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Jet Flavour Tagger Update:

● Maintenance of the flavour tagger
● New trainings optimized for different detector 

parameters complete (requires validation)
○ to study sensitivity of physics results to 

detector  variations
● New classes for u/d/tau

○ Up vs Down discrimination seems possible 
thanks to jet charge 

○ 30% bkg eff at 50% signal 
● Next steps:

○ Split by quark charge b, bbar, c,...
○ Seems possible (u-d example)
○ Add auxiliary tasks

■ secondary vertices prediction





MLPF: Motivation

● The particle flow algorithm aims to identify the 
produced particles in a collision through the 
combination of the information from the entire 
detector and provide best combined 
energy/momentum resolution

● Hoping to achieve  higher reconstruction 
performance: cluster merging, arbitration of track 
vs cluster energy

● First step: focus on calorimeter clustering

B Example of an event, 
the shower of secondary 
particles generated by an 
individual particle is 
labelled with one colour 
[2]
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charged 
muons



Training Data
● Event generation:

○ Use particle gun (10-15 particles)
○ E ∊ [0.5, 50] GeV 
○ p, n, KL, π

● FCC-ee O(100)
● Simulation and reconstruction: Key4HEP 

turnkey + Geant4 (CLIC pipeline)

A Example train event - 15 particles 
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B Number of hits per event (left) and  #hits ECAL vs HCAL (right)



Architecture: Object condensation (End-to-End approach)

Input: 
● A set of hits from different 

sensors (coordinates, type 
of hit, energy, A)

● Each one node in the 
graph O(600) per particle
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- Each object 1 
condensation point 
(CP)

- Repulsive +Attractive 
potentials for each 
CP

CP

Output:
● Coordinate in 

embedding space 
(3D>)

● Beta (q)
● Use clustering 

space to build 
showers



Architecture: Object condensation (End-to-End approach)
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https://docs.google.com/file/d/1WEMdB5QWYOI6YQgy3CUWNfLzovgB8KAK/preview


Architecture: Gravnet Model
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a) Transform input features FIN into
○ transformed features FLR
○ latent coordinates S

b) Build graph using coordinates S
d) Aggregate weighted features

○ Weights depending on distance 
○ Aggregation typically is mean or max

e) Concatenate the new features

● Input: a set of hits from different sensors 
(coordinates, type of hit, energy), each one 
node in the graph O(600) per particle

● Graph representation with no given graph 
structure

● Dynamically compute edges in embedding 
space with knn



Efficiency and fake rate

● Efficiency approaches 100% with high pT
● Adding tracks will improve efficiency

● Most fakes with E< 1 GeV
● Other clustering methods in the embedding 

space can improve fakes
● Resulting from bad beta distributions
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Response and Resolution (clustering metrics)

● Evaluated on reco values (for clustering 
evaluation)

● Resolution performance must be improved 
for low energies 

● Can be improved with better clustering in 
embedding space
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Calorimeter clustering - Results

● Containing: percentage of reco energy that belong to the reconstructed particle (G+R)/(G+B)
● Purity: Percentage of reco energy contained in reconstructed cluster (G)/(G+R)

True
Reco
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Summary and next steps MLPF

Summary:
● Promising performance, we will soon compare to PFA (baseline for CLD)
● Demonstrated generalization over different types of events (for now kept particle number 

low)
● Fast execution time, linear scaling with number of hits 

Ongoing work and next steps:
● Add tracks as inputs to the graph 
● Regress particle properties
● Try heterogeneous graph architectures
● Compare to the performance of PFA
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Clustering Color Singlets

● Identification of color-neutral resonances relies 
on clustering final state into jets

● Calorimetry is expected to be much improved 
at future e+e− colliders, so that the 2-jet 
invariant mass resolution will be dominated not 
by detector resolution but rather by 
mis-clustering [1]

● Jets are not well defined but color connection 
is physical, this may help improve the mass 
estimation for color singlets (H,Z,W) and 
remove more background 

A Comparison of clustering performance vs ideal reconstruction
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B Example of miss clustering



Clustering Color Singlets

Errors can be due to:

● Miss clustering of soft particles leading to 
degraded resolution

● Miss matching of jets pairs

Possible solutions:

● Parameter tuning (BAO)
● Optimize distance metrics?: piecewise 

continuous function, hard optimization problem
● End-to-end approach
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A Miss matching of jets pairs

mH =124.6 
mZ = 88.9

mZ = 89.9
mH = 104.2
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CSC- Approach

● GNN - Node classification (instantiation) 
problem, permutation invariant …

● Arch: FC - Transformer 
● Results:

○ Similar performance to classical 
approach 

○ Baselines:
■ Chi-squared
■ Z only

● Can find events that reduce background by 
assigning a score per event

● Wiring is important 
● Using information about the ordering (tree 

structure) performance can be improved 
● Efforts to obtain MLE (A*, beam search…) all 

for small number of leaves 
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A. Accuracy increase with new wiring, ordering by tree structure

B. Mass distributions of signal



Thank you!



Results

WP Εff (b) Mistag (g) Mistag (ud) Mistag (c)

Loose 90% 2% 0.1% 2%

Medium 80% 0.7% <0.1% 0.3%

b-tagging

better

LHC

b-tagging c-tagging

WP Εff (c) Mistag (g) Mistag (ud) Mistag (b)

Loose 90% 7% 7% 4%

Medium 80% 2% 0.8% 2%


