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Simulation at LHC
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● Simulation is a large fraction of LHC 
experiment computing costs

● Tens/hundreds of billions of events needed 
in analysis for proper modelling of 
backgrounds and signals

● The increase in number of events and 
complexity of single events for HL-LHC 
further increases the simulation needs

● Various R&D approaches in CMS to speed-up 
simulation, often using ML (see Phat’s Talk)

○ Speed-up of slowest parts of fullsim (Kevin's talk)
○ FastSim accuracy improvements (Dorukhan’s  

poster)
○ Usage of Delphes for current HL-LHC studies
○ End-to-End ML for analysis

“la mia parabola” Figure by Federico Carminati, independent parallel inventions by 
Vincenzo Innocente & Kyle Cramer this talk!

https://indico.cern.ch/event/1338689/contributions/6016191/
https://indico.cern.ch/event/1338689/contributions/6015962/
https://indico.cern.ch/event/1338689/contributions/6016222/
https://indico.cern.ch/event/1338689/contributions/6016222/


CMS Data Tiers / end-to-end

CMS data tiers

● RAW & RECO => lowest level: detector hits, 
reconstructed objects including all 
intermediate steps

● AOD => subset of RECO with higher level objects
● MINIAOD => compact version of AOD
● NANOAOD=> ntuple like format usable by most 

analysis, only ~1-2Kb/event of information

NANOAOD is one of the enabling factors for a general 
purpose end-to-end simulation: 

● Reasonably “simple” target
● Still usable for analysis
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“conditioning”
as in P( x|cond )Generating LHC events with AI

Generate an LHC event
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an LHC event of CMS experiment with a 
Higgs boson decay to a pair of muons



Accuracy in image generation

Qualitative definitions, no requirement of statistical properties of 
generated samples
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Accuracy for Physics Analysis

● A simulation usable for analysis should 
properly reproduce PDFs both for individual 
variables and for their correlations

● Many AI generative tools (e.g. GAN, VAE) work 
reasonably well qualitatively but are severely 
limited when looking at distribution details 

○ mode collapse for multimodal distributions
○ bridging between peaks
○ accurate in mean and variance but limited handling of 

long tails
● We tested various alternative models including 

W-GAN and other modified losses
○ limited success on the low dimensionality problem we 

face 
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Normalizing Flows: generative model for pdfs!

FullSim data, pdf unknown!multi-dimensional gaussian

What we know What we need

?
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f(x) as a discrete flow
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● In order to increase the expressivity of f(x) we can use a chain of 
simple invertible transformations

● The parameters of each transformation are determined by a DNN 
that takes as input the previous state and the external 
conditioning information

● In order to catch correlations you want one variable to depend on 
others f(x;θ), but to keep it invertible you cannot transform the 
variables θ as they are need to compute f-1(y;θ)

○ Autoregressive: 1st variable depends on nothing, 2nd 
variable depends on 1st, 3rd on (1st, 2nd)... etc..

○ Coupling: at each step only transform some variables, and 
explicitly depend on the others

coupling architecture



Continuous Flows
Possible solution: continuous flow

A technique called Flow Matching allows to train continuous flows 
learning the vector field 

● Solves the conditioning problem: each step is infinitesimal 
hence f(t) ~ f(t+dt) 

● No need to chose a function for the transformation as we 
simply learn its gradient in every point of space

● At inference time we will need to integrate the path from t=0 
to t=1

● Use a single DNN to predict the vector field in any point
○ while  discrete flow have one DNN for each step 10

see https://arxiv.org/abs/2210.02747, and 
https://arxiv.org/abs/2302.00482, figure from 
https://ehoogeboom.github.io/post/en_flows/

https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2302.00482


CMS FlashSim 

Goals and ideas of CMS “FlashSim”

● Provide an analysis agnostic simulation exploiting 
the common NANAOD format as a baseline target of 
the simulation

● Be sample independent, learning the “detector 
response” to different type of generated particles 
and in different running conditions

● Reach a speed that is orders of magnitude faster 
than existing simulations

● Maintain an accuracy that is good enough for 
analysis, with a “delta” to full-sim that is the same 
order of magnitude of the delta between full-sim and 
real data.
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○ arxiv:2402.13684

https://arxiv.org/abs/2402.13684


FlashSim structure

A reconstructed object may originate from multiple 
sources

● genuine signal
● particles with similar signature
● detector interactions and decays 
● fakes, duplicates, pileup

Each object is handled by FlashSim with various 
models

● An efficiency model for each source
● A properties model for each source
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Efficiency models
Given a soure object to we get a reconstructed one?

● Efficiency models are trained as simple 
classifiers with binary cross-entropy loss

○ output can be interpreted as a probability!
● At inference time we just toss in [0,1] and 

compare with model probability
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Prompt muon efficiency Prompt muon duplicate probability

Probability of a jet producing a mu

Fullsim Flashsim

Duplicates can be 
handled by training 
a second classifier 
to predict when a 
second copy is 
produced



Properties models
● For each object we need to simulate all its 

properties
○ e.g. momentum, eta, phi, tagging variables, ID, 

isolation, etc..
● Some properties have obvious correlations 

with generator level information
○ generated vs reconstructed four-momentum
○ MC flavour with tagging variables

● Two crucial points to reproduce correlations
○ Conditioning: 

■  e.g. is it b-quark jet?
○ Transformations: 

■ standard scaling
■ better learn PT

reco  or  PT
reco /PT

gen  ?
■ tails matter for physics (apply logs when needed)
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Flashsim status
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Physics objects Sources (one NN model for each source)
Number of simulated 
attributes per object

Jets Generator Jet Fake from PU 39

Muons Generator Muons Fake from Jets/PU Duplicates 53

Electrons Generator Electrons Generator Photons (prompt) Fake from Jets/PU 48

Photons Generator Photons (prompt) Generator Electrons Fake from Jets/PU 22

MET GenMET and HT 25

FatJets Generator AK8 Jets 53

SubJets Generator AK8 SubJets 13

Tau Reconstructed Jets with a Tau RecoJets without a Tau 27

Secondary Vertices Jets with Heavy Flavour Light Jets Taus 16

Non MET scalars (e.g. PV) Various event level inputs 16

FSRPhotons GenMuon/RecoMuon 6

● Current FlashSim prototypes simulates all object properties for most of the NANOAOD format collections
● Major sources of signal and background are considered, more to be added in the future
● Currently missing: trigger information (some part is trivial, some is less)



Results on individual models
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Results on 4M events training
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● Trained on a cocktail of a few samples with different 
signatures covering different corners of the phase 
space

○ likely suboptimal choice, dedicated samples (e.g. flat QCD or particle guns) 
could also be considered

● FlashSim learned some of the detector features 
present in the simulation (and missed some other)

Electron 
efficiencySample Events

tt̅ 800k

DY HT [100, 200], 2J MLL [200-1400] 930k

HH → bb bb 840k

X(3000) → Y(500) H(125) → (bb) (WW → 2q 2l𝜈) 147k

X → HH → qq qq (MX 900, 1200, 1800; MH 365, 400, 18) 90k

SMS TchiZH mNLSP200-1500 300k

X(1200) → Y(300) H(125) → bb 𝛾𝛾 400k

VBF H → 𝜏𝜏 270k

bbA → ZH → ll 𝜏𝜏 (M = 900) 33k

inefficiencies due to 
inactive detector

spikes due to pixel 
barrel layers



Accurate conditioning
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● A single model should learn to produce different distributions for 
different conditioning values (momentum of a particle, flavour of 
the quark producing a jet, decay mode of a particle, etc…)

● flowmatching is incredibly accurate at catching the 
multidimensional correlations between conditioning variables and 
output ones



Example of correlations

19



Full Event simulation 
and 

toy analyses 
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Event simulation chain
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Sample Events

tt̅ 100M

DY HT [100, 200] 25M

H → 𝜇𝜇 1M

ZH 300k

jj + ll (ewk) 8M

Simulating a full NANOAOD event implies several steps, 
to be repeated for each object, for each source

● extract the conditioning information
● run the efficiency model
● run the properties model
● (merge output from different sources)

Some models are conditioned not only on generator 
information but on reconstructed information from 
previous steps (e.g. MET is conditioned on the various 
reconstructed objects ; electron and photon 
reconstruction are cross-conditioned)

FlashSim event simulation is extracting data with 
RDataFrame and processing batches of events in 
parallel with PyTorch

Simulated ~100M events from various processes, some 
of them never seen during training.



Derived quantities
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Selection

Muons
pT > 20 GeV, |η| < 2.4, Iso < 0.25, 

MediumID

Jets pT > 20 GeV, |η| < 2.5, puId > 0, jetId > 0

Medium 
b-tag

DeepFlavour btag > 0.27

Signal 
Region

75 ≤ m(Z) < 105, 90 < m(jj) < 150, 
Medium b-tag (lead. jet)

Selection

Muons pT > 20 GeV, |η| < 2.4,
 Iso < 0.25, MediumID

Jets pT > 25 GeV, |η| < 4.7,
 puId > 0, jetId > 0

Signal 
Region

115 < m(ll) < 135, pT
j1 > 35,

 pT
j2 > 25, m(jj) > 150, |Δη(jj)| > 2

Once full NANOAOD event are available we can 
compare derived quantities and implement some 
analyses

● Two toy analysis corresponding to VBF Higgs to 
muons search and ZH→ llbb have been tested 
comparing flashsim with fullsim

● Analyses tested all the way down to the final 
DNN output, comparing different samples, 
some never seen during training

VBF H→ 𝝁𝝁
ZH→ llbb

VBF H→ 𝝁𝝁 VBF H→ 𝝁𝝁

ZH→ llbb



Speed and bottlenecks
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How fast is FlashSim?
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● The current prototype with ~20 
properties model and ~20 efficiency 
models, starting from existing 
generated samples runs between 
10Hz and 1KHz

○ Accuracy of integration
○ Availability of GPU vs Single CPU

● How fast do we need FlashSim to be
○ If you already have generated samples, as 

fast as possible
○ If the generator is very slow, we are easily 

in the shadow of the generator
● What if we can avoid being 

generator-speed limited by reusing 
generated events?

○ Overampling!

Processor ODE accuracy (timesteps) Event simulation rate
GPU 3060 100 325 Hz

GPU 3060 20 690 Hz

CPU 1-core 100 15 Hz

CPU 1-core 20 60 Hz

CPU 4-core 20 120 Hz

Event generation speed Ratio to Geant4-based

Generator 
speed (Hz)

Oversample 
factor

0.1Hz Geant4 
based sim

10Hz 
Flashsim

100Hz 
Flashsim

1KHz 
Flashsim

10Hz 
Flashsim

100Hz 
Flashsim

1KHz 
Flashsim

available 1x 0.10 Hz 10.00 Hz 100.00 Hz 1000.00 Hz 100.0x 1000.0x 10000.0x

50.00 Hz 1x 0.10 Hz 8.33 Hz 33.33 Hz 47.62 Hz 83.5x 334.0x 477.1x

50.00 Hz 10x 0.10 Hz 9.80 Hz 83.33 Hz 333.33 Hz 98.1x 833.5x 3334.0x

1.00 Hz 1x 0.09 Hz 0.91 Hz 0.99 Hz 1.00 Hz 10.0x 10.9x 11.0x

1.00 Hz 10x 0.10 Hz 5.00 Hz 9.09 Hz 9.90 Hz 50.5x 91.8x 100.0x

0.05 Hz 1x 0.03 Hz 0.05 Hz 0.05 Hz 0.05 Hz 1.5x 1.5x 1.5x

0.05 Hz 10x 0.08 Hz 0.48 Hz 0.50 Hz 0.50 Hz 5.7x 6.0x 6.0x



Oversampling
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Is oversampling introducing biases?

Let’s test it against full sim

● We start from a sample for which we 
have 8M full sim events

● We take a fraction (1/6th, 1.3M events) 
of the full sim events and we can check 
how oversampling (6x or 10x) it would 
compare to the full sim sample

● Typical LHC MC samples are randomly 
sampled “twice”

○ in the generator
○ in simulating the detector response

● In many cases a large part of the uncertainty 
originates from the detector response

○ generator information can be reused 

We call “oversampling” the repeated usage of the 
same generator event for multiple simulations

● Proper statistical treatment is needed for 
events originating from “same gen”

○ count events that end up in the same bin of a 
histogram as correlated

○ consider events in different bins as uncorrelated



Oversampling
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● Typical LHC MC samples are randomly 
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histogram as correlated

○ consider events in different bins as uncorrelated



Oversampling
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● Typical LHC MC samples are randomly 
sampled “twice”

○ in the generator
○ in simulating the detector response

● In many cases a large part of the uncertainty 
originates from the detector response

○ generator information can be reused 

We call “oversampling” the repeated usage of the 
same generator event for multiple simulations

● Proper statistical treatment is needed for 
events originating from “same gen”

○ count events that end up in the same bin of a 
histogram as correlated

○ consider events in different bins as uncorrelated



Conclusions
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● We implemented the first complete working prototype of an end-to-end 
simulation, using ML, for CMS NANOAOD format

● A good tradeoff between speed and accuracy has been found, but we can 
further tune it as needed

● Tests on toy analyses show a good accuracy also for derived quantities, 
next tests could be on real analysis

● We introduce the oversampling technique to maximize the exploitation of 
generator level MC event 

References:
● DPS Note with more plot and details:

○ CMS DP-2024/080
● CMS Note with earlier prototype

○ CMS-NOTE-2023-003
● Paper on toy dataset (see Filippo’s talk on Tuesday 17:27 track 5)

○ arxiv:2402.13684

https://cds.cern.ch/record/2913372?ln=it
https://cds.cern.ch/record/2858890?ln=it
https://indi.to/8frYG
https://arxiv.org/abs/2402.13684


Backup
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Vertex and Pileup
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Secondary Vertices
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Secondary Vertex from Taus and Heavy Flavour
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SV from GenJets
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Jets and Fake Jets
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Tau
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Signal Background



Tau properties
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Muon features
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FatJets
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SubJets
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Electrons
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Photon from generator level photons
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Photon from Jets
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MET
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Z(ll)H(bb) 
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VBF Higgs to mumu
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ODE integration accuracy
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Flow Matching as a solution

Main idea:

Learn vector field u, 
approximation of v

u is the field going from 
noise to data under a 
Gaussian assumption

t=0: p(z) = N(0,1)

t=1: p(z) = N(x, sigma_min)
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y = NN(x)
Loss = || u - y ||



Oversampling: statistical treatment
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Oversampling → the final histogram 
is given by the weighted sum of 
sub-histograms filled with the 
distributions of events sharing the 
same GEN

Note: the final uncertainty is larger 
than just calling TH1::Fill()

+ + … +1/N ✕ 1/N ✕ 1/N ✕

EVENT-1 EVENT-2 EVENT-3

Final Histogram

N = oversampling factor

EVENT-1 EVENT-2 EVENT-
3

+ +  …  +
Usually, a histogram is filled with 
events (and their weights)



Oversampling
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● Non-oversampled case
○ 𝑤 statistical weight associated with the MC event
○ For the i-th bin of an histogram, the probability of being in this bin and the 

associated uncertainty are

● Oversampled case
○ A fold is the set of RECO events sharing the same GEN



Discrete Flows: transforms
Affine:

Splines:
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How do we transform the variables?
Various ways to do it (as long as the 
transformation is invertible!)

Each model is made up of multiple 
conditioner+transformation 
blocks

This gives us an expressive final 
transformation with good 
correlations
between variables



Coupling flow
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ϑ

Autoregressive flow
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Ai-1

Bi-1

Ai
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ϑ

 y=f(x;ϑ)

y=f(x)

Ai-1

Bi-1

Ai

Biy=f-1(x;ϑ)

y=f-1(x)



Some technical info
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FlashSim uses the following 
packages and tools

● RDataFrame
● numpy
● pytorch
● torchcfm and nflow 

Data transfer RDF  <--> numpy not 
yet fully efficient (would benefit 
from RDF “custom batch process” 
capabilities)

RDF
from 

NanoAOD

Add needed 
new vars 
definition

Extract from 
RDF to numpy

Split in 
batches

Store as 
training file

Input GEN

oversample

Extract input 
vars as 
numpy

Call NN 
model

Save back to 
RDF

Fo
r e

ac
h 

co
lle

ct
io

n

Store as 
output 

NANOAOD 53


