

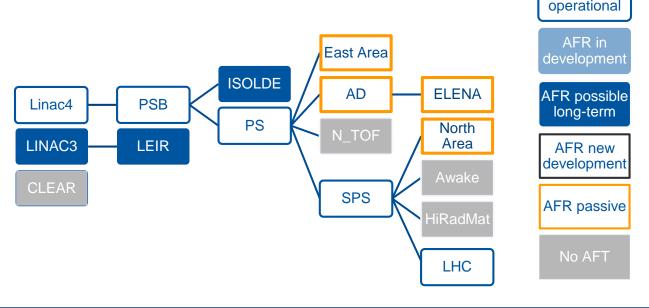
Recurring Faults in the Injectors Evolution over the Years and Plans

JAPW '23, Montreux 5th – 7th of December 2023

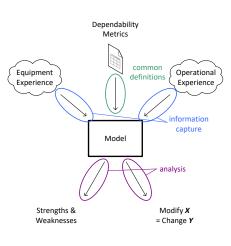
R. Alemany Fernandez, T. Argyropoulos, A. Asko, F. Boattini, <u>G.P. Di Giovanni</u>, L. Felsberger, J. Heron, A. Lasheen, K. Li, B. Mikulec, R. Scrivens, P. Skowronski, R. Wegner.

Introduction

- Machine availability is the **primordial KPI** for the users in the injector complex:
 - Direct correlation (almost causation) with users' experience satisfaction.
 - Is it the only one? Of course not.
 - Machine performance is for instance an essential one. But more uptime allows for more optimization.
 - Ongoing effort to track periods of degraded mode.
- How to correctly evaluate machine availability?
 - Establish common metrics.
 - Capture information from equipment and operation.
- End goals:
 - Identify strengths and weakness in today's machines.
 - Identify areas to address for the future (resources allocation, CONSolidation, new projects).
- The overall orchestration, including regular reviews of the data as well as the long-term strategies for the data exploitation fall under the umbrella of the Reliability and Availability WG (<u>https://indico.cern.ch/category/9071/</u>).


Good quality data are a crucial ingredient!

7 December 2023


AFR

Data Capture

- Accelerator Fault Tracking (AFT) inherited from the LHC since 2017 (outcome of Chamonix '16).
- More than 10k faults recorded and reviewed in 2023 (LHC included) → Automation necessary
 - Significant effort done by OP in integrating the machines of the CERN complex.
 - The data automatically/manually stored are first reviewed by the coordinators/supervisors of the week.
 - Weekly fault reviews throughout the year, driven by Lukas/Jack.

G.P. Di Giovanni

- Accelerator Fault Tracking (AFT) inherited from the LHC since 2017 (outcome of Chamonix '16).
- More than 10k faults recorded and reviewed in 2023 (LHC included) → Automation necessary
 - Significant effort done by OP in integrating the machines of the CERN complex.
 - The data automatically/manually stored are first reviewed by the coordinators/supervisors of the week.
 - Weekly fault reviews throughout the year, driven by Lukas/Jack.
- A major goal for this year was to raise expert review rate and participation by increasing:
 - Experts' awareness and notification mechanisms on fault existence.
 - Clarify **responsibility** throughout the systems in the accelerator complex
 - Make UI/UX better for the experts.

User Training and Onboarding:

Multiple demos have been given to different expert groups

	L4	PSB	PS	SPS	LHC	EA
2022	78%	59%	58%	25%	46%	39%
2023	94%	78%	54%	17%	50%	70%

Great effort from Anti/Lukas

Culture

- Accelerator Fault Tracking (AFT) inherited from the LHC since 2017 (outcome of Chamonix '16).
- More than 10k faults recorded and reviewed in 2023 (LHC included) → Automation necessary
 - Significant effort done by OP in integrating the machines of the CERN complex.
 - The data automatically/manually stored are first reviewed by the coordinators/supervisors of the week.
 - Weekly fault reviews throughout the year, driven by Lukas/Jack.
- A major goal for this year was to raise expert review rate and participation by increasing:
 - Experts' awareness and notification mechanisms on fault existence.
 - Clarify **responsibility** throughout the systems in the accelerator complex
 - Make UI/UX better for the experts.
- Cultural shift:
 - AFT is not a blaming machine.
 - Industrial approach necessary when looking at the data both for equipment groups and management:
 - Could resources be diverted to teams to address short-medium term issues which have a quantified impact?

2023 in a Glance

Slide presented by Rende at the OP group meeting in Dec. 2023

Facility	Destination	Destination '21/'22 Achieved 2023		eved 2023	Period
		Overall [%]	Overall [%]	Per destination [%]	
LINAC4	PSB	96.7/97.1	98.0	98.0	2023 – 12.11.2023
PSB	PS	94.4/95.1	96.1	96.4	23 – 12.11.2023
	ISOLDE			OF	.03.2023 - 30.10.2023
PS	SPS	88.6/88.7	90.4	Ghi	17.03.2023 - 30.10.2023
	East Area			0 0.5	27.03.2023 - 01.11.2023
	nTOF			92.8	03.04.2023 - 30.10.2023
	AD		2	93.9	12.06.2023* - 12.11.2023
ELENA	AD-Hall	. 3	90.4	90.4	12.06.2023* - 12.11.2023
SPS	LHC	74.5/73.3	86.4	94.8	27.03.2023 - 30.10.2023
	North Are			87.3	24.04.2023 - 30.10.2023
	AWAKE			98.4	01.05.2023 - 22.10.2023
	HiRadMat			99.0	22.05.2023 - 27.08.2023

In the injectors overall very good availability

• Better than in previous years

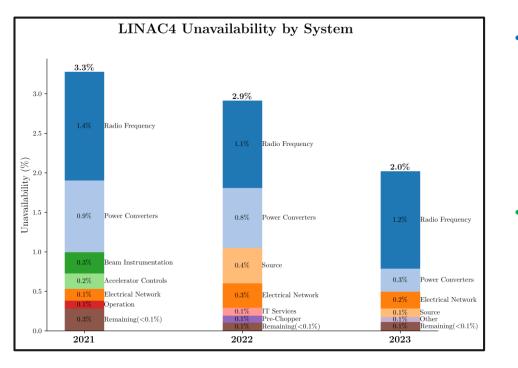
Overall includes the whole period and all other beams such as MD etc.

*Revised AD start date following quadrupole water leak



Cumulative

availability



- Excellent performance, availability increasing over time.
 - > Experts continue **solving issues** which repeatedly cause downtime **at the source**, when possible.
- Machine is still relatively new, and we (still) do not see many aging effects:
 - > Reduced the number of faults, in particular the major ones, i.e., longer than 2h.
 - Excellent support and collaboration within the groups.
 - Increasing (and keeping the) experience also plays a role.

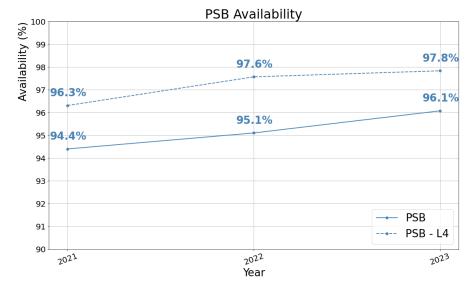
Linac4

- **RF is the main** (>70% of the) equipment, and by far the **most challenging system**, so it must be the main downtime contributor:
 - > Still an impressive availability of 98.8%!
- Modulators are power supplies that deliver above 100 kV voltage for klystrons.
 De facto, they are integral part of RF powering system:
 - They interlock with fast abort if RF lines stop.
 - They suffer from any high voltage sparking in the modulator-klystron systems.
 - Therefore, it is not a surprise that they are the 2nd contributor to the downtime.

Implemented several improvements throughout the years. Only in 2022:

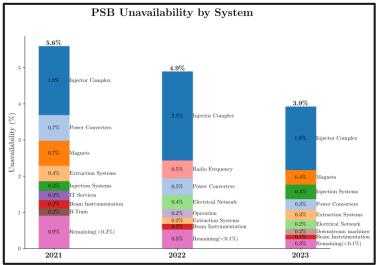
- **Contained sparking** in modulator-klystron interface.
 - Minimized modulator voltages and layout modifications.
- Extended cavity break down protection across LINAC4.
- Chopper trips from 2022 addressed:
 - PLC FW & interlock logic update.
 - Chopper dump alignment line and better steering in MEBT.
- **DTL1 klystron exchanged** in EYETS22/23.
- Source valve validation in test stand and modification the gas injection system for a faster valve exchange.

Linac4

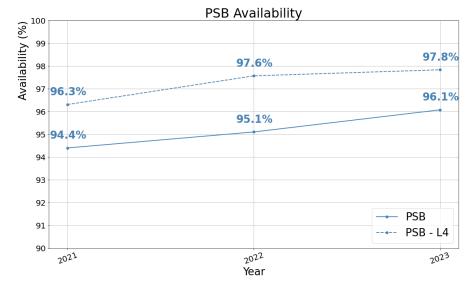

- > 2x burned connector on focus circuit:
 - Other connectors were verified during iTS.
 - Consolidation during YETS.
- > Hydrogen valve in the source.
- Aftermath of LEIR 18 kV circuit breaker fault.
- Card measuring filament current (interlock).
- Water pressure sensor (interlock).
- Card measuring focus current (interlock)
 + difficulties in the system restart.
- Sensor checking socket connection (interlock).

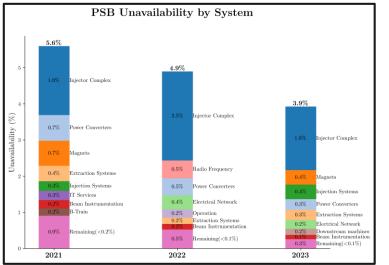
Date	Equipment	Downtime
Mar 15	PIMS1112	9 hours
Apr 15	PIMS0102	8 hours
Apr 28	Source	5 hours
Jun 27	Multiple	7 hours
Jun 1	CCDTL1	4.5 hours
Jun 12	CCDTL1	13.5 hours
Oct 17	CCDTL7	10.5 hours
Nov 2	Pre-chopper	4.5 hours

4 out of 7 are related to faulty sensors interlocking the machine (being followed-up by experts)



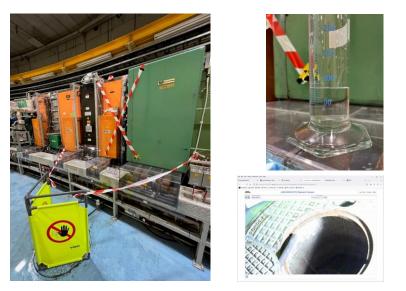
PSB in a Nutshell

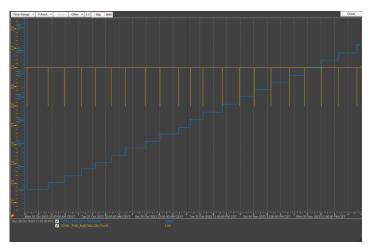

- Even more impressive counting that PSB extracted the same # of protons in 2022 with ~20% less days.
- PSB is a mix of new (LIU) and LEGACY equipment.
- Some of the equipment is still > 50y, e.g. the main magnets, ...


- Excluding the single event in 2022 of a vacuum leak caused by an arc in a RF bypass in 16L1 R2 (intensity push) the pattern of downtime is generally the same:
- 1) Linac4.
- 2) Magnets issues (mainly water leaks).
- 3) BI.BSW water leaks and equipment replacement.
- 4) Power converters (every POPS-B trip takes at least 20 mins to recover from).
- 5) Electo-valve failures in recombination septa/losses on extraction septa.

PSB in a Nutshell

- PSB only availability is comparable to Linac4 (~98% in 2023!).
 - Even more impressive counting that PSB extracted the same # of protons in 2022 with ~20% less days.
- PSB is a mix of new (LIU) and LEGACY equipment.
- Some of the equipment is still > 50y, e.g. the main magnets, ...

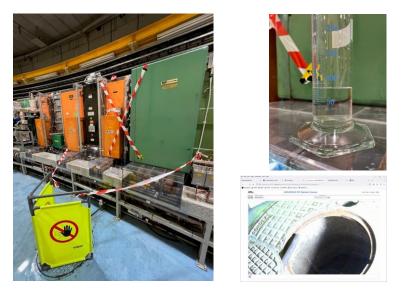

- Excluding the single event in 2022 of a vacuum leak caused by an arc in a RF bypass in 16L1 R2 (intensity push) the pattern of downtime is generally the same:
- 1) Linac4.
- 2) Magnets issues (mainly water leaks).
- 3) BI.BSW water leaks and equipment replacement.
- 4) Power converters (every POPS-B trip takes at least 20 mins to recover from).
- 5) Electo-valve failures in recombination septa/losses on extraction septa.

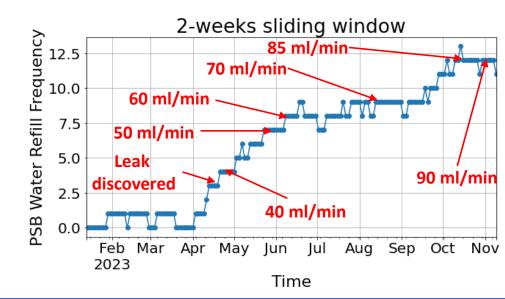

PSB Main Magnets

Water leaks in the PSB main magnets:

- 2 leaks in 2021, 3 leaks in 2022, <u>1 (and so far, only 1!) in 2023.</u>
- This is legacy equipment (1972) and expected to pulse +200M times by 2040.
- A task force built to investigate and mitigate the issue, see here
- Source of the leaks due to galvanic corrosion which attacks the brazed joints.
- In the short-term future, we could experience more leaks. Options are:
 - > Patching the magnet in situ and regularly monitor.
 - > Replacing the leaking magnet.
- > Q: In the future could we early detect leaks without access?

BR.QFO11 fencing, regular measurements, remote monitoring (cameras).


PSB water refills monitoring (EN-CV).


PSB Main Magnets

Water leaks in the PSB main magnets:

- 2 leaks in 2021, 3 leaks in 2022, <u>1 (and so far, only 1!) in 2023.</u>
- This is legacy equipment (1972) and expected to pulse +200M times by 2040.
- A task force built to investigate and mitigate the issue, see here
- Source of the leaks due to galvanic corrosion which attacks the brazed joints.
- In the short-term future, we could experience more leaks. Options are:
 - > Patching the magnet in situ and regularly monitor.
 - Replacing the leaking magnet.
- Data indicates that in 2023 lucky to spot the leak during a shadow access and the MSC team creative to patch it in situ. It could have been a showstopper.

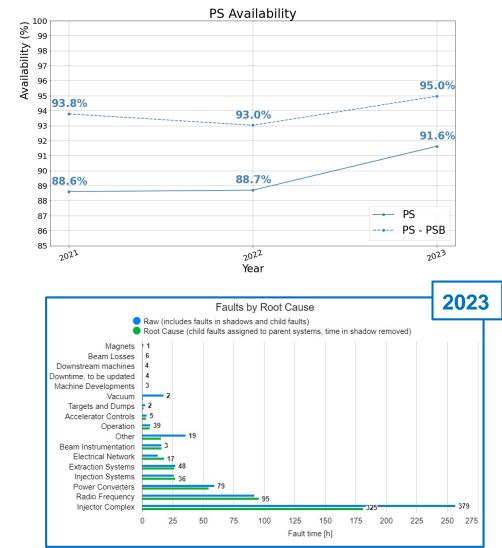
BR.QFO11 fencing, regular measurements, remote monitoring (cameras).

• BI.BSW coil failure, 7 since 2020 (16 bumpers in injection, 4 per ring).

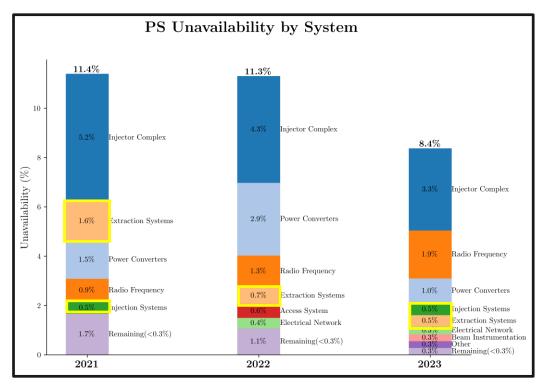
- This is LIU equipment, so <u>brand new</u>.
- Account of the history and mitigation measures (reinforced coils) presented at IEFC
- Coil reinforced and upgraded, still leak this year on BI1.BSW1L1.4 was latest failure was on the upgraded braze, but too early to draw conclusions.
- Downtime breakdown in 2023:
 - First issue identified on BI1.BSW1L1.4 during iTS1. Replacement during iTS (30h) so additional 4h30m without beam and ~10h in degraded mode (no R1).
 - Second event on the same BI1.BSW1L1.4 on 14^{th} of August \rightarrow 11h for the intervention. Beam to beam in all rings.

G.P. Di Giovanni

- After that **5 access, once every 2 weeks** to monitor for a total of ~4h30m downtime.
- > Mitigate mechanical stresses: ongoing study (IEFC endorsed) to review the interlock strategy.

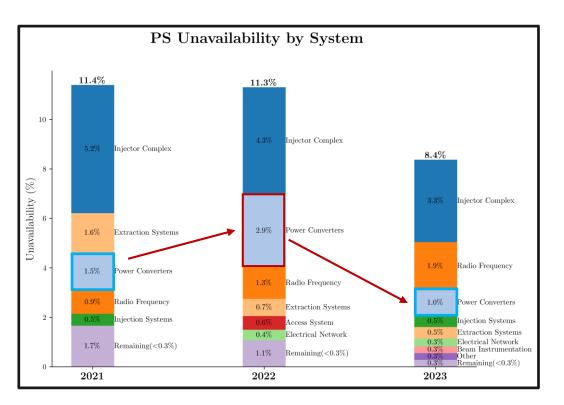


BI3.BSW1L1.1

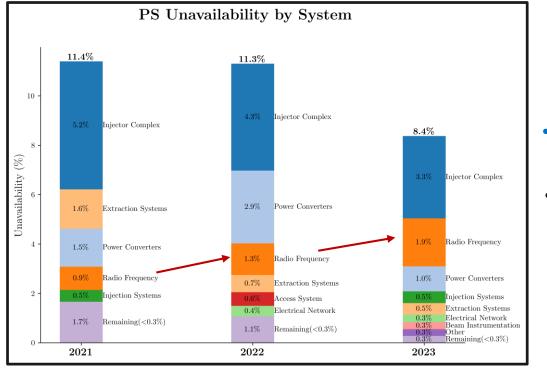


- Destination availability in 2023 between ~92% (SPS) 94% (AD).
- Clear improvement since LS2.
- Availability above pre-LS2 value (90.7% in 2018).
- Mostly standard maintenance in YETS23/24:
 - > No high expectations to improve availability in 2024.
- Several improvements planned for LS3 (POPS+, HL+LLRF, PCs...).

- Besides injector faults, longest root downtime due to:
 - 1) Radio-frequency.
 - 2) Power converters.
 - 3) Injection/extraction systems.
- In the following slides we will analyse the trend in reverse order.

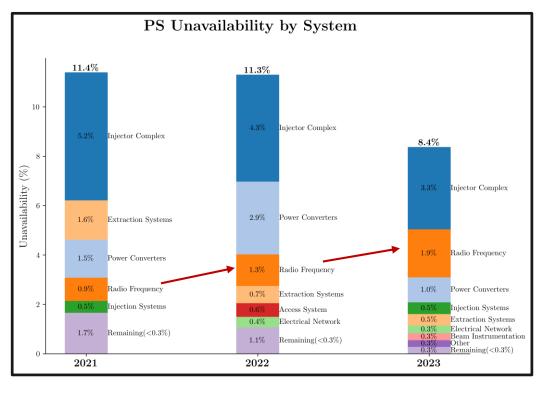

PS – Injection/Extraction Systems

- Longest fault duration moved from 2d in 2021 (SMH57 condensation on cables, replacement affecting EA) to ~7h30m in 2023 for ion injection kicker KFA28 burnt transformer (and power outage following smoke formation in B362).
- The year 2023 was a difficult one for extraction kicker KFA71/79, which does not really show up in AFT.
 - Recurrently, missing pulses leading to **radiation alarms** (beam lost at FT), but quick resets.
 - Staggered consolidation of 3 generators every YETS.
 - Lessons learnt in 2023 to improve reliability in 2024.
- A few faults on KFA13 affecting SPS NA (MTE).


PS – POPS

- Increase of "Power Converters faults" in 2022 due to
 POPS communication issues between FGC and main controller:
 - Massive effort throughout the year and EPC piquet solicited
 - Issue understood at the end of October: the replacement of crate power supplies to 3 independent power supplies made the ripple disappear.
 - > Benefit of the modification visible in 2023.
- Worth mentionining that a few POPS trip in 2023 were due to new demanding cycles: TOF double-extraction, special low-energy cycles, degaussing of pole-face windings etc.
- Feedback from operational years to be used for POPS+ (LS3), i.e. improved diagnostics, etc, etc
- Improve HW reliability with additional AD/DC and DC/DC converters (one per type).

PS – RF Systems



- Percentage of RF faults seems increasing over time:
 - Carefully monitored by the RF team, see here
 - RF is working on **better classification** to more effectively identify which part of the systems to focus on.
 - Some faults affect beam quality, so are not automatically recorded.
- PS is CERN's most complex/flexible accelerator in the RF domain!
- Much of the RF system has been upgraded since LS1:
 - Steady but gradual move to a fully digital LLRF system.
 - Digital beam control upgrade under preparation, MDs in 2024.
 - From 2024 all cavity controllers will be digital (except 200 MHz).
 - HLRF upgrades to improve direct feedback and remote control/monitoring.
 - More to come in LS3: Tuning PSUs, driver amps, LLRF...

PS – RF Systems

Large # of interlock signals per year but few are equipment disorders

- Over 2000 faults in 2023 on 10 MHz system:
 - Gap relay. Short reset or switch to spare if available.
 - Ring access for 9 gap relays and 8 amplifiers replacements.
 - RF tubes of the 10 MHz driver amplifiers obsolete and not on the market anymore. Renovation needed in LS3 (CONS). Prototype tests in 2024.
 - 10 MHz power converters:
 - Old, CONSolidation by SY-EPC prepared for LS3.
 - Tuning power converter for the 10 MHz cavities:
 - Old, CONSolidation by SY-EPC prepared for LS3.
- Over 1000 faults in 2023 on 40/80 MHz systems:
 - Easily resettable. Mostly affecting beam quality and can remain unnoticed.
 - EPC fixed issue with PC but should be CONSolidated.

Longest downtime:

- Non-conforming (prototype design) bypass in SS03 caused 16h of downtime. **Fixed for 2024 and no bypass of this type left in the machine.**
- In **2023 intermittent issues on the H16 barrier bucket prototype controller** causing the controller to crash and not distributing the rev. Frequency:
 - FESA class modification in August fixed the issue.

SPS Availability

82.6%

73.3%

2022

Year

Context:

92.7%

86.4%

2023

SPS

----- SPS - PS

- 2021, a commissioning year.
- 2022, running at the highest intensities (SPS NA).
- 2023, post-commissioning and running at standard intensities.

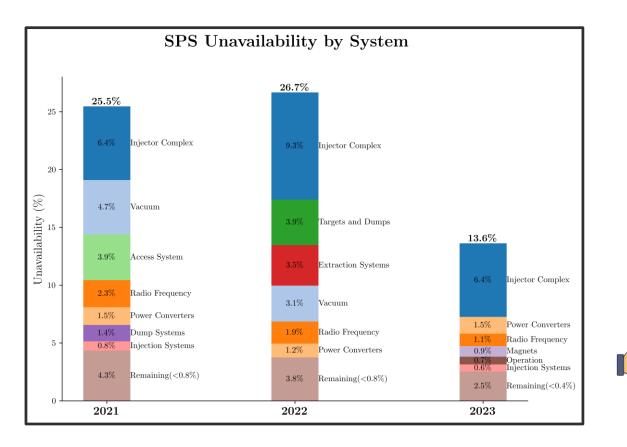
+ Positive trend over the years

 Faults maximum downtime moved from mulitple days in 2021/2022 to max 1d in 2023 (excluding the MSN.X0220031 <u>as it is EA</u>).

- The SPS remains an RP challenging environment:

• Equipment interventions require long RP cool-down time and careful planning (ALARA).

• Do not expect major improvements for 2024.

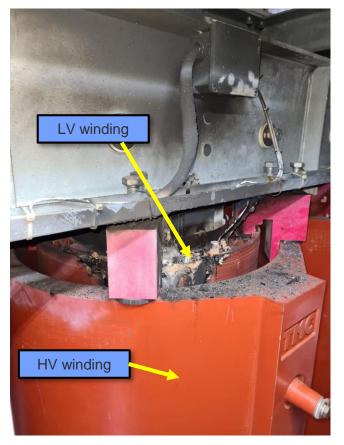

• Availability should improve with the NA CONS, but not in the immediate future.

79 78 77

2021

SPS in 2021

- Several single event upset (SEU) like events.
- A couple of vacuum system issues due to corrosion.
- **Dump kicker MKDV1**: weak high voltage behaviour due to broken insulating ceramic spacer.
- Arcing in transmission lines for RF cavities.
- And design issues for access system crates (radiation):
 - Mitigated in 2022 adding a shielding in front.



SMD Transformers

- In February 2021, LV insulation failure on a BA2 transformer.
 - It happened during HWC, so not registered as downtime.

Damaged area RMT123-1/A2 (BA2)

SMD Transformers

- In February 2021, LV insulation failure on a BA2 transformer.
 - It happened during HWC, so not registered as downtime.
- In March 2023 a second failure of another BA2 transformer.

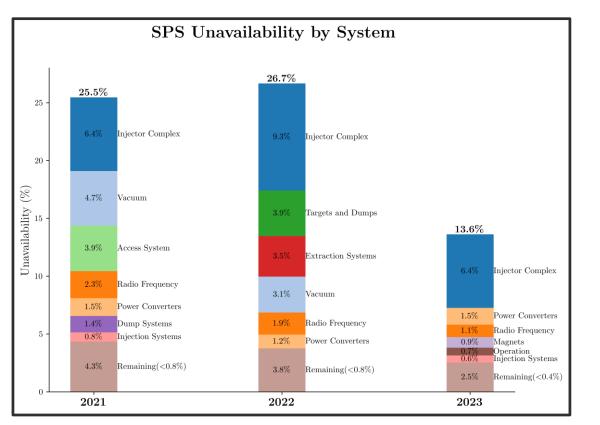
This time causing a **fire**.

• It happened during HWC, so not registered as downtime.

RMT123-3/A2 – BA2

SMD Transformers

- In February 2021, LV insulation failure on a BA2 transformer.
 - It happened during HWC, so not registered as downtime.
- In March 2023 a second failure of another BA2 transformer.
 - This time causing a fire.
 - It happened during HWC, so not registered as downtime.

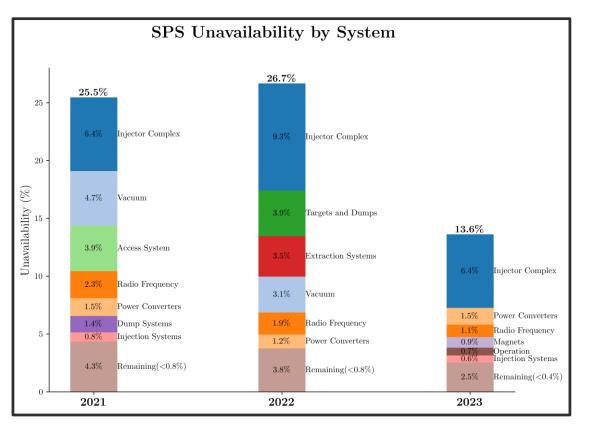


Transformers cut and analysed.

- SY-EPC spent signifcant effort on analysing the faulty transformers:
 - Comprehensive investigations have been done already, but no obvious cause stood out.
 - The possibility of **systematic failures** cannot be excluded as of today.
 - Strategy focuses on early detection, e.g. advanced temperature monitoring systems.
 - Spare strategy in place to mitigate machine downtime:
 - No fire risk for BA building → All cast resin transformers are Fire Class F1.
 - Eased the access and procedure updated.
 - Full report at the IEFC #335

SPS in 2022

April: Water leak on TCSC. SPS NA beam stopped for ~9d


May: MBB22090 inter-turn short (~2d)

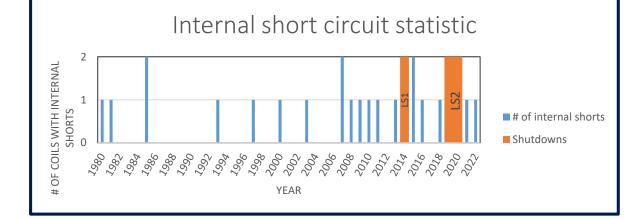
June: **ZS** ion trap bottom voltage fault (>5d integrated)

- High sparking rate for some weeks followed by further degradation.
- Device not able to keep the voltage on the ZS2 bottom anymore.
- Long cool-down time and several accesses needed.
- Finally, issue with the 4 cables of the ZS1 and ZS2 circuits
 - Root cause not yet clear, high dose rates in-situ.
 - Did not reoccur in 2023.
- July: T2 TIBU vacuum leak (~6d):
 - Wobbling magnet in T2 tripped, followed by TBIU pressure rise.
 - Replaced (plug-&-play) + time for cooldown

SPS in 2023

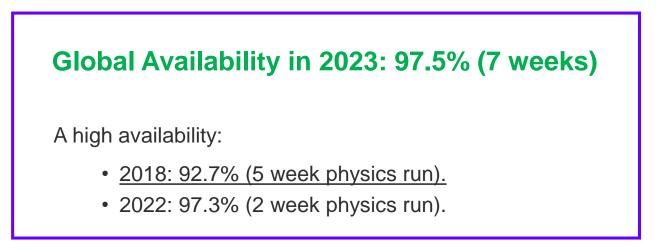
- Good availability. No systems or major faults
- The faults assigned to **operation are setting-up** and are not strictly speaking faults, as this time was scheduled:
 - Is a less invasive integration of the SPS ions activities possible? (see K. Li's talk)

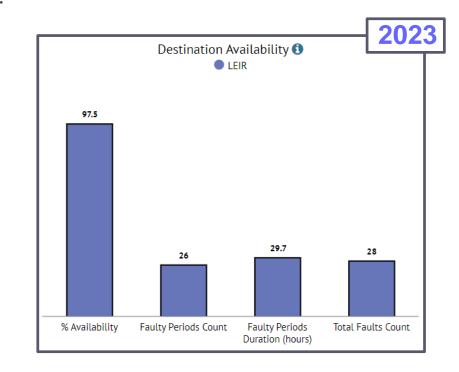
Worth mentioning:


- September: MBB.43550 inter-turn shorts.
- October: MSN.X0220031 magnet on fire (inter-turn short).
- October: Fire alarm long which took time to reset.
 - BIW returned false fire alarm in SPS Ring (BA5).
 - Bypassed following risk assessment.
 - Third-party piquet could not intervene during the night.
 - Being followed up.

SPS Magnets Inter-Shorts

- Increasing failure rate of SPS main bending coils. \rightarrow Spare stock is being depleted.
 - Statistics presented at IEFC #331 (and to be updated with 2 failures in 2023).
- Concerns coils produced by Lintott on MBB (249/385 in the SPS).
- Inter-turn shorts seem due to poor internal brazing quality.
- Difficulty of finding industrial suppliers to produce small series of large coils.
- Set-up of a larger coil production facility within TE-MSC:
 - Dedicated space in **B181**.
 - R&D activities are already ongoing.
 - Main components are now under procurement.
 - Prototyping should start in mid-2024.
 - Budget and resources have been defined and secured.
 - Possible future knowledge transfer to industry.

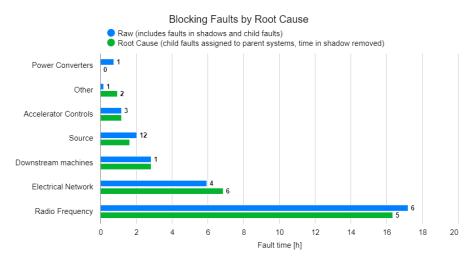


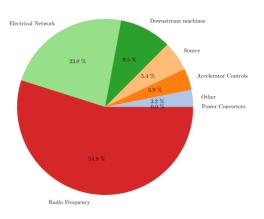


G.P. Di Giovanni

Linac3

- The year **2021** was a **commissioning** year for Linac3 and LEIR.
- The year 2022 included 2 weeks of physics run for SPS NA during which 2 days of LHC tests with Pb ions.
- The year 2023 included ~5 weeks of LHC physics and 4 weeks of SPS NA + 2d extension for CHIMERA.
- Outside of physics periods Linac3 (and LEIR) operation is only during daytime and is not followed up systematically with AFT:
 - > It makes sense to analyse the availability only during the physics runs.

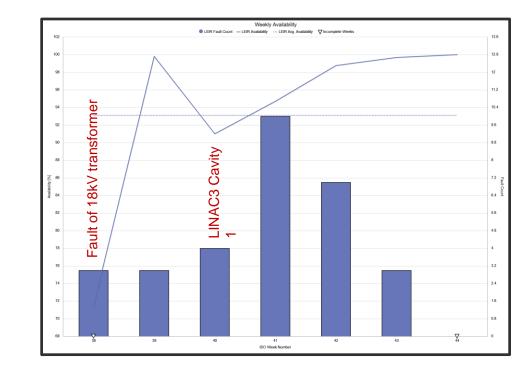



Linac3 in 2023

- No equipment displayed faults demonstrating long term issues.
- Most of **RF downtime caused by issues with sequencing/interlock**:
 - Learning from experience \rightarrow Expected modifications during EYETS23-24.
 - No major hardware issues with new amplifier in RFQ and Cavity1.

• Source:

- Excellent year.
- Experienced unstable periods of 5-10 minutes, recovering without intervention.
- Oven refills extended from 2 weeks in 2018 to 4 weeks post LS2, with improved design of the oven to reduce Pb-oxide build up.
- Oven refills **not counted as downtime** (included as planning activities).
- No diagnostics to quantify the Pb still available in an oven. First sign of running out can be an unstable beam which cannot be recovered. Trying to push to longer than 4 weeks between refills increases the risk of needing an unexpected refill that leads to longer downtime.


LINAC3 Unavailability (2.5%)

LEIR

Just looking at AFT LEIR is a rather solid machine!

- 2022: 95.7% (97.8% excluding Linac3 downtime):
 - Availability compatible with Linac3.
 - A few power converters issues (<1h to fix).
- 2023: 93.1% (<u>95.6% excluding Linac3 downtime</u>)
- High availability apart from week 38!
 - <u>Major event</u>: fault of the **18kV breaker** and the consequent recovery of other equipments and beam performance.
 - Several outdated electronics cards (PowM1553) which needed to be replaced (CONSolidation).
 - Remaining (minor) issues with power converters tripping.
- Looking beyond the mere statistics:
 - A few equipment missing a spare or even spare components.
 - Ions program currently scheduled until 2043 (as long as HL-LHC):
 - We must ensure long term reliability of LEIR.

Summary

- Data in AFT are currently widely accepted at CERN, as result of a common effort!
 - Teams working improved diagnostics, automatic resets and fault recording.
- Virtuous feeback loop among teams to address machine's issues at the source.
 - Long term strategy/needs for recurrent issues followed-up within the IEFC framework.
- > As a result the machines are performing rather well:
 - General feeling is that we will not be able to easily improve the 2023 figures before LS3.
 - We need strike a balance between **pushing the performance** to the limit and the **machine reliability**.
 - Personal suggestion to document yearly the machine availability, observations, expectations, etc, etc...
- RAWG surveying the usage of AFT with the equipment groups to define the next steps:
 - AFT data quality/categorization to be improved \rightarrow automation should help.
 - Agree on a way to exploit captured data to improve performance definition of complexity and consolidation.
 - AFT is currently a container isolated data:
 - Correlate the data with external databases, e.g. RP, losses, beam/cycle types, API to NXCALS missing.
 - The exciting news is that there is so much potential in the tool which could be exploited.
 - Ongoing EPA effort, e.g. WP 8, could be a force multiplier to the AFT growth.

home.cern

BI.BSW Coil Failure History

Time / cycles	Magnet	Observation	Root cause	Down time [h]
28/09/'20 ~ 1*10 ³	BI3.BSW1	Brazing alloy blockage of cooling tube: Repaired by re-drilling, but damaged copper tube	Repair damage	LS2
21/4/'21 ~ 1*10 ⁶	BI4.BSW1	Fatigue damage with microcrack on cooling tube	Fatigue crack cooling pipe	TS
7/12/'21 / ~ 21*10 ⁶	BI3.BSW4	Brazing failure – hydraulic connector 2 water block	Brazing joint	YETS
13/1/'22 ~ 21*10 ⁶	BI3.BSW4	Brazing failure - hydraulic connector 2 water block	Brazing joint	YETS
17/1/'22 ~ 21*10 ⁶	BI1.BSW3	Brazing failure – Coil 2 water block	Brazing joint	YETS
21/6/'23 ~ 44*10 ⁶	BI1.BSW4	Fatigue damage with microcrack on cooling tube	Fatigue crack cooling pipe	TS+14h
14/8/'23 ~ 4*10 ⁶	BI1.BSW4	Brazing failure – Coil 2 water block	Brazing joint	11h

