

Collimation performance with protons and ions

R. Cai, A. Abramov, R. Bruce, M. D'Andrea, P. Hermes, B. Lindstrom, D. Mirarchi, S. Redaelli, N. Triantafyllou, F. Van der Veken

Table of content

Collimation for 2023 proton run

- Commissioning experience
- Cleaning performance
- Operations with crystal collimation in high-beta run
- Outlook for 2024
- Collimation for the 2023 ion run
 - Main updated
 - Commissioning experience and performance improvement
 - Challenges
 - Crystal MD highlight
- Summary

Collimation for 2023 proton run

Commissioning experience

OVERALL

- Collimation system performed very well at every step of the complex 2023 cycle.
- No surprises during energy ramp.
- Loss maps validation matrix expanded.
- Leveraged on 2022 experience.

COLLIMATION STRATEGY

- IR7 remain with the tight settings as in 2022.
- Changes to triplet magnet collimators (TCT) and physics debris collimators (TCL).

PROTON COLLIMATION STRATEGY

Commissioning experience

FIRST VALIDATION

- General cleaning performance similar to 2022.
- B1H cleaning worse than 2022.
- Losses on TCSPM.E5R7 were sticking out
- Losses reduced with the new 2023 settings, new procedure to validate non-linearities.

SECOND VALIDATION

- Improved B1H cleaning, back to 2022 levels.
- TCT losses lower than 2022 at small β*.

15-21 April 2023

3-4 May 2023

Dump on fill
 8694 losses

 blocked the intensity ramp

up.

TCSPM.E5R7
 retracted 500 µm.
 ID1 TCTs realizes

 IR1 TCTs realigned (change crossing angle in ATLAS).

Cleaning performance

*Technical stop1 in June

Outlook for 2024

- Baseline similar setup to 2023 + attention to TCSPM.E5R7.
- Studying option of tighter collimation hierarchy would enable smaller β^*
 - MD performed in 2023
- Can tighten TCP-TCS retraction
 - Would require more challenging collimation setup need angular alignment.
 - More challenging to keep hierarchy over time.
 - Would give slightly higher impedance, but deemed tolerable.
 - So far no clear showstopper defined.
- Can tighten IR6-TCT retraction
 - Deemed possible operated 0.8 σ tighter in 2018
- Can tighten only at β* = 30 to limit changes

	2023	Option a	Option b
TCP IR7	5.0	5.0	5.0
TCS IR7	6.5	6.5	6.0
TCLA IR7	10.0	10.0	9.5
TCDQ/TCSP IR6	7.3	7.3	6.8
TCT IR1/5	8.5	7.8	7.3
Protected aperture	9.5	8.8	8.3

Operations with crystal collimation in high-beta run

HIGH-BETA RUN

Special run for forwards physics experiments (TOTEM and ALPHA).

REQUIREMENTS + CHALLENGES

- Roman pots very close to the beam around 3 σ half gap.
- Large β^* at the collision point.
- Experiments very sensitive to background.
- Super tight multi-stage collimation hierarchy margin (~10 µm) - very sensitive to orbit drifts.
- Challenging beam scraping when moving collimators.
- \rightarrow Crystal collimation necessary.

OUTCOME

- Crystal collimation was an essential contributor.
- First time with automatic beam scraping.
- Very successful run!

M. D'Andrea, <u>R. Bruce</u>

Collimation for 2023 ion run

Main updates

Main updates – crystal collimation

NEW CHALLENGES

- Increased beam energy: $6.8 \rightarrow 6.37$ Z TeV.
- Increased stored energy: $13 \rightarrow 17.5$ MJ.
- Increase in number of bunches: 100ns spacing \rightarrow 50ns spacing.
- Full squeeze in all IPs in the ramp.
- Dispersion suppressor collimation in ALICE for significant peak luminosity increase with new hardware.

MAIN COLLIMATION UPDATES

- First deployment of crystal collimation.
- New BFPP bumps + TCLD.

Main updates – collisional losses

Bound free pair production (BFPP) from collisions produce beamlet that hits the dispersion suppressor regions.

SOLUTION

PROBLEM

New orbit bumps + new collimator (TCLD) solve the problem for IR2 in Run 3!

SOLUTION

IR8 also used orbit bumps to direct losses to a cell with higher BLM threshold.

RESULT

•

- ALICE peak luminosity, *L_{peak}*, is a factor 6 higher w.r.t. Run 2.
- Quench test without alleviation found a L_{peak}
 3 times smaller than the one achieved.
 - → Confirmation that the
 TCLDs were essential
 to raise ALICE
 luminosity.

<u>R. Bruce</u>

Collimation for 2023 ion run

Commissioning experience and performance improvement

Commissioning experience

MAIN ACHIEVEMENTS

First time crystal collimation during physics operations with high beam intensity.

- Standard commissioning procedures.
- Setup and maintain crystal channeling (added new tools).
- Creation and deployment of a crystal ramp function.
- Finalize collimation settings.

DELAYS AND ISSUES

Many new and complex challenges:

- Energy ramp losses.
- Channeling reproducibility.
- 10 Hz events.
- ALICE background issue.
- •

OVERALL

- Successful experience of first operational crystal collimation.
- Had to modify settings on the fly as done in 2018.
- Tight initial plan of 4 days.

Performance improvement with crystal collimation –

06/12/23

R. Cai | Collimation performance with protons and ions

Performance improvement with crystal collimation –

06/12/23

R. Cai | Collimation performance with protons and ions

Collimation for 2023 ion run Challenges

Collimation during energy ramp

CHALLENGE

- Combined squeeze + ramp
- Change of beam size and divergence during ramp.
- The crystal must follow the beam envelop in transverse and angular position.
- Channeling acceptance reduces from ~ 10 to $\sim 2 \mu rad$.

SOLUTION

- Reference settings at injection and flat-top used to generate ramp function in control system.
- Successful functioning achieved during machine development.

LOSSES DURING ENERGY RAMP

- Important losses observed during operational energy ramp significant slowdown.
- Crystals not in perfect channeling orientation may have worsened the situation.
- Many mitigations applied...
- Not well understood investigation in progress.
- More from the collimation side in next slides...

R. Bruce

Reproducibility of optimal channeling

Collimation for 10Hz events

SITUATION

- 10 Hz orbit oscillations are back for B1H as in 2017-8
- 8 dumps + some "near misses".
- Not fully understood.

WHAT IT MEANS FOR CRYSTAL COLLIMATION

Orbit oscillations means potential impact angle out of crystal acceptance, $\theta_c \sim 2.1 \mu rad$.

WHAT WE FOUND

Impact angle changed by:

Orbit angle from oscillations ~ θ_c

Orientation change from orbit offset ~ 0.2-0.4 μrad

- \rightarrow Oscillations brings artificially crystal out of optimal channelling.
- Crystals are at the limit or out of channeling at moment of dump.

With crystal collimation could tolerate higher oscillations (40-85 µm) than with standard system.

- Issue not solved yet.
- Possible idea: change collimation hierarchy...

Mitigation for ALICE background

INVESTIGATION

- Many different collimator settings checked.
- Main source: ²⁰⁷Pb⁸²⁺ from primary stage (right side), crystal or TCP.

SOLUTION

Mitigation:

Dispersion correction + Retract right TCLD \rightarrow Successful mitigation!

Crystal MD highlight

- 18th Oct 2023 for ~5h.
- Dedicated to crystal collimation improvement. •
- Reduced losses with retracted right TCLD jaw • (BFPP losses on left jaw).
- Studied losses at Q6 and IR7 DS with different • TCLA settings.
- Updates on collimation settings during \bullet negative polarity validation.

7000

Warm

Cold

Warm

Cold Collimator

7000

Warm

Cold

Collimator

6000

6000

6000

5000

S [m]

5000

S [m]

5000

S [m]

Collimator

8000

8000

Right TCLD jaw retraction

Lessons learnt for 2024

- Crystal collimation is essential for the reduction of losses in the DS.
- TCLD + orbit bump successfully tackle collisional losses for ALICE.
- It is needed to find a way to keep crystal in channeling especially during ramp (automatic optimization not possible).
- 10 Hz events were still present and were cause of many beam dumps.
 - Investigate crystal channeling and collimation performance during 10Hz.
- Need to study Pb207 in advance to minimize issues (e.g. experimental background).

Summary

Proton collimation

- Very good cleaning performance.
- Complex validation matrix.
- Similar setup as baseline for 2024 studying tighter options.
- Successful high-beta run with crystal collimation.

Heavy-ion collimation

- Many challenges.
- First time deploying crystal collimation.
- Cleaning improvement thanks to crystal collimation.
- Difficult to maintain channeling reproducibility.
- Challenging events: losses during ramp + 10Hz events.
- Improvements and understanding needed for crystal stability and 10Hz events for 2024.
- Improved collisional loss reduction, crucial for peak luminosity improvement in ALICE.
- Successful real-time mitigation of high background signals in ALICE.

We would like to acknowledge essential contributions from other colleagues from ABP, OP, STI, MME, CEM

home.cern

	E [GeV]	Optics	ß* 1/5 [m]	ß* 2 [m]	ß* 8 [m]	X 1 [µrad] V	X 5 [µrad] H	X 2 [µrad] V	X 8 [µrad] H →V	
Injection	450	1 11 10		10	10	-170	170	170	-170	
Ramp	450-6800	1-20	$11 \rightarrow 2$	10	$10 \rightarrow 2$	- 170 → - 135	170 ightarrow 135	$170 \rightarrow 200$	-170 → -200	
Flat Top	6800	20	2	10	2	-135	135	200	-200	
Squeeze	6800	20-22	$2 \rightarrow 1.2$	10	2	-135	135	200	-200	
LHCb Rotation	6800	22	1.2	10	2	-135	135	200	$\begin{array}{l} \text{H: -200} \rightarrow 0 \\ \text{V: } 0 \rightarrow 200 \end{array}$	
Tune Change	6800	22	1.2 10		2	-135	135	200	200	
Adjust	6800	22	1.2	10	2	-135	135	200	200	
Large Levelling	6800	23-34	$1.2 \rightarrow 0.6$	10	2	- 135 → - 145	$135 \rightarrow 145$	200	200	
Levelling	6800	34-43	$0.6 \rightarrow 0.3$	10	2	-145 → -160	$145 \rightarrow 160$	200	200	

<u>F. Van der Veken</u>

Collimator Settings

		IR7 [σ]			IR3 [σ]			Dum	ρ [σ]		TC	[σ]	TCL [ơ]			
		ТСР	TCSG	TCLA	ТСР	TCSG	TCLA	TCDQ	TCSP	1	2	5	8	4	5	6
Injection		5.7	6.7	10	8	9.3	12	8	7.5	13	13	13	13	-	-	-
Ramp		\downarrow	\downarrow	10	\downarrow	↓	Ļ	\downarrow	\downarrow	Ļ	↓	Ļ	\downarrow	-	-	-
Flat Top		5	6.5	10	15	18	20	7.3	7.3	18	37	18	18	-	-	-
Squeeze		5	6.5	10	15	18	20	7.3	7.3	\downarrow	37	\downarrow	18	-		-
LHCb Rotation		5	6.5	10	15	18	20	7.3	7.3	9.35	37	9.35	\downarrow	-		-
Tune Change		5	6.5	10	15	18	20	7.3	7.3	9.35	37	9.35	11.5	-		-
Adjust		5	6.5	10	15	18	20	7.3	7.3	9.35	37	9.35	11.5	-		-
	120	5	6.5	10	15	18	20	7.3	7.3	\downarrow	37	\downarrow	11.5	\downarrow	\downarrow	\downarrow
Levelling	60	5	6.5	10	15	18	20	7.3	7.3	8.5	37	8.5	11.5	\downarrow	Ļ	\downarrow
	30	5	6.5	10	15	18	20	7.3	7.3	8.5	37	8.5	11.5	17	42	30
XRP OUT															17	

<u>F. Van der Veken</u>

Proton cleaning performance

Normalised local inefficiency in the DS in IR7

Detailed Ion Collimation setup

	IR7 [σ]					IR3 [σ]			DUMP [σ]			ΤCT [σ]				TCL
	TCPC H	TCPC V	TCP	TCS	TCLA	TCP	TCG	TCLA	TCDQ	TCSP	TCLD	1	2	5	8	all
Injection	5.7	5.7	6.7	6.7*	10	8	9.3	12	7.5	7.5	out	13	13	13	13	
Flat-top											out					
Adjust/ Physics (negative polarity)	4.75	5	6	6.5**	8	15	18	20	7.3	10.3	30	10.5	B1: 13, B2: 10.5	10.5	15	25 mm
Adjust/ Physics (positive polarity)					10						L: 30, R: 11 mm					

*TCSG.D4L/R7 and TCSPMs at 7.2 σ ** TCSPM.B4L/R7 at 8 σ ; TCSG.E5R7 and TCSG.6R7 at 23 mm,

Losses during the energy ramp

- Important losses observed during energy ramp
- Transverse losses around 6.1 6.7 Z TeV are the strongest limitation, mainly in fast running sums.
- Significant slowdown of intensity ramp up.
- Various possible causes.
- Crystals not in perfect channeling orientation may have worsened the situation.
- Many mitigations applied...

R. Bruce

- Not well understood.
- Investigation in progress.

Crystal setup and automatic alignment

INITIAL SETUP

Crystal should be set in channeling orientation. There are two components:

- Transverse alignment to beam envelop: done manually with aid of TCP.
- Angular alignment to divergence: ML tool.

CONTINUOUS ALIGNMENT

- Channeling optimization tool.
- Drift detection.

Reproducibility of optimal channeling

In channeling most of the time after ramp function update.

Work in progress for crystal orientation stability

Works ongoing and planned:

- Revised of impedance simulations.
- New measurements on the prototypes: nothing dramatic observed.
- Refined estimated power deposition values.
- Attempt to identify correlation between measurements, in particular in the ramp.
- Planned hardware tests on crystal holder and goniometer.

Hardware update likely only in LS3.

Present focus for collimation is on software.

