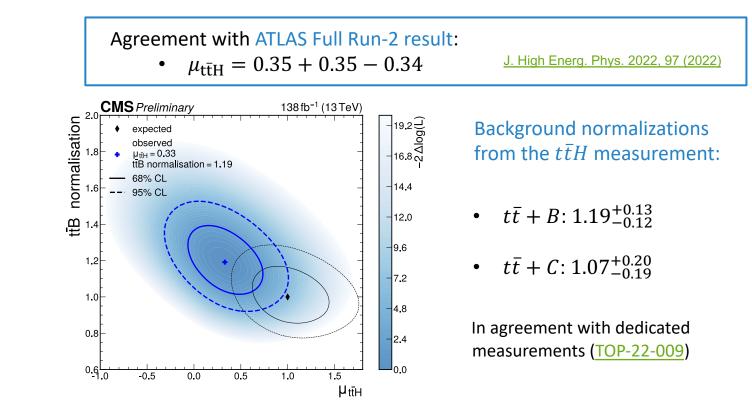
J. High Energ. Phys. 2022, 97 (2022)

This can potentially indicate towards a smaller value of the Top-Higgs Yukawa coupling compared to the SM expectation

Although, the measured gluon fusion cross-section is in agreement with SM, there is a possibility of contributions to the loop from BSM physics which can compensate for the lower value of κ_t

November 14, 2023

Inclusive $t\bar{t}H$ Results: Signal Strength

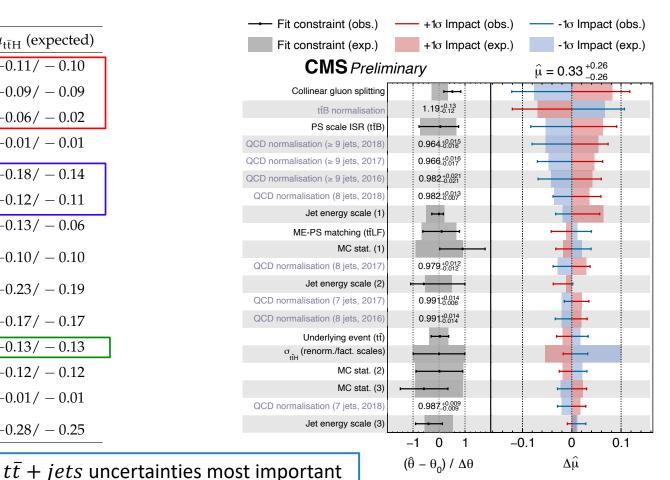

Full Run-2 Results

CMS Preliminary					138 fb ⁻¹ (13 TeV)		
			μ	tot	stat	syst	
FH	H	H -1	0.84	+0.49 -0.46	+0.25 -0.25	+0.42 -0.39	
SL	H		0.46	+0.33 -0.33	+0.21 -0.21	+0.25 -0.26	
DL	H-■-H		-0.23	+0.41 -0.42	+0.31 -0.31	+0.26 -0.29	
2016	H 		0.49	+0.42 -0.40	+0.25 -0.25	+0.33 -0.32	
2017	HEH		0.32	+0.38 -0.37	+0.24 -0.24	+0.29 -0.28	
2018	HEH		0.23	+0.34 -0.34	+0.21 -0.21	+0.27 -0.27	
Combined	H		0.33	+0.26 -0.26	+0.17 -0.16	+0.21 -0.21	
	0		5			10	
					ĥ	$\dot{a} = \hat{\sigma} / \sigma_{SN}$	

Uncertainties are correlated among channels and years

$t\bar{t}H$ signal strength:

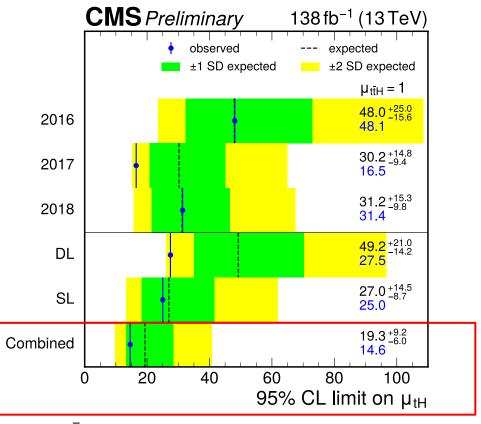
- $\mu_{t\bar{t}H} = 0.33 \pm 0.26$, 1.3 σ obs. (4.1 σ exp.) significance
- SM compatibility p-value: 2% (2.4 σ)
- Compatibility to 2016 CMS publication (SL+DL): 41% (0.8 σ)


November 14, 2023

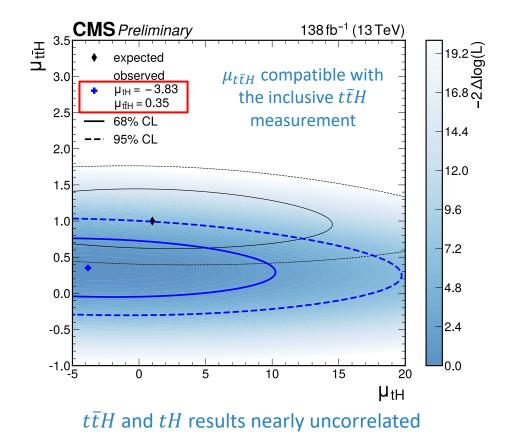
Inclusive $t\bar{t}H$ Results: Systematic Uncertainties

Major sources of systematic uncertainties:

Uncertainty source	$\Delta \mu_{t\bar{t}H}$ (observed)	$\Delta \mu_{t\bar{t}H}$ (expected)	
Total experimental	+0.10/-0.10	+0.11/-0.10	
jet energy scale and resolution	+0.08/-0.07	+0.09/-0.09	
b tagging	+0.07/-0.06	+0.06/-0.02	
luminosity	+0.02/-0.02	+0.01/-0.01	
Total theory	+0.16/-0.16	+0.18 / -0.14	
t $ar{{ m t}}+{ m jets}$ background	+0.15/-0.16	+0.12/-0.11	
signal modelling	+0.06/-0.01	+0.13 / -0.06	
Size of the simulated event samples	+0.13/-0.12	+0.10/-0.10	
Total systematic	+0.20/-0.21	+0.23/-0.19	
Statistical	+0.17/-0.16	+0.17/-0.17	
background normalisation	+0.13/-0.13	+0.13/-0.13	
ttB and ttC normalisation	+0.12/-0.12	+0.12/-0.12	
QCD normalisation	+0.01/-0.01	+0.01/-0.01	
Total	+0.26/-0.26	+0.28/-0.25	


Impacts and pulls of systematic uncertainties:

November 14, 2023


Inclusive tH Results: Signal Strength

Expected and observed 95% CL upper limits on μ_{tH} for individual years, SL channel, DL channel and combination of all channels

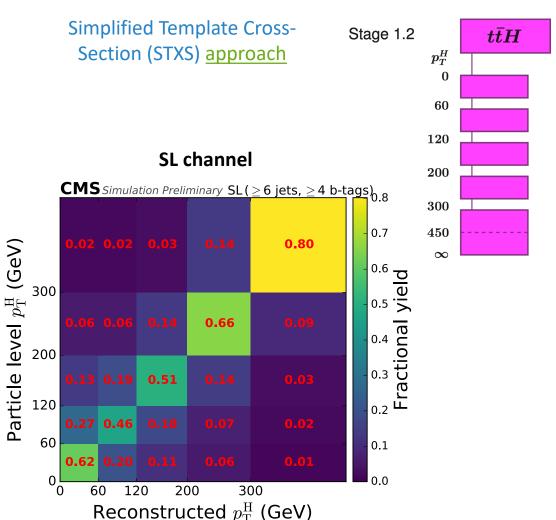
 $t\bar{t}H$ treated as background and kept at SM prediction

Simultaneous measurement of μ_{tH} and $\mu_{t\bar{t}H}$

November 14, 2023

$t\bar{t}H$ Measurement in Higgs Boson p_{T} Bins

 $t\bar{t}H$ cross-section measured in 5 Higgs boson $p_{\rm T}$ ($p_{\rm T}^{\rm H}$) bins:


• $t\bar{t}H$ signal split using generator level p_{T}^{H}

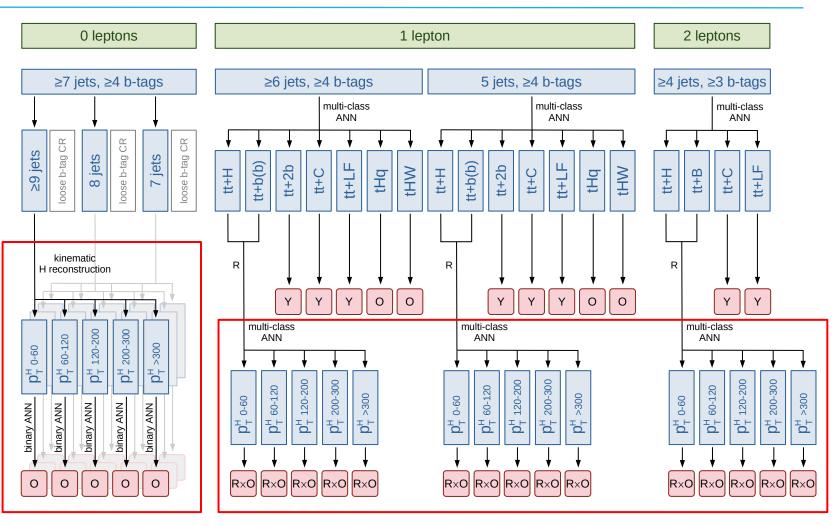
Perform reconstruction of the Higgs boson $p_{
m T}$ bins:

- In FH channel: χ^2 reconstruction of the Higgs from b-jet pairs
- In SL and DL channels: multi-class ANN trained on $t\bar{t}H(b\bar{b})$

Assignment efficiency between 35-85%, depending on p_T bin and category

Events in the signal-enriched regions from the inclusive categorization further divided in reconstructed $p_{\rm T}^{\rm H}$ nodes

$t\bar{t}H$ Measurement in Higgs Boson p_{T} Bins

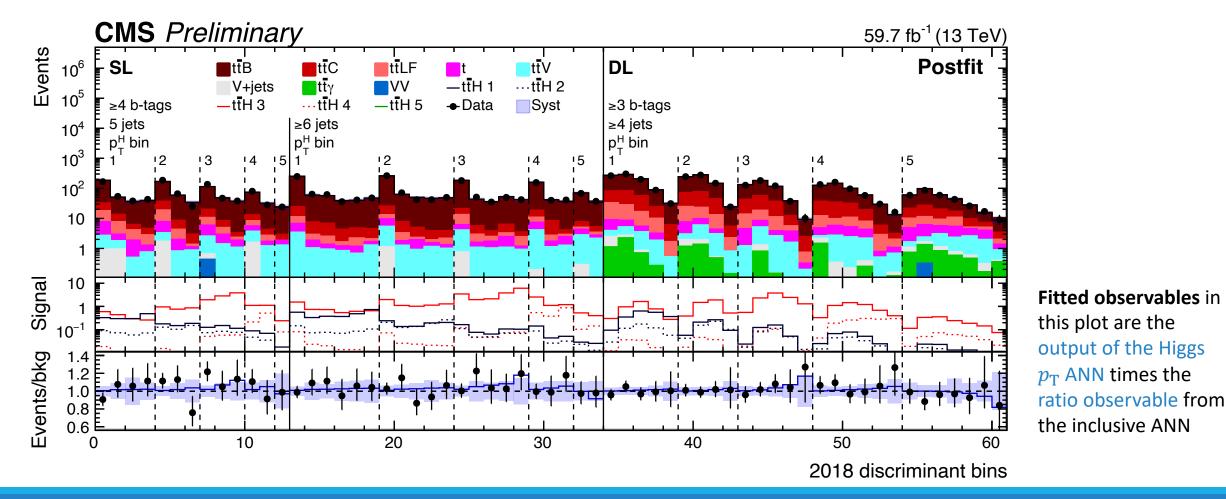

5 independent signal templates (for each generator-level $p_{\rm T}^{\rm H}$) fit simultaneous in a 5D fit:

 In each signal region node, contributions taken from all p^H_T bins

 to consider migration between nodes due to resolution effects

Fitted observable is the output of the Higgs $p_{\rm T}$ ANN times the ratio observable from the inclusive ANN

The DL 3 jets, 3 b-tags category is not included – negligible sensitivity to this measurement

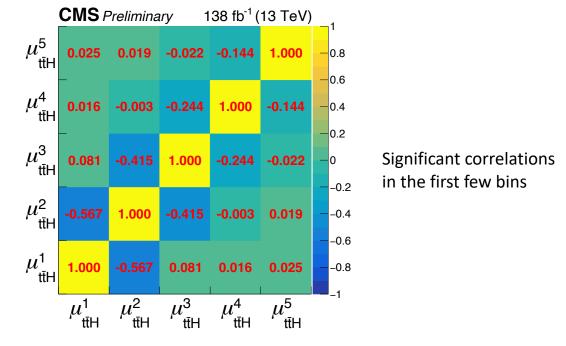


Distribution in template fit, event yield (Y), ANN output (O), likelihood ratio of ANN outputs (R)

November 14, 2023

$tar{t}H$ Measurement in Higgs Boson $p_{ m T}$ Bins

Post-fit distributions in SL and DL channels in Higgs $p_{\rm T}$ bins from 2018 (2017 and 2017 in backup):


November 14, 2023

$tar{t}H$ Measurement in Higgs Boson $p_{ m T}$ Bins

Full Run-2 Results

	CMS Preliminary		138 fb ⁻¹ (13 TeV)			
		μ	tot	stat	syst	
[0, 60[┝┼─■┼┼┤	0.23	+1.90 -1.78	+1.24 -1.24	+1.44 -1.27	
[60, 120[▶; ■ ,-1	0.06	+1.35 -1.39	+1.00 -1.00	+0.91 -0.96	
[120, 200[H	1.14	+0.95 -0.86	+0.69 -0.69	+0.65 -0.52	
[200, 300[⊦ , ∎, ,	0.19	+0.89 -0.90	+0.65 -0.65	+0.60 -0.62	
[300 , ∞[-1.20	+1.01 -1.05	+0.80 -0.78	+0.61 -0.71	
	0		5	_	10	
	$t\bar{t}H$ cros measured i	ĥ	$= \hat{\sigma} / \sigma_{SM}$			

Correlations among the signal strengths

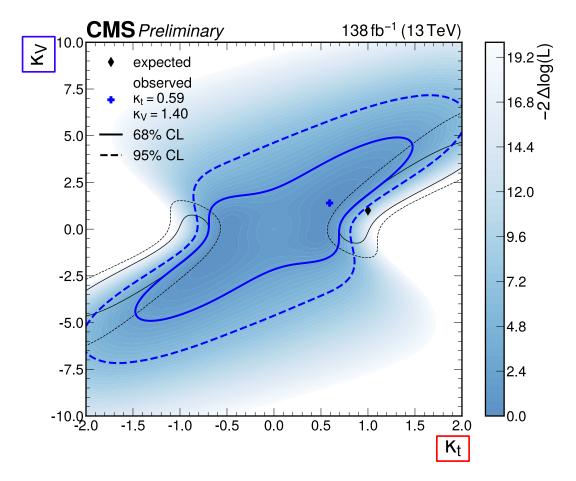
Compatibility with:

- Inclusive results: p-value of 0.67 (0.4 σ)
 - Additional single parameter fit gives signal strength within 3% of the inclusive result: completely compatible
- SM: p-value of 0.21 (1.3 σ)

November 14, 2023

Coupling Interpretations in the *k*-Framework

Re-parameterize analysis in terms of κ_t and κ_V :

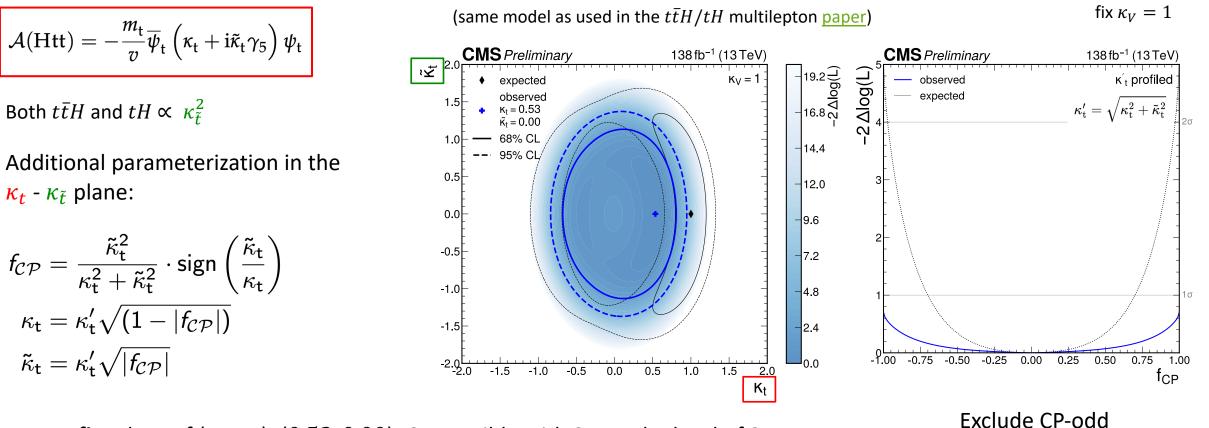

- Rate of $t\bar{t}H \propto \kappa_t^2$
- Rate of tHq and tHW sensitive to relative sign of κ_t and κ_V due to interference terms

$$\begin{aligned} \sigma_{tHq} &= \left(2.63 \cdot \kappa_t^2 + 3.58 \cdot \kappa_V^2 - 5.21 \cdot \kappa_t \kappa_V\right) \sigma_{tHq}^{SM} \\ \sigma_{tHW} &= \left(2.91 \cdot \kappa_t^2 + 2.40 \cdot \kappa_V^2 - 4.22 \cdot \kappa_t \kappa_V\right) \sigma_{tHW}^{SM} \end{aligned}$$

Best fit result:With κ_V fixed to 1, $\kappa_t = 0.59$ $\kappa_t = 0.54^{+0.19}_{-0.34}$ $\kappa_V = 1.40$

Coupling parameter values compatible with inclusive signal strength modifiers

Also compatible with SM at the level of 2σ



Both $t\bar{t}H$ and tH treated as signal processes

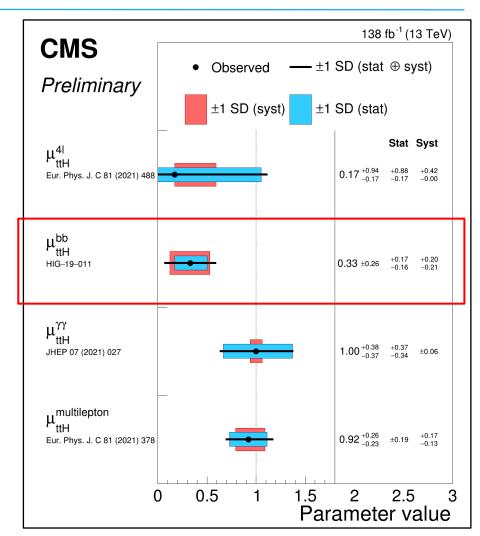
November 14, 2023

CP Structure of top-Higgs Coupling

Extending Top-Higgs Yukawa Lagrangian to divide pure CP-even (κ_t) and pure CP-odd ($\kappa_{\tilde{t}}$) components

Best fit values of $(\kappa_t, \kappa_{\tilde{t}})$: (0.53, 0.00): Compatible with SM at the level of 2σ

component at almost 1σ


November 14, 2023

 $\kappa_t - \kappa_{\tilde{t}}$ plane:

 $\tilde{\kappa}_{t} = \kappa'_{t} \sqrt{|f_{\mathcal{CP}}|}$

Summary

- $t\bar{t}H$ and tH provide direct probes for the Top-Higgs Yukawa coupling
- Measurement of $t\bar{t}H$ production rate (both inclusive and in Higgs boson $p_{\rm T}$) presented using full Run-2 data (138 fb⁻¹)
- Measurement of *tH* production rate also performed along with additional interpretations of the top-Higgs couplings
- tt
 t H production rate observed to be smaller than SM expectations –
 interesting result which can indicate towards new physics leading to
 smaller value of Top-Higgs coupling than in the SM
- Necessitates updated measurements of $t\bar{t}H$ and tH production rates with more data and further scrutiny of the $t\bar{t} + B$ background

