Transverse beam quality along the chain for LHC beams

S. Albright, F. Asvesta, H. Bartosik, M. Bozatzis, G.P. Di Giovanni, E. De la Fuente, A. Huschauer, <u>E. Lamb</u>, A. Lasheen, K. Li, I. Mases, E. Maclean, B. Mikulec, Y. Papaphilippou, K. Paraschou, T. Prebibaj, G. Sterbini, W. Van Goethem, PSB PS SPS-OP

Joint Accelerator Performance Workshop 05/12/23

2023 observation of transverse performance

Brightness Tail population Luminosity

Improvement in understanding and optimisation

Outlook for 2024

2023 observations of transverse performance

Brightness along the chain

Brightness on target in all machines at high intensity for 2023 measurements

Is the brightness enough to characterize performance?

Performance of non-Gaussian beams

The emittance calculation assumes a Gaussian, but we can improve the profile fit, with the q-Gaussian.

underpopulated tails (q < 1)Gaussian tails (q = 1)overpopulated tails (q > 1)

The **q** is related to the tail content.

We can use the q-Gaussian to characterise the performance in terms of **tail content** and we can see how the **luminosity varies** with respect to a Gaussian, as a complement to the brightness.

Luminosity depends both on the tail content and the emittance

Tail content

We can calculate how much beam is beyond a set collimation position as a performance indicator.

Heavy tailed beams do not become Gaussian unless largely scraped.

CERN

PSB

Disclaimer: Beam profiles taken in the vertical plane only due to dispersion

The optimised 36b gains margin from the **triple harmonic capture** used to optimize the working point and **achieve better resonance compensation**. [F. Asvesta].

Emittance and tails are reduced

PSB-PS

Tails created at transition crossing

CERN

PS understanding tail formation at transition

- Taken beta-beating measurements to characterise optics during transition
- Zero dispersion optics at PS Flat bottom → Possible to characterise H profiles

[M. Bozatzis], [T. Prebibaj], [W. Van Goethem]

s [m]

•

Equivalent Luminosity

Assume

- same emittance for different q values
- same intensity as the Gaussian case
- same profiles in H and V (can measure vertical plane only due to dispersion)

$$\mathcal{L} \propto N_1 N_2 \iint \rho_1(x) \rho_1(y) \rho_2(x) \rho_2(y)$$
[S. Papadopoulou]

CERN

SPS Standard 72b along flat bottom

۲

٠

bottom

SPS scraping

In the SPS we are **scraping** the beam for LHC injection (see presentation by Y. Dutheil)

- reduces the intensity
- changes the **profile**

[A. Lasheen]

How does scraping impact luminosity?

SPS scraping

We calculate relative loss in luminosity as we scrape the tails by numerically integrating the profile.

- Luminosity is reduced due to the tails
- Scraping further reduces luminosity
- Luminosity partially recovered by compensating intensity

Reducing tails upstream of LHC injection is important to improve performance

Understanding of correlations

In 2022 we saw that vertical scraping affected also the horizontal tails in the SPS

[E. De la Fuente, I. Mases]

[A. Lasheen]

Resonance inducing correlations

- Space charge can create **correlations in 3 planes** through the periodic resonance crossing via the synchrotron motion.
- In the presence of losses we create tails in H and V and reduce the bunch length.

Understanding correlations in the PSB

 Scraping in V doesn't change the profile in H.

Longitudinal plane to be analysed

Understanding correlations in the PSB

2D resonances couple the H and V planes.

- Scraping in V changes the profile in H.
- **Correlations last** when resonance not excited.

Longitudinal plane to be analysed

Summary and outlook '24

• On target for LIU brightness

Heavy tails observed and created at specific points along injector chain
Necessary to scrape heavy tails in SPS
Tails reduce performance compared to a Gaussian beam in terms of luminosity

- Improved tails in the PSB by optimization of the cycle (working point and triple harmonic)
- Identified significant tail generation at PS transition crossing
- Ongoing studies to characterize tail generation mechanisms in the PSB

Outlook for 2024

- Characterize profiles across beam variants along the injector chain
- Simulate tail creation from transition crossing in the PS
- Understand how scraping and remaining tails translates to luminosity performance in the LHC
- How are the tails transferred along the chain up to LHC collisions

Back up

Luminosity - Gaussian or q-Gaussian

SPS bunch by bunch emittance variation

STANDARD 72b

BCMS

The bunch by bunch variation in emittance at the end of flat bottom in the SPS.

Both the 72b standard beam and the BCMS have a standard deviation around 5% of average emittance.

I. Mases SPS Brightness

SPS bunch by bunch emittance variation

Scraping

