

Nanoindentation of NbTa/Nb₃Sn wires

Aleksandra Bartkowska, EN-MME-MM

Indentation test: a hard tip with known mechanical properties is pressed into a material with unknown mechanical properties

Hardness – resistance to indentation

Introduction to nanoindentation

- Capacity of applying ultralow loads detecting nanometer scale deflections
- Load and displacement curves are measured continuously during the load-unload curve
- Enables evaluating contact stiffness (S), elastic modulus (E) and hardness (H)
- Working in a load and depth control modes
- The analysis of load-displacement curve is done automatically according to the ISO 14577 standard

$$E_r = \frac{\sqrt{\pi} \cdot S}{2 \cdot \beta \cdot \sqrt{A_p(h_c)}} \qquad \qquad \mathbf{H}_{\mathrm{IT}} = \frac{\mathbf{F}_{\mathrm{max}}}{\mathbf{A}_p}$$

h

Surface profile

under load

Our equipment

Basic information about the device:

- Anton Paar UNHT³ nanoindentor with Berkovich tip
- Indentation testing: analysis of mechanical properties of material at the nanoscale (hardness, elastic modulus, plastic and elastic energies of deformation, creep)
- Atomic Force Microscope (AFM) analysis of indents, thin films, etc.
- Scratch testing (MCT³): to measure adhesion and scratch resistance of coatings
- Max. nanoindentation load: 100 mN
- Resolution:
 - Depth: 0.003 nm
 - Load: 0.003 µN

Tested specimens

1st group: NbTa subelements at various diameters – preliminary study for internal oxidation of wires (without added oxygen sources)

Tested specimens

Analysis of Nb-Ta filaments

Analysis of Cu

Indents made on the Cu-filaments interface were discarded

Nanomechanical characterization of NbTa filaments and Cu

Nanomechanical characterization of NbTa and Cu

Microhardness vs. nanoindentation

Hardness NbTa filaments

Additional measurements performed at 100 mN load using microhardness tester

Hardness NbTa filaments

Evaluation of reduced Young's modulus

Er NbTa filaments

Tested specimens: MQXF wires

- <u>4 states:</u> unreacted (rolled and non-rolled) and reacted (rolled and unrolled)
- Nanoindentation parameters: Nb/Nb₃Sn subelements (20 mN), Cu (100 mN)

Unreacted

Reacted

Rolled unreacted

Rolled reacted

Evaluation of nanomechanical properties of MQXF wires (Nb/Nb₃Sn)

- No significant differences between rolled and unrolled conditions for Nb and Nb₃Sn
- Significant increase in H and E_r in reacted samples

Indentation load-displacement curve

HVIT/E_r for Nb/Nb₃Sn

Nb/Nb₃Sn

Analysis of Cu/CuSn hardness

Load: 100 mN to decrease indentation size effect

Cu/CuSn 140 100 Load: 100 mN Load: 100 mN 130 external Er (Reduced Young's modulus) external Unreacted Unreacted 90 HVIT (Vickers hardness) internal internal 120 110 80 Reacted 100 Reacted 70 90 80 60 70 50 Virgin Rolled unreacted Rolled reacted Reacted Virgin Rolled unreacted Reacted Rolled reacted $\sqrt{\pi} \cdot S$ **HVIT decreases after HT** Low Er – pile up effect $E_r =$ 2.

Analysis of Cu/CuSn hardness

Unreacted wire – refined Cu grains Reacted wire – larger grains with subgrains

Reacted wire

Unreacted wire

EPARTMENT

Comparison with literature

Sample	Measured E _r	Lit. value
Nb	105-110	92-110
Nb ₃ Sn	160	124-179
Cu (external)	67-84	80-125

