Overview of intensity limitations in the injectors and transverse stability aspects

F. Asvesta, H. Bartosik, N. Bruchon, E. de la Fuente, A. Huschauer, I. Karpov, <u>I. Mases</u>, L. Mether, B. Mikulec, G. Papotti, G. Rumolo, B. Salvant, L. Sito, F.M. Velotti, C. Zannini

S. Albright, M. Barnes, R. Calaga, H. Damerau, G.P. Di Giovanni, G. ladarola, V. Kain, G. Kotzian, A. Lasheen, K. Li, C. Pasquino, K. Paraschou, T. Prebibaj, M. Schenk, PSB-PS-SPS OP teams

JAP Workshop 5 – 7 December

OUTLINE

$\circ~$ PSB, PS and SPS overview

- **SPS**
 - Intensity reach and hardware limitations for different beams:
 - Intensity limitations with the Standard beam
 - Intensity limitations with the 8b4e beam
- \circ SPS wire scanners
- $\circ~$ SPS vertical instability at injection
- $\circ~$ SPS horizontal instability at injection
- Summary

OUTLINE

$\circ~$ PSB, PS and SPS overview

- o SPS
 - Intensity reach and hardware limitations for different beams:
 - Intensity limitations with the Standard beam
 - Intensity limitations with the 8b4e beam
- \circ SPS wire scanners
- SPS vertical instability at injection
- **o** SPS horizontal instability at injection
- Summary

PSB, PS and SPS overview PSB

No intensity limitations in the PSB for the LHC beams intensity range. The LIU target for LHC brightness was already achieved in 2021.

<u>PS</u>

LIU beam parameters achieved at PS extraction

 No transverse instability has been observed in the currently nominal 3 eVs below ~3.0e11 p/b.

As of today, transverse instabilities do not represent a limitation in the PS.

 At high intensities, reproducibility of beam parameters needs to be improved as it impacts SPS transverse stability (especially bunch length).

More details in I. Karpov's talk

OUTLINE

- $\circ~$ PSB, PS and SPS overview
- **SPS**
 - Intensity reach and hardware limitations for different beams:
 - Intensity limitations with the Standard beam
 - Intensity limitations with the 8b4e beam
- \circ SPS wire scanners
- SPS vertical instability at injection
- **o** SPS horizontal instability at injection
- Summary

SPS intensity reach. Standard beam 4 x 72 bunches.

Intensity ramp-up during the year

SPS intensity reach. Standard beam 4 x 72 bunches.

SPS intensity reach. Standard beam 4 x 72 bunches.

Very important to have high intensity beams regularly in the SPS to preserve performance

SPS Intensity limitations. Standard beam 4 x 72 bunches.

Main limitation: high pressure spikes on MKDH. Interlock triggered twice on August 17th when trying to go to 2.3e11 ppb.

4 x 72 bunches with 2.3e11 p/b and 1.6 ns bunch length @450 GeV was achieved on 17.08.23, but it caused an interlocking pressure spike on MKDH

Need to scrub gently for this intensity step

More details in G. ladarola's talk

OUTLINE

- $\circ~$ PSB, PS and SPS overview
- **SPS**
 - Intensity reach and hardware limitations for different beams:
 - Intensity limitations with the Standard beam
 - Intensity limitations with the 8b4e beam
- \circ SPS wire scanners
- SPS vertical instability at injection
- **o** SPS horizontal instability at injection
- Summary

SPS intensity reach. 8b4e beam.

8b4e: 2 x 56 bunches (April) 4 x 56 bunches (August) Standard: 4 x 72 bunches

Brief overview of the limitations in 2022

5 batches of 56 bunches accelerated at **flat top** with **1.5e11 p/b** and very good transmission.

Limitations were encountered at higher intensities due to vacuum interlock on 800 MHz cavity 1

SPS Intensity limitations. 8b4e beam.

- AUGUST 2023: 4 x 56 bunches accelerated to flat top with 2.15e11 p/b with very good transmission.
 - Very small vacuum activity in the 800 MHz cavity 1 (conditioning during the year)
 - Intensity reach is limited by vacuum activity near the TT60 junction
 - Reverse protection interlock triggered for 200 MHz cavity 4 for bunch intensities above 2.0e11 p/b.
 Transmission lines will be inspected during YETS.

Vacuum activity

SPS Intensity limitations. 8b4e beam.

Comparing beam spectrum 25 ns standard and 8b4e beams

SPS Intensity limitations. 8b4e beam.

Comparing beam spectrum 25 ns standard and 8b4e beams

Additional frequencies are excited with the 8b4e beam, compared to the 25 ns standard beam. Switching to 8b4e beam is not without risks; other devices may react to this in the future.

OUTLINE

$\circ~$ PSB, PS and SPS overview

- o SPS
 - Intensity reach and hardware limitations for different beams:
 - Intensity limitations with the Standard beam
 - Intensity limitations with the 8b4e beam

○ SPS wire scanners

- SPS vertical instability at injection
- **o** SPS horizontal instability at injection
- Summary

SPS Wire scanners: Breakage and mitigations

BREAKAGE during Scrubbing

12th of April 2023, SPS scrubbing run: All four BWS' wires found broken when in parking position with intensities below the LIU target.

SECOND BREAKAGE

Breakage again with the standard flat top (4 x 72b, ~1.8e11 p/b)

High repetition rate and long flat top with short bunches ~1.65 ns

MITIGATIONS IMPLEMENTED IN THE TECHNICAL STOP IN JUNE 2023

Equipment installed in BA4 to reduce the power loss on the wires:

- ferrite tiles in the tank (horizontal)
- ferrite tiles + coupler in the tank (vertical)

References: [1, 2, 3]

Wire scanners survived up to ~2.2e11 p/b and nominal bunch length of ~1.6 ns at standard flat top

SPS Wire scanners: Breakage and mitigations

It was not possible to perform the "stress test" planned in October 2023 with the long flat top.

Mitigations not tested with the long flat top and high repetition rate.

I he same solution (FERRITES + COUPLER) will be used in BA5

YETS 2023-24

- Installation of four new wires.
- Installation of <u>ferrites and coupler</u> in all 4 wire scanners tanks, both in BA4 and BA5.

SPS Wire scanners: WHAT IS EXPECTED FOR NEXT YEAR?

• The long flat top will be needed again in 2024 scrubbing run.

Will the wires survive?

• It is aimed to reach 2.3e11 p/b at flat top.

From power loss calculations [4], no issues are expected if considering peak power on the wire along the cycle.

If considering average power on the wire throughout the cycle:

Average power along the cycle

From the power loss calculations (conservative approach):

- No issues are expected with the standard flat top up to ultimate LIU intensity, even in dedicated mode.
- But some minimum risk with high duty cycle and the long flat top due to fatigue effects.
- No issues expected with the long flat top and SFTPRO cycle in parallel.
- During the long flat top cycle next year, the activity of the wires will be monitored.

OUTLINE

$\circ~$ PSB, PS and SPS overview

- o SPS
 - Intensity reach and hardware limitations for different beams:
 - Intensity limitations with the Standard beam
 - Intensity limitations with the 8b4e beam
- \circ SPS wire scanners
- SPS vertical instability at injection
- **o** SPS horizontal instability at injection
- Summary

SPS Vertical stability and working point

Extremely fast vertical coupled bunch instability predicted in simulations

- Threshold depends on the set vertical tune (mainly driven by resistive wall)
- Experimentally confirmed with 1 batch and low intensity

Vertical tunes close to 20.25 resonance required for LIU parameters

 Control of tunes is critical due to large bunch-by-bunch tune shift from impedance – progress on operational correction (model-based application)

15

20

300 5

Injection (26 GeV)

10

cycle time (s)

OUTLINE

$\circ~$ PSB, PS and SPS overview

- o SPS
 - Intensity reach and hardware limitations for different beams:
 - Intensity limitations with the Standard beam
 - Intensity limitations with the 8b4e beam
- \circ SPS wire scanners
- SPS vertical instability at injection
- **o** SPS horizontal instability at injection
- Summary

SPS Horizontal stability at injection

Horizontal headtail instability @26 GeV studied in detail in 2018 for 1.8e11 p/b

• Mitigation strategy developed in simulations: high chromaticity + octupoles

Stabilization strategy

Without octupoles stabilization at $\xi_x \ge 0.7$ With octupoles (-kLOF < 10) stabilization at $\xi_x \ge 0.5$

Tested in 2023 with up to ~2.6e11 p/b injected

- 4 x 72 bunches
- Discovered criticality of short bunches at injection to ensure stability

SPS Horizontal stability at injection

MD 20 September 2023

Unstable beam with long bunches at injection (~4.2 ns)

Instability is very sensitive to bunch length.

Observed a correlation between instability in the SPS and the injected bunch length:

• The longer the bunches, the more unstable (observed also in simulations)

With 4.2 ns injected bunch length it was not possible to stabilize the beam (even with high chromaticity and using octupoles)

Measured mode 1 and mode 2 with the Head-Tail monitor

Mode 1 observed for $0.3 < \xi < 0.4$ with 2.6e11 p/b injected

Mode 2 observed for 0.45 < ξ < 0.55 with 2.6e11 p/b injected

SPS Horizontal stability at injection

MD 25 October 2023

LIU intensity at injection was reached with the proper bunch length at injection.

The beam was stable with an injected bunch length of ~3.8 ns, but transmission needs to be optimized.

OUTLINE

$\circ~$ PSB, PS and SPS overview

- o SPS
 - Intensity reach and hardware limitations for different beams:
 - Intensity limitations with the Standard beam
 - Intensity limitations with the 8b4e beam
- \circ SPS wire scanners
- SPS vertical instability at injection
- **o** SPS horizontal instability at injection
- Summary

SUMMARY

• LIU target achieved in PSB and PS

Intensity at FT [p/b]	#bunches	Batch spacing [ns]	Bunch length [ns]	Beam type
~2.2e11	4 x 72	200	~1.6	Standard
~2.15e11	4 x 56	200	~1.6	8b4e

- Limitations to ramp-up the intensity in the SPS
 - MKDH pressure spikes limiting intensity for standard beam @450 GeV with nominal bunch length.
 - Significant pressure rise in sector 6 limiting intensity for 8b4e beam @450 GeV.
- Mitigations in place for the wire scanners (ferrites + coupler)
 - No issues expected during 2024 run (even during scrubbing with long flat top cycle if SFTPRO in parallel).
- Transverse stability with LIU target intensity at flat bottom (@ 26 GeV)
 - Vertical plane. Need to operate with Q_v close to 20.25 resonance to ensure stability with standard beam.
 - Horizontal plane. Stabilization strategy tested for standard beam with ~2.6e11 p/b injected intensity, but only for a short time in one MD, and only under the following conditions:
 - Reproducible injected bunch length (~ 3.8 ns).
 - High horizontal chromaticity.

Given this information, is the horizontal wideband feedback system needed?

Thank you!

home.cern

SPS intensity reach. 8b4e beam.

Standard: 4 x 72 bunches

8b4e: 2 x 56 bunches (April) 4 x 56 bunches (August)

Last year's intensity limitations due to kicker vacuum activity

Intensity at FT [p/b]	Emittance H/V at FB end [µm]	#bunches	Batch spacing [ns]	Bunch length [ns]	Transmission without scraping [%]	Beam type	Date
1.52e11	1.8/1.7	4 x 72	250	1.65	~95	Standard	Apr. 5
1.85e11	1.9/1.7	1 x 72		1.65	~94	Standard	May. 3
1.8e11	1.6/1.5	5 x 48	200	1.66	~95	BCMS	Sept. 22
1.8e11	1.9/1.8	4 x 36	200	1.65	~90	BCMS	Nov. 8
1.5e11	2.0/1.9	5 x 56	200	1.73	~95	8b4e	Oct. 13
1.75e11	2.2/2.0	2 x 48	400	1.62	~95	8b4e	Nov. 8

Limited by MHDH vacuum spikes

Limited by RF800 MHz cavity 1 interlocking on vacuum

Comparison to 2022

Year	Intensity at FT [p/b]	#bunches	Batch spacing [ns]	Bunch length [ns]	Beam type	Date
2022	~1.5e11	4 x 72	250	~1.6	Standard	Apr. 5
2022	~1.75e11	2 x 56	400	~1.6	8b4e	Nov. 8
2023	~2.2e11	4 x 72	200	~1.6	Standard	Aug. 18
2023	~2.15e11	4 x 56	200	~1.6	8b4e	Aug. 23

Table from Carlo's talk on IPP:

https://indico.cern.ch/event/1322532/contributions/ 5565561/subcontributions/440832/attachments/27 13754/4712893/LHC_HI_MDs_IPP_Sep_13th.pdf

Intensity reach end flat bottom

Standard: 4 x 72 bunches
8b4e: 2 x 56 bunches (April)
4 x 56 bunches (August)
Hybrid: 1 x 56 bunches (8b4e) + 5 x 36 bunches
BCMS: 4 x 48 bunches

For hybrid and BCMS beam, the high intensity was not taken. There was no limitation, we didn't push intensity (just brightness measurements)

OVERVIEW OF SCRUBBING

- Main goal of scrubbing 2023: to condition the MKP-L injection kicker upgraded during the YETS 2022-23.
- In 2022, erratic and unpredictable pressure spikes were observed on the MKDH dump kicker at flat top with the standard beam of 4 x 72 bunches. Consequently, the MKDH kicker needed to undergo conditioning as well during scrubbing 2023.
- Gradually increased bunch intensity at flat bottom from ~1.4e11 p/b up to ~2.2e11 p/b.
- Scrubbing on the ramp and flat top was difficult/critical due to pressure spikes on the kickers causing interlocks.

A dedicated scrubbing cycle was created, in order to improve the efficiency of scrubbing,

- Longer flat top
- Lower energy (400 GeV).

First breakage of the 4 wires of the wire scanners during scrubbing with the long flat top

OVERVIEW OF SCRUBBING

Conditioning of kickers

Around 20 days were needed to scrub the MKP-L and MKDH at flat top.

Achievements reached during scrubbing 2023:

Intensity at extraction [p/b]	#bunches	Energy [GeV]	Bunch length [ns]
2.2e11	1 x 72	400	1.6
2.05e11	4 x 72	400	1.6

- Unprecedented amount of scrubbing beam accumulated at flat top (with nominal parameters)
- Erratic behaviour of MKDH can be conditioned

SPS Intensity limitations. 8b4e beam. 23rd August 2023

Limitations due to pressure rise in other areas with 8b4e beam.

Not always limited only by the kickers, pressure rise in various vented devices/regions was also limiting

High pressures observed in **sector 6** at different points:

- Large spikes on TT60 junction pressure with 8b4e beam
- MSE

SPS Wire scanners: 1. BREAKAGE

All four SPS wire scanners (two vertical in SPS BA4 and two horizontal in SPS BA5) stopped working during the second week of scrubbing

Conditions during the first breakage of the 4 wires:

Up to April 19				Max Intensity
LHC 25	Long FT	1 x 72b	2.25e11 p/b	1.62e13
LHC 25	Long FT	4 x 72b	2.05e11 p/b	5.90e13
8b4e	Long FT	2 x 56b	2.00e11 p/b	2.24e13

April 19: Two spare wires were installed, but breakage happened again

Conditions during the second breakage of the 2 new wires:

April 20 –	Max Intensity			
LHC 25	Standard FT	4 x 72b	1.80e11 p/b	5.18e13

- Bunch Length @FT ~1.60ns
- Higher rate and higher total number of cycles reaching FT

Courtesy of F. Roncarolo et al

SPS Wire scanners: 2. MITIGATIONS

Technical stop in June 2023:

- The orientation of the beam wire scanner instrument in position BWSRC.41677 was modified during the TS1 2023 (from vertical to horizontal)
- Mitigations have been implemented to reduce power loss on the wires. Additional equipment was installed:
 - **ferrite tyles** in the tank (in BWSRC.41677 horizontal)
 - ferrite tyles + coupler in the tank (in BWSRC.41678 vertical)

August 18				Max Intensity
LHC 25	Standard FT	4 x 72b	2.21e11 p/b	6.37e13
August 23				
8b4e	Standard FT	4 x 56b	2.15e11 p/b	4.82e13

Wire scanners survived up to ~2.2e11 p/b and nominal bunch length of 1.60 ns at flat top.

Monitorization of the wire scanners behavior during high intensity MDs

SPS Wire scanners: WHAT IS EXPECTED FOR NEXT YEAR?

- The long flat top will be needed again in 2024 scrubbing run.
- It is aimed to reach 2.3e11 p/b at flat top.

Will the wires survive?

With the implemented mitigations, no issues are expected when considering peak power

Impedance curves (II)

Four final scenarios:

- 5 ferrites
- 5 ferrites with coupler
- 6 ferrites
- 6 ferrites with coupler

E. de la Fuente, L. Sito

H-BWS: 6 Tiles

V-BWS: 5 Tiles + coupler

E. de la Fuente, L. Sito

Long flat top considerations

- Up to now only peak power considerations.
- Taking into account the cycle and a long flat top (3 s):

E. de la Fuente, L. Sito

With 5 ferrite tiles and coupler, what is the minimum intensity that will result in the same integrated power of the breakage condition?

Vacuum activity with 8b4e beam (2 x 56 bunches) 5th April 2023

I. Karpov, IPP 21 April 2023

MD 20th September 2023

Injected bunch length $\sim 4.2 \rightarrow$ instability

SPS growth rates with SPS impedance model from Sacherer theory

Stabilization with chromaticity the 25th October No octupoles

Decision points based on beam studies during Run 3

MSE pressure along the year

MSE pressure 25 Oct.

+ VACCMW.VGHB_61837.PR

