FlashSim: End-to-end simulation with Machine Learning

NFN

Istituto Nazionale di Fisica Nucleare

Future Artificial Intelligence Research

Andrea Rizzi, University and INFN Pisa on behalf of The CMS Collaboration

> **CHEP 2024 - Krakow, Poland 21/10/2024**

Centro Nazionale di Ricerca in HPC, **Big Data and Quantum Computing**

Ref: [CMS DP-2024/080](https://cds.cern.ch/record/2913372?ln=it)

Outline

- Why faster simulation?
- What we mean with end-to-end?
- Generative AI
- Normalizing flows and flow matching
- CMS Flashsim structure
- Accuracy of simulated variables
- Speed, bottlenecks and oversampling
- **Conclusions**

Simulation at LHC

- Simulation is a large fraction of LHC experiment computing costs
- Tens/hundreds of **billions of events** needed in analysis for proper modelling of backgrounds and signals
- The increase in number of events and complexity of single events for HL-LHC further increases the simulation needs
- Various R&D approaches in CMS to speed-up simulation, often using ML (see [Phat's Talk](https://indico.cern.ch/event/1338689/contributions/6016191/))
	- Speed-up of slowest parts of fullsim ([Kevin's talk](https://indico.cern.ch/event/1338689/contributions/6015962/))
	- FastSim accuracy improvements ([Dorukhan's](https://indico.cern.ch/event/1338689/contributions/6016222/) [poster\)](https://indico.cern.ch/event/1338689/contributions/6016222/)
	- Usage of Delphes for current HL-LHC studies
	- **End-to-End ML for analysis**

"la mia parabola" Figure by Federico Carminati, independent parallel inventions by **this talk!**
Vincenzo Innocente & Kyle Cramer (Vincenzo Innocente & Kyle Cramer that $\frac{1}{2}$

CMS Data Tiers / end-to-end

CMS data tiers

- **RAW & RECO** => lowest level: detector hits, reconstructed objects including all intermediate steps
- **AOD** => subset of RECO with higher level objects
- **MINIAOD** => compact version of AOD
- **NANOAOD**=> ntuple like format usable by most analysis, only ~1-2Kb/event of information

NANOAOD is one of the enabling factors for a general purpose end-to-end simulation:

- Reasonably "simple" target
- Still usable for analysis

Generating LHC events with AI $\overline{}$ $\overline{}$

Generate an LHC event

an LHC event of CMS experiment with a Higgs boson decay to a pair of muons

Accuracy in image generation

Qualitative definitions, no requirement of statistical properties of generated samples

Accuracy for Physics Analysis

- A simulation **usable for analysis** should properly **reproduce PDFs** both for individual variables and for their correlations
- Many AI generative tools (e.g. GAN, VAE) work reasonably well *qualitatively* but are severely limited when looking at distribution details
	- mode collapse for multimodal distributions
	- o bridging between peaks

CMS

- accurate in mean and variance but limited handling of long tails
- We tested various alternative models including W-GAN and other modified losses
	- limited success on the low dimensionality problem we face

Normalizing Flows: generative model for *pdf*s!

f(x) as a discrete flow

CMS

- *●* In order to increase the expressivity of *f(x)* we can use a **chain** of simple invertible transformations
- The parameters of each transformation are determined by a DNN that takes as input the previous state and the external conditioning information

- In order to catch **correlations** you want one variable to depend on others f(x;θ), but to keep it **invertible** you cannot transform the variables θ as they are need to compute $f¹(v;\theta)$
	- Autoregressive: 1st variable depends on nothing, 2nd variable depends on 1st, 3rd on (1st, 2nd)... etc..
	- Coupling: at each step only transform some variables, and explicitly depend on the others

Continuous Flows

Possible solution: continuous flow

 $f(0; z) = z = Gaussian$ $f(1; z) = \text{target p.d.f.}$ $f(t + dt) = f(t) + v(t) \cdot dt$ $f(t + dt) = f(t) + DNN(f(t)) \cdot dt$

A technique called Flow Matching allows to train continuous flows learning the vector field v_t

- Solves the conditioning problem: each step is infinitesimal hence $f(t) \sim f(t+dt)$
- No need to chose a function for the transformation as we simply learn its gradient in every point of space
- At inference time we will need to integrate the path from $t=0$ to $t=1$
- Use a single DNN to predict the vector field in any point
	- while discrete flow have one DNN for each step 10

see [https://arxiv.org/abs/2210.02747,](https://arxiv.org/abs/2210.02747) and Z [https://arxiv.org/abs/2302.00482,](https://arxiv.org/abs/2302.00482) figure from https://ehoogeboom.github.io/post/en_flows/

CMS FlashSim

Goals and ideas of CMS "FlashSim"

- Provide an **analysis agnostic simulation** exploiting the common NANAOD format as a baseline target of the simulation
- Be **sample independent**, learning the **"detector response"** to different type of generated particles and in different running conditions
- Reach a speed that is **orders of magnitude faster** than existing simulations
- Maintain an accuracy that is good enough for analysis, with a "delta" to full-sim that is the same order of magnitude of the delta between full-sim and real data.

FlashSim structure

A **reconstructed object** may originate from **multiple sources**

- genuine signal
- particles with similar signature
- detector interactions and decays
- fakes, duplicates, pileup

Each object is handled by FlashSim with various models

- An **efficiency model** for each source
- A **properties model** for each source

Efficiency models

Given a soure object to we get a reconstructed one?

- Efficiency models are **trained as simple classifiers** with binary cross-entropy loss
	- output can be interpreted as a probability!
- At inference time we just **toss in [0,1] and compare with model probability**

Duplicates can be handled by training a second classifier to predict when a second copy is produced

13

CMS

Properties models

- For each object we need to **simulate all its properties**
	- e.g. momentum, eta, phi, tagging variables, ID, isolation, etc..
- Some properties have obvious correlations with generator level information
	- generated vs reconstructed four-momentum
	- MC flavour with tagging variables
- Two crucial points to reproduce correlations
	- Conditioning:
		- e.g. is it b-quark jet?
	- Transformations:
		- standard scaling
		- **■** better learn P_T^{reco} or P_T^{reco}/P_T^{gen} ?
		- tails matter for physics (apply logs when needed)

Flash/Full

Flashsim status

- Current FlashSim prototypes simulates all object properties for most of the NANOAOD format collections
- Major sources of signal and background are considered, more to be added in the future
- Currently missing: trigger information (some part is trivial, some is less)

Results on individual models

CMS

Results on 4M events training

Trained on a cocktail of a few samples with different signatures covering different corners of the phase

space

○ likely suboptimal choice, dedicated samples (e.g. flat QCD or particle guns) could also be considered

FlashSim learned some of the detector features present in the simulation (and missed some other)

Accurate conditioning

- A single model should learn to produce different distributions for different conditioning values (momentum of a particle, flavour of the quark producing a jet, decay mode of a particle, etc…)
- flowmatching is incredibly accurate at catching the multidimensional correlations between conditioning variables and output ones

Example of correlations

Full Event simulation and toy analyses

Event simulation chain

Simulating a full NANOAOD event implies several steps, to be repeated for each object, for each source

- extract the conditioning information
- run the efficiency model
- run the properties model
- (merge output from different sources)

Some models are conditioned not only on *generator* information but on *reconstructed* information from previous steps (e.g. MET is conditioned on the various reconstructed objects ; electron and photon reconstruction are cross-conditioned)

FlashSim event simulation is **extracting data with RDataFrame** and processing batches of events in parallel with **PyTorch**

Simulated ~100M events from various processes, some of them never seen during training.

Derived quantities

- Once full NANOAOD event are available we can compare derived quantities and implement some analyses
	- Two toy analysis corresponding to VBF Higgs to muons search and ZH→ llbb have been tested comparing flashsim with fullsim
	- Analyses tested all the way down to the final DNN output, comparing different samples, some never seen during training

Muons

Medium

Signal Region

DNN output

Speed and bottlenecks

How fast is FlashSim?

- The current prototype with \sim 20 properties model and ~20 efficiency models, starting from existing generated samples runs between 10Hz and 1KHz
	- Accuracy of integration
	- Availability of GPU vs Single CPU
- How fast do we need FlashSim to be
	- If you already have generated samples, as fast as possible
	- If the generator is very slow, we are easily in the shadow of the generator
- What if we can avoid being generator-speed limited by **reusing** generated events?
	- Overampling!

- Typical LHC MC samples are randomly sampled "twice"
	- in the generator
	- in simulating the detector response
- In many cases a large part of the uncertainty originates from the detector response
	- generator information can be reused

We call **"oversampling**" the repeated usage of the same generator event for multiple simulations

- Proper statistical treatment is needed for events originating from "same gen"
	- count events that end up in the same bin of a histogram as correlated
	- consider events in different bins as uncorrelated

Is oversampling introducing biases?

Let's test it against full sim

- We start from a sample for which we have 8M full sim events
- We take a fraction $(1/6th, 1.3M$ events) of the full sim events and we can check how oversampling (6x or 10x) it would compare to the full sim sample

- Typical LHC MC samples are randomly sampled "twice"
	- in the generator
	- in simulating the detector response
- In many cases a large part of the uncertainty originates from the detector response
	- generator information can be reused

We call **"oversampling**" the repeated usage of the same generator event for multiple simulations

- Proper statistical treatment is needed for events originating from "same gen"
	- count events that end up in the same bin of a histogram as correlated
	- consider events in different bins as uncorrelated

- Typical LHC MC samples are randomly sampled "twice"
	- in the generator
	- in simulating the detector response
- In many cases a large part of the uncertainty originates from the detector response
	- generator information can be reused

We call **"oversampling**" the repeated usage of the same generator event for multiple simulations

- Proper statistical treatment is needed for events originating from "same gen"
	- count events that end up in the same bin of a histogram as correlated
	- consider events in different bins as uncorrelated

Conclusions

- We implemented the first complete working prototype of an end-to-end simulation, using ML, for CMS NANOAOD format
- A good tradeoff between speed and accuracy has been found, but we can further tune it as needed
- Tests on toy analyses show a good accuracy also for derived quantities, next tests could be on real analysis
- We introduce the oversampling technique to maximize the exploitation of generator level MC event

References:

- DPS Note with more plot and details:
	- [CMS DP-2024/080](https://cds.cern.ch/record/2913372?ln=it)
- CMS Note with earlier prototype
	- [CMS-NOTE-2023-003](https://cds.cern.ch/record/2858890?ln=it)
- Paper on toy dataset (see Filippo's talk on [Tuesday 17:27 track 5\)](https://indi.to/8frYG)
	- [arxiv:2402.13684](https://arxiv.org/abs/2402.13684)

Backup

Vertex and Pileup

30

Secondary Vertices

Secondary Vertex from Taus and Heavy Flavour

SV from GenJets

CMS

Jets and Fake Jets

34

Tau properties

Counts

 10^5

 $10⁴$

 $10³$

 $10²$

 $10¹$

 $10⁰$

Muon features

CMS Simulation Preliminary

Electrons

CMS.

Photon from generator level photons

42

43

VBF Higgs to mumu

ODE integration accuracy

CMS

4.5

4

Flow Matching as a solution

Main idea:

Learn vector field u, approximation of v

u is the field going from noise to data under a Gaussian assumption

 $y = NN(x)$ $Loss = || u - v ||$

$$
t=0:
$$

\n
$$
p(z) = N(0,1)
$$

\n
$$
t=1:
$$

\n
$$
p(z) = N(x, \text{sigma_min})
$$

$$
p_t(z|x) = \mathcal{N}(z|tx, (t\sigma_{\min} - t + 1)^2),
$$

$$
u_t(z|x) = \frac{x - (1 - \sigma_{\min})z}{1 - (1 - \sigma_{\min})t},
$$

CMS

Oversampling: statistical treatment

Usually, a histogram is filled with events (and their weights)

Oversampling \rightarrow the final histogram is given by the weighted sum of *sub-histograms* filled with the **distributions of events sharing the same GEN**

Note: the final uncertainty is larger than just calling TH1::Fill()

N = oversampling factor

Final Histogram

- Non-oversampled case
	- \circ *w* statistical weight associated with the MC event
	- For the *i*-th bin of an histogram, the probability of being in this bin and the associated uncertainty are

$$
p_i = \frac{\sum_{j \in \text{bin}} w_j}{\sum_{k \in \text{sample}} w_k} \qquad \sigma_i = \frac{\sqrt{\sum_{j \in \text{bin}} w_j^2}}{\sum_{k \in \text{sample}} w_k}
$$

- Oversampled case
	- *○* A *fold* is the set of RECO events sharing the same GEN

$$
p_i = \frac{\sum_{j \in \text{bin}} \sum_{l \in \text{fold} \in \text{bin}} w_{jl}}{N \sum_{k \in \text{sample}} w_k} = \frac{\sum_{j \in \text{bin}} \sum_{l \in \text{fold} \in \text{bin}} w_{jl}/N}{\sum_{k \in \text{sample}} w_k} \equiv \frac{\sum_{j \in \text{bin}} w_{j} p_{j}^{\text{fold}}}{\sum_{k \in \text{sample}} w_k}
$$

$$
\sigma_i = \frac{\sqrt{\sum_{j \in \text{bin}} (w_{j} p_{j}^{\text{fold}})^2}}{\sum_{k \in \text{sample}} w_k}
$$

Discrete Flows: *transforms*

How do we transform the variables? Various ways to do it (as long as the transformation is invertible!)

Each model is made up of multiple conditioner+transformation blocks

This gives us an expressive final transformation with good correlations between variables

Affine:

$$
\tau(\mathrm{z}_i;\boldsymbol{h}_i)=\alpha_i\mathrm{z}_i+\beta_i
$$

Autoregressive flow

Some technical info

FlashSim uses the following packages and tools

- **RDataFrame**
- numpy
- pytorch
- torchcfm and nflow

Data transfer RDF <--> numpy not yet fully efficient (would benefit from RDF "custom batch process" capabilities)

53