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What do we need from software?

• Code Efficiency


• Fast execution


• High throughput


• Scalable


• Human Efficiency


• Low barrier to entry


• Rapid prototyping


• Broad ecosystem 


• Excellent tooling
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Programming Languages in HEP

• Our languages do change over time, even if at any moment they might seem 
extremely fixed…

[Thanks to Jim Pivarski, Princeton]
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If I had to pick one thing likely to still be alive 30 years from now I would choose FORTRAN. It is as safe a bet 
as to predict that everything else is going to change. 30 Years of Computing at CERN, Paolo Zanella, 1990

http://30%20Years%20of%20Computing%20at%20CERN
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Where are we now?

5

Metric C++ Python

Performance ✅ ❌

Expressiveness ⚠ ✅

Learning Curve ❌ ✅

Safety (memory) ⚠ ✅

Composability ❌ ⚠

There are always tradeoffs
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Code often gets started in 

Python, then at some point is 

rewritten in C++…

The Two Language Problem
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Julia Motivations
• Invented 2012 at MIT (mostly)


• Jeff Bezanson, Stefan Karpinski, Viral B. Shah, Alan Edelman


• Design goals and aims


• Open source


• Speed like C, but dynamic like Ruby/Python


• Obvious mathematical notation


• General purpose like Python


• As easy for statistics as R


• Powerful linear algebra like in Matlab


• Good for gluing programs together like the shell

[Bezanson, Karpinski, Shah, Edelman - "Why We Created Julia" (2012)]
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We love all of these languages [Matlab, Lisp, Perl, Ruby, Mathematica, C]; they are wonderful and powerful. For the work we do — scientific computing, …  
— each one is perfect for some aspects of the work and terrible for others. Each one is a trade-off. 

… we want more. 

Something that is dirt simple to learn, yet keeps the most serious hackers happy.

https://julialang.org/blog/2012/02/why-we-created-julia/


Julia in Practice
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Julia is Easy

• Excellent REPL mode and notebooks


• Jupyter (you know it) plus reactive 
notebooks in Pluto


• Dynamically typed (runtime), but with a 
powerful type system


• Garbage collected


• Expressive maths syntax


• Mathematical symbols and notation 
can be written directly


• Extensive standard library


• Mostly written in Julia - high 
performance and comprehensible

8
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• It’s not an interpreter 


• Just ahead of time compiler (JAOT)


• Powered by LLVM


• Specialises and de-virtualises


• Built in vectors and arrays


• Static sizing available


• Pinpoint optimisation (@fastmath*, @simd)


• Reflection and metaprogramming built in


• User friendly native support for threads


• And GPU support too!

Data taken from https://julialang.org/benchmarks/, also see 
more sophisticated benchmarks from the Chapel developers 

Julia is Fast

9

*Can be applied to single statements or code blocks, 
more aggressive than --ffast-math

Julia, C and Python 
Microbenchmarks

https://julialang.org/benchmarks/
https://mastodon.social/@chapelprogramminglanguage/113307017521956669
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Julia is Fast
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From [arXiv: 2207.12762], Mosè Giordano, Milan Klöwer, Valentin Churavy

Double precision 

Double precision throughput 
on Fugaku

*Can be applied to single statements or code blocks, 
more aggressive than --ffast-math

Julia, C and Python 
Microbenchmarks

https://julialang.org/benchmarks/
https://mastodon.social/@chapelprogramminglanguage/113307017521956669
https://arxiv.org/abs/2207.12762
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• Julia has an outstanding package manager


• Express package interdependence with as few or 
as many constraints as needed - Project.toml


• Preserve an exact environment for reproducibility - 
Manifest.toml (with binary reps) 

• Easy to create and register your own packages


• Semantic versioning universally adopted


• Built in profiling and debugging


• First class VSCode integration


• Easy to use package documentation system 

Tooling is Great
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Rich Ecosystem
More than 10k packages  
available 

Plots.jl Makie.jl PGFPlots.jl

Visualization
JuliaData JuliaStats

Data and Statistics

Pluto.jl IJulia.jl

Notebooks

Machine learning

MJL.jl Flux.jl

JuliaDiffSciML

JuliaGPU

GPU support

CUDA.jl

AMDGPU.jl

oneAPI.jl

Metal.jl

KernelAbstractions.jl

Turing.jl

JuliaInterop

CxxWrap.jl


PythonCall.jl


RCall.jl


MathLink.jl

Interoperability 
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MathLink.jl

Interoperability 

pkg > add DifferentialEquations 
. . . 
julia > using DifferentialEquations
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Secret Sauce I
Type system

• Julia has an advanced type system (based on set theory)


• Basic types are part of the type system


• Concrete types are always leaves - performance!


• The tree terminates at !"Any


• Hierarchy


• A <: B - type A is a subtype of B


• B >: A - type B is a supertype of A


• Powerful and sophisticated type expressions


• AbstractArray{T, 2} - expresses any two 
dimensional array type of Ts


• And there are many array types (dense, sparse, diagonal, 
tri-diagonal, static, GPU arrays…) - any of them will work 
here

12
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Secret Sauce II
Multiple dispatch

13

• Multiple dispatch 


• Choice of method to use depends dynamically 
on all argument types


foo(f!"Real, g!"Real) 

foo(f!"Real, g!"Complex) 

foo(f!"AbstractFloat, g!"Complex) 

foo(f!"AbstractFloat, AbstractArray{T, 1}) 

foo(f!"AbstractFloat, AbstractArray{T, 2}) 

foo(f!"Float64, SparseArray{T, 2}) 

• All of these things will foo their arguments but 
the implementation can be optimised


• And the compiler will generate low level 
machine code for each method

• You can add methods for types defined in other 
packages 

• This allows packages to compose without 
knowing about each other

In our ODE example, 
DifferentialEquations and 
Plots know nothing about 
Measurements 

See The Unreasonable Effectiveness of Multiple Dispatch, Stefan Karpinski [a, b, c]

https://www.youtube.com/watch?v=kc9HwsxE1OY
https://www.juliaopt.org/meetings/santiago2019/slides/stefan_karpinski.pdf
https://discourse.julialang.org/t/the-unreasonable-efficiency-and-effectiveness-of-multiple-dispatch-your-favourite-examples/119477


Julia for GPUs and Scientific 
Computing
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Julia on GPUs
• Julia’s JAOT compilation model makes it ideal for running on GPUs


• Compiler can target the specific GPU model at runtime


• Supported backends are CUDA.jl, AMDGPU.jl, Metal.jl and OneAPI.jl


• Applications with GPU support are easy


m = Dense(10,5) |> gpu 

• Array based calculations are trivial to execute on the GPU


a = CuArray([1 2 3]) # CuArray allocates  
                     # on the device 

a * 2 

• Packages which do LinearAlgebra, FFTs, Neural Networks, etc. all support 
the GPU backends


• Kernel programming is close to the native toolkits


• KernelAbstractions.jl allows writing of generic code, backend 
independent  

15

GPU performance

Rodinia benchmarks implemented in Julia with CUDA.jl, 
Besard, Tim, et al. “Rapid software prototyping for 
heterogeneous and distributed platforms.” Advances in 
engineering software 132 (2019): 29-46 

https://github.com/JuliaParallel/rodinia
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Julia HPC Codes
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• FastIce.jl is a state of the art thermo-mechanically coupled full-Stokes ice flow 
model


• Essential to model correctly ice streams - corridors of fast flowing ice, 3km/year


• Multiscale problem: ice sheets 1000km, stream 100km, shear margins <1km


• Uses KernelAbstractions.jl


• Write code once, run on any GPU


• Code is extremely close to the maths!


• Aim for locality in the code


• Asynchronous non-blocking communication


• Scales up to 21k GPUs at >90% weak scaling on LUMI

Languages that have run at the 
PetaFlop level: C/C++, Fortran 

and Julia



Julia in HEP
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Challenges of HEP Computing

• Large data volumes


• High computational costs


• Large-scale heterogeneous 
environments


• Legacy and maintenance 


• Old codebases


• Interoperability 


• Human challenges


• Train people to be effective 
fast (and retain)

18
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Data Formats in Julia
Including HEP data

• Reading industry standard data formats in Julia is well 
supported


• HDF5, Parquet, Arrow


• We have some very specific data formats in HEP and 
these can be read too


• UnROOT.jl is a pure Julia package that can read 
TTrees and RNTuples


• Backend for EMD4hep.jl, implementing a 
complete EDM for future colliders


• Other HEP data format readers include LHEF and 
LCIO

19

TTree reading 
performance
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QuantumElectrodynamics.jl
High performance QED generator

20

e− + laser → e− + γ

e− + laser → e− + (e+e−)

• All you need for QED!


• Interfaces for particles; phase space points; computational 
models, scattering, distributions, laser fields, events 


• Dev-tooling, eco-system and composability make development and 
end-to-end simulations much easier


• Type system allows the right level of physics abstractions


• Adding new things is much easier


• Multiple dispatch used to slot in analytic formula, huge performance 
benefit


• High performance code generated, along with easy GPU integration
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Geant4.jl
Or how to mesh easily with existing HEP codes

• How to make a large C++ application available in Julia?


• Answer: CxxWrap.jl provides the binding layer and WrapIt 
helps automate the generation of these bindings


• The Geant4 C++ itself is provided via Julia’s excellent BinaryBuilder 
system, making installation a snap!


• Improved user interfaces (less boilerplate) and an interactive 
environment


• Speed is as fast as Geant4 native


• Use the power of Julia’s visualisation  
and plotting packages to see results

21

function do_plot(data!"TestEm3SimData) 
    (;fEdepHistos, fEdepEventHistos, fTrackLengthChHistos, fAbsorLabel) = data 
    lay = @layout [°; ° °] 
    plot(layout=lay, show=true, size=(1400,1000)) 
    for (h, l) in zip(fEdepHistos, fAbsorLabel) 
        plot!(subplot=1, h, title="Energy Deposition",  
              xlabel="layer #", label=l, show=true) 
    end 
    ... 
end
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Reconstruction

• JetReconstruction.jl implements sequential jet 
reconstruction algorithms natively in Julia


• Performance is better than Fastjet


• Takes advantage of Julia compiler’s native use of 
SIMD registers


• Spot optimisations then accelerate minimisation 
finding (next pseudo jets to merge or finalise)


• Better and more flexible ergonomic interfaces


• Easier use of experiment specific types


• Nice integration with plotting libraries


• Used to find jets in ATLAS and FCCee studies

22

pp

e+e−
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Analysis

• Julia is a naturally productive language for analysis 
use


• Close integration with plotting, statistics, 
numerical solvers, machine learning…


• e.g., hemisphere mixing in ATLAS Z’ analysis 
using LorentzVectorsHEP.jl and 
Rotations.jl


• Can rapidly prototype, e.g., in notebooks


• But it’s still lightning fast


• Growing ecosystem of HEP specific packages to 
work with four-vectors, particles, decays, 
lineshapes, partial wave functions and so on

23
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raw

RadiationDetectorSignals.jl

RadiationDetectorSignals.jl

LegendHDF5IO.jl / LegendDataTypes.jl

RadiationDetectorDSP.jl

LegendSpecFit.jl

BAT.jl

RadiationSpectra.jl

dsp hit evtsim

SolidStateDetectors.jl

LegendGeSim.jl

LegendDataManagement.jl

LegendVisu.jlLegendDSP.jl LegendEventAnalysis.jl

LegendBSM.jl

DataTier

Official

Physics 

ana

ParallelProcessingTools.jl

Registry

IO

Metadata & Pars

HPC Computing

LegendML.jl

Why not run your experiment  
in Julia?
• Yes, you can! LEGEND experiment 

neutrinoless double beta decay 
Ge detector at Gran Sasso


• Complete secondary software 
stack running in Julia*


• Simulation


• Reconstruction


• Analysis


• There is no part that Julia can’t 
handle

24

*Used for validation against Python 
stack and exploring technology for 
upgrade to LEGEND-1000

[Plots and graphics Florian Henkes]

https://indico.cern.ch/event/1410341/contributions/6135614/


Conclusions
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Julia’s Key Features

• Easy to learn and use


• Great tooling


• Broad ecosystem with  
outstanding composition


• Fast to execute


• Scales really well


• Support for GPUs


• Integrates with existing code 
(in other languages) 

26

Human productivity ✅

Code productivity ✅

Migration and adoption ✅
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Code productivity ✅

Migration and adoption ✅

And… the compiler is still advancing with beneficial features arriving 
- Improved artifact distribution, easy for CVMFS (1.11) 

- Improved static compilation to callable libraries (1.12)
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Julia for HEP
• Julia is the best-in-class language for scientific computing


• And we know we need to do a lot of that in HEP


• Fast developing set of packages to add to and bridge to all 
that we need in HEP


• Julia can be productive for your code now


• Julia has a very active and supportive user and developer 
community


• Slack*, Discourse , YouTube


• And we have the HSF JuliaHEP group as well

27

Julia adoption would really benefit high-energy physics 
There is a lot happening already - lots of scope to do even more!

*We hang out on the #HEP channel!

https://julialang.org/slack/
https://discourse.julialang.org
https://www.youtube.com/@TheJuliaLanguage
https://hepsoftwarefoundation.org/activities/juliahep.html
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Julia in CHEP

• ROOT RNTuple implementation in Julia programming language, Monday 
13h30 (Track 5, Large Hall B)


• EDM4hep.jl: Analysing EDM4hep files with Julia, Monday Poster Session 
(Track 5, Ground Floor Lobby)


• R&D towards heterogenous frameworks for Future Experiments, Monday 
16h15 (Track 3, Room 1.A (Medium Hall A))


• Comparative efficiency of HEP codes across languages and architectures, 
Monday 16h33 (Track 6, Room 2.A (Seminar Room))


• Fast Jet Reconstruction in Julia, Wednesday 13h30 (Track 3, Medium Hall 
A)


• BAT.jl, the Bayesian Analysis Toolkit in Julia, Wednesday 17h09 (Track 5, 
Large Hall A)


• Navigating the Multilingual Landscape of Scientific Computing: Python, 
Julia, and Awkward Array, Thursday 13h30 (Track 9, Large Hall B)

28

JetReconstuction.jl

https://indico.cern.ch/event/1338689/contributions/6016137/
https://indico.cern.ch/event/1338689/contributions/6016139/
https://indico.cern.ch/event/1338689/contributions/6010028/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6009999/
https://indico.cern.ch/event/1338689/contributions/6016193/
https://indico.cern.ch/event/1338689/contributions/6010686/
https://indico.cern.ch/event/1338689/contributions/6010686/


Backup
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Where would Julia fit for tradeoffs?

30

Metric C++ Python Julia

Performance ✅ ❌ ✅

Expressiveness ⚠ ✅ ✅

Learning Curve ❌ ✅ ✅

Safety (memory) ⚠ ✅ ✅

Composability ❌ ⚠ ✅

• Julia isn’t perfect or 
magic


• Startup time


• Only LLVM backend


• Static binaries and 
performance analysis a 
bit cumbersome


• Pure Julia ML libraries 
not beating PyTorch


• But it does have clear 
advantages in many areas 


• So its tradeoffs compare 
favourably
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Computer Language Benchmarks Game
Posted by the Chapel developers

“only #JuliaLang inhabits a similar space in terms of code compactness & 
performance as Chapel”

31

https://mastodon.social/@chapelprogramminglanguage/113307017521956669
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Computer Language Benchmarks Game
Posted by the Chapel developers
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performance as Chapel”
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https://mastodon.social/@chapelprogramminglanguage/113307017521956669


Native Threading support

• Support for OpenMP-like models


• Parallelization of loops


• Support for M:N threading


• M user threads are mapped 
onto N kernel threads


• Support for task migration


• Tasks can be started, 
suspended, and resumed again 

Parallel computing

Taken from [https://blog.glcs.io/parallel-processing]

https://blog.glcs.io/parallel-processing


Function and methods
Multiple dispatch

f(::Any, ::Number)

f(::T, ::T) where {T<:Number}

f(::Int64, ::Int64)

f(::String, ::Any)

Float64<:AbstractFloat<:Real<:Number<:Any

String

Int64

Float64

String Int64 Float64

Reproduced from [https://scientificcoder.com/the-art-of-multiple-dispatch]

https://scientificcoder.com/the-art-of-multiple-dispatch


Expressiveness
Multiple dispatch II

Reproduced from [S. Karpinski, “The unreasonable effectiveness of multiple dispatch”, JuliaCon2019]

Dispatch 
degree Syntax Dispatched on Selection power

None f(x,y,z) { } 1

Single x.f(y,z) {x} |X|

Multiple f(x::X,y::Y,z::Z) {x,y,z} |X|⋅|Y|⋅|Z|



Unreasonable effectiveness

• Allows generic code based on 
abstract types


• Allows arbitrary optimization


• Orthogonal development


• Solves the expression problem

Multiple dispatch III
using DifferentialEquations, Plots 

g = 9.79         # Gravitational constants 
L = 1.00         # Length of the pendulum 

#Initial Conditions 
u₀ = [0, π / 60]            # Initial speed and initial angle 
tspan = (0.0, 6.3) 

#Define the problem 
function pendulum(du,u,p,t) 
    θ  = u[1] 
    dθ = u[2] 
    du[1] = dθ 
    du[2] = -(g/L)*θ 
end 

#Pass to solvers 
prob = ODEProblem(pendulum, u₀, tspan) 
sol = solve(prob, Tsit5(), reltol = 1e-6) 

# Analytic solution 
u = u₀[2] .* cos.(sqrt(g / L) .* sol.t) 

plot(sol.t, getindex.(sol.u, 2), label = "Numerical") 
plot!(sol.t, u, label = "Analytic")



Unreasonable effectiveness

• Allows generic code based on 
abstract types


• Allows arbitrary optimization


• Orthogonal development


• Solves the expression problem

Multiple dispatch III
using DifferentialEquations, Measurements, Plots 

g = 9.79 ± 0.02; # Gravitational constants 
L = 1.00 ± 0.01; # Length of the pendulum 

#Initial Conditions 
u₀ = [0 ± 0, π / 60 ± 0.01] # Initial speed and initial angle 
tspan = (0.0, 6.3) 

#Define the problem 
function pendulum(du,u,p,t) 
    θ  = u[1] 
    dθ = u[2] 
    du[1] = dθ 
    du[2] = -(g/L)*θ 
end 

#Pass to solvers 
prob = ODEProblem(pendulum, u₀, tspan) 
sol = solve(prob, Tsit5(), reltol = 1e-6) 

# Analytic solution 
u = u₀[2] .* cos.(sqrt(g / L) .* sol.t) 

plot(sol.t, getindex.(sol.u, 2), label = "Numerical") 
plot!(sol.t, u, label = "Analytic")


