
FlashSim:
End-to-end simulation with Machine Learning

Andrea Rizzi, University and INFN Pisa
on behalf of The CMS Collaboration

CHEP 2024 - Krakow, Poland
21/10/2024

Ref: CMS DP-2024/080

https://cds.cern.ch/record/2913372?ln=it

Outline

● Why faster simulation?
● What we mean with end-to-end?
● Generative AI
● Normalizing flows and flow matching
● CMS Flashsim structure
● Accuracy of simulated variables
● Speed, bottlenecks and oversampling
● Conclusions

2

Simulation at LHC

3

● Simulation is a large fraction of LHC
experiment computing costs

● Tens/hundreds of billions of events needed
in analysis for proper modelling of
backgrounds and signals

● The increase in number of events and
complexity of single events for HL-LHC
further increases the simulation needs

● Various R&D approaches in CMS to speed-up
simulation, often using ML (see Phat’s Talk)

○ Speed-up of slowest parts of fullsim (Kevin's talk)
○ FastSim accuracy improvements (Dorukhan’s

poster)
○ Usage of Delphes for current HL-LHC studies
○ End-to-End ML for analysis

“la mia parabola” Figure by Federico Carminati, independent parallel inventions by
Vincenzo Innocente & Kyle Cramer this talk!

https://indico.cern.ch/event/1338689/contributions/6016191/
https://indico.cern.ch/event/1338689/contributions/6015962/
https://indico.cern.ch/event/1338689/contributions/6016222/
https://indico.cern.ch/event/1338689/contributions/6016222/

CMS Data Tiers / end-to-end

CMS data tiers

● RAW & RECO => lowest level: detector hits,
reconstructed objects including all
intermediate steps

● AOD => subset of RECO with higher level objects
● MINIAOD => compact version of AOD
● NANOAOD=> ntuple like format usable by most

analysis, only ~1-2Kb/event of information

NANOAOD is one of the enabling factors for a general
purpose end-to-end simulation:

● Reasonably “simple” target
● Still usable for analysis

4

 RECO

RAW

AOD

MINIAOD
NANOAOD

“conditioning”
as in P(x|cond)Generating LHC events with AI

Generate an LHC event

5

an LHC event of CMS experiment with a
Higgs boson decay to a pair of muons

Accuracy in image generation

Qualitative definitions, no requirement of statistical properties of
generated samples

6

Accuracy for Physics Analysis

● A simulation usable for analysis should
properly reproduce PDFs both for individual
variables and for their correlations

● Many AI generative tools (e.g. GAN, VAE) work
reasonably well qualitatively but are severely
limited when looking at distribution details

○ mode collapse for multimodal distributions
○ bridging between peaks
○ accurate in mean and variance but limited handling of

long tails
● We tested various alternative models including

W-GAN and other modified losses
○ limited success on the low dimensionality problem we

face

7

Normalizing Flows: generative model for pdfs!

FullSim data, pdf unknown!multi-dimensional gaussian

What we know What we need

?

8

9

f(x) as a discrete flow

f
1

f
2

f
3

● In order to increase the expressivity of f(x) we can use a chain of
simple invertible transformations

● The parameters of each transformation are determined by a DNN
that takes as input the previous state and the external
conditioning information

● In order to catch correlations you want one variable to depend on
others f(x;θ), but to keep it invertible you cannot transform the
variables θ as they are need to compute f-1(y;θ)

○ Autoregressive: 1st variable depends on nothing, 2nd
variable depends on 1st, 3rd on (1st, 2nd)... etc..

○ Coupling: at each step only transform some variables, and
explicitly depend on the others

coupling architecture

Continuous Flows
Possible solution: continuous flow

A technique called Flow Matching allows to train continuous flows
learning the vector field

● Solves the conditioning problem: each step is infinitesimal
hence f(t) ~ f(t+dt)

● No need to chose a function for the transformation as we
simply learn its gradient in every point of space

● At inference time we will need to integrate the path from t=0
to t=1

● Use a single DNN to predict the vector field in any point
○ while discrete flow have one DNN for each step 10

see https://arxiv.org/abs/2210.02747, and
https://arxiv.org/abs/2302.00482, figure from
https://ehoogeboom.github.io/post/en_flows/

https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2302.00482

CMS FlashSim

Goals and ideas of CMS “FlashSim”

● Provide an analysis agnostic simulation exploiting
the common NANAOD format as a baseline target of
the simulation

● Be sample independent, learning the “detector
response” to different type of generated particles
and in different running conditions

● Reach a speed that is orders of magnitude faster
than existing simulations

● Maintain an accuracy that is good enough for
analysis, with a “delta” to full-sim that is the same
order of magnitude of the delta between full-sim and
real data.

11

○ arxiv:2402.13684

https://arxiv.org/abs/2402.13684

FlashSim structure

A reconstructed object may originate from multiple
sources

● genuine signal
● particles with similar signature
● detector interactions and decays
● fakes, duplicates, pileup

Each object is handled by FlashSim with various
models

● An efficiency model for each source
● A properties model for each source

12

Reconstructed
Muons

Generator level
prompt Muons

Hadron decays
in jets

mu1

mu2

mu3

genmu1

genmu2

genmu3

jet1
jet2

jet3
jet4

jet5

Efficiency models
Given a soure object to we get a reconstructed one?

● Efficiency models are trained as simple
classifiers with binary cross-entropy loss

○ output can be interpreted as a probability!
● At inference time we just toss in [0,1] and

compare with model probability

13

Prompt muon efficiency Prompt muon duplicate probability

Probability of a jet producing a mu

Fullsim Flashsim

Duplicates can be
handled by training
a second classifier
to predict when a
second copy is
produced

Properties models
● For each object we need to simulate all its

properties
○ e.g. momentum, eta, phi, tagging variables, ID,

isolation, etc..
● Some properties have obvious correlations

with generator level information
○ generated vs reconstructed four-momentum
○ MC flavour with tagging variables

● Two crucial points to reproduce correlations
○ Conditioning:

■ e.g. is it b-quark jet?
○ Transformations:

■ standard scaling
■ better learn PT

reco or PT
reco /PT

gen ?
■ tails matter for physics (apply logs when needed)

14

physical
space

NN
space

Flashsim status

15

Physics objects Sources (one NN model for each source)
Number of simulated
attributes per object

Jets Generator Jet Fake from PU 39

Muons Generator Muons Fake from Jets/PU Duplicates 53

Electrons Generator Electrons Generator Photons (prompt) Fake from Jets/PU 48

Photons Generator Photons (prompt) Generator Electrons Fake from Jets/PU 22

MET GenMET and HT 25

FatJets Generator AK8 Jets 53

SubJets Generator AK8 SubJets 13

Tau Reconstructed Jets with a Tau RecoJets without a Tau 27

Secondary Vertices Jets with Heavy Flavour Light Jets Taus 16

Non MET scalars (e.g. PV) Various event level inputs 16

FSRPhotons GenMuon/RecoMuon 6

● Current FlashSim prototypes simulates all object properties for most of the NANOAOD format collections
● Major sources of signal and background are considered, more to be added in the future
● Currently missing: trigger information (some part is trivial, some is less)

Results on individual models

16

Results on 4M events training

17

● Trained on a cocktail of a few samples with different
signatures covering different corners of the phase
space

○ likely suboptimal choice, dedicated samples (e.g. flat QCD or particle guns)
could also be considered

● FlashSim learned some of the detector features
present in the simulation (and missed some other)

Electron
efficiencySample Events

tt̅ 800k

DY HT [100, 200], 2J MLL [200-1400] 930k

HH → bb bb 840k

X(3000) → Y(500) H(125) → (bb) (WW → 2q 2l𝜈) 147k

X → HH → qq qq (MX 900, 1200, 1800; MH 365, 400, 18) 90k

SMS TchiZH mNLSP200-1500 300k

X(1200) → Y(300) H(125) → bb 𝛾𝛾 400k

VBF H → 𝜏𝜏 270k

bbA → ZH → ll 𝜏𝜏 (M = 900) 33k

inefficiencies due to
inactive detector

spikes due to pixel
barrel layers

Accurate conditioning

18

● A single model should learn to produce different distributions for
different conditioning values (momentum of a particle, flavour of
the quark producing a jet, decay mode of a particle, etc…)

● flowmatching is incredibly accurate at catching the
multidimensional correlations between conditioning variables and
output ones

Example of correlations

19

Full Event simulation
and

toy analyses

20

Event simulation chain

21

Sample Events

tt̅ 100M

DY HT [100, 200] 25M

H → 𝜇𝜇 1M

ZH 300k

jj + ll (ewk) 8M

Simulating a full NANOAOD event implies several steps,
to be repeated for each object, for each source

● extract the conditioning information
● run the efficiency model
● run the properties model
● (merge output from different sources)

Some models are conditioned not only on generator
information but on reconstructed information from
previous steps (e.g. MET is conditioned on the various
reconstructed objects ; electron and photon
reconstruction are cross-conditioned)

FlashSim event simulation is extracting data with
RDataFrame and processing batches of events in
parallel with PyTorch

Simulated ~100M events from various processes, some
of them never seen during training.

Derived quantities

22

Selection

Muons
pT > 20 GeV, |η| < 2.4, Iso < 0.25,

MediumID

Jets pT > 20 GeV, |η| < 2.5, puId > 0, jetId > 0

Medium
b-tag

DeepFlavour btag > 0.27

Signal
Region

75 ≤ m(Z) < 105, 90 < m(jj) < 150,
Medium b-tag (lead. jet)

Selection

Muons pT > 20 GeV, |η| < 2.4,
 Iso < 0.25, MediumID

Jets pT > 25 GeV, |η| < 4.7,
 puId > 0, jetId > 0

Signal
Region

115 < m(ll) < 135, pT
j1 > 35,

 pT
j2 > 25, m(jj) > 150, |Δη(jj)| > 2

Once full NANOAOD event are available we can
compare derived quantities and implement some
analyses

● Two toy analysis corresponding to VBF Higgs to
muons search and ZH→ llbb have been tested
comparing flashsim with fullsim

● Analyses tested all the way down to the final
DNN output, comparing different samples,
some never seen during training

VBF H→ 𝝁𝝁
ZH→ llbb

VBF H→ 𝝁𝝁 VBF H→ 𝝁𝝁

ZH→ llbb

Speed and bottlenecks

23

How fast is FlashSim?

24

● The current prototype with ~20
properties model and ~20 efficiency
models, starting from existing
generated samples runs between
10Hz and 1KHz

○ Accuracy of integration
○ Availability of GPU vs Single CPU

● How fast do we need FlashSim to be
○ If you already have generated samples, as

fast as possible
○ If the generator is very slow, we are easily

in the shadow of the generator
● What if we can avoid being

generator-speed limited by reusing
generated events?

○ Overampling!

Processor ODE accuracy (timesteps) Event simulation rate
GPU 3060 100 325 Hz

GPU 3060 20 690 Hz

CPU 1-core 100 15 Hz

CPU 1-core 20 60 Hz

CPU 4-core 20 120 Hz

Event generation speed Ratio to Geant4-based

Generator
speed (Hz)

Oversample
factor

0.1Hz Geant4
based sim

10Hz
Flashsim

100Hz
Flashsim

1KHz
Flashsim

10Hz
Flashsim

100Hz
Flashsim

1KHz
Flashsim

available 1x 0.10 Hz 10.00 Hz 100.00 Hz 1000.00 Hz 100.0x 1000.0x 10000.0x

50.00 Hz 1x 0.10 Hz 8.33 Hz 33.33 Hz 47.62 Hz 83.5x 334.0x 477.1x

50.00 Hz 10x 0.10 Hz 9.80 Hz 83.33 Hz 333.33 Hz 98.1x 833.5x 3334.0x

1.00 Hz 1x 0.09 Hz 0.91 Hz 0.99 Hz 1.00 Hz 10.0x 10.9x 11.0x

1.00 Hz 10x 0.10 Hz 5.00 Hz 9.09 Hz 9.90 Hz 50.5x 91.8x 100.0x

0.05 Hz 1x 0.03 Hz 0.05 Hz 0.05 Hz 0.05 Hz 1.5x 1.5x 1.5x

0.05 Hz 10x 0.08 Hz 0.48 Hz 0.50 Hz 0.50 Hz 5.7x 6.0x 6.0x

Oversampling

25

Is oversampling introducing biases?

Let’s test it against full sim

● We start from a sample for which we
have 8M full sim events

● We take a fraction (1/6th, 1.3M events)
of the full sim events and we can check
how oversampling (6x or 10x) it would
compare to the full sim sample

● Typical LHC MC samples are randomly
sampled “twice”

○ in the generator
○ in simulating the detector response

● In many cases a large part of the uncertainty
originates from the detector response

○ generator information can be reused

We call “oversampling” the repeated usage of the
same generator event for multiple simulations

● Proper statistical treatment is needed for
events originating from “same gen”

○ count events that end up in the same bin of a
histogram as correlated

○ consider events in different bins as uncorrelated

Oversampling

26

● Typical LHC MC samples are randomly
sampled “twice”

○ in the generator
○ in simulating the detector response

● In many cases a large part of the uncertainty
originates from the detector response

○ generator information can be reused

We call “oversampling” the repeated usage of the
same generator event for multiple simulations

● Proper statistical treatment is needed for
events originating from “same gen”

○ count events that end up in the same bin of a
histogram as correlated

○ consider events in different bins as uncorrelated

Oversampling

27

● Typical LHC MC samples are randomly
sampled “twice”

○ in the generator
○ in simulating the detector response

● In many cases a large part of the uncertainty
originates from the detector response

○ generator information can be reused

We call “oversampling” the repeated usage of the
same generator event for multiple simulations

● Proper statistical treatment is needed for
events originating from “same gen”

○ count events that end up in the same bin of a
histogram as correlated

○ consider events in different bins as uncorrelated

Conclusions

28

● We implemented the first complete working prototype of an end-to-end
simulation, using ML, for CMS NANOAOD format

● A good tradeoff between speed and accuracy has been found, but we can
further tune it as needed

● Tests on toy analyses show a good accuracy also for derived quantities,
next tests could be on real analysis

● We introduce the oversampling technique to maximize the exploitation of
generator level MC event

References:
● DPS Note with more plot and details:

○ CMS DP-2024/080
● CMS Note with earlier prototype

○ CMS-NOTE-2023-003
● Paper on toy dataset (see Filippo’s talk on Tuesday 17:27 track 5)

○ arxiv:2402.13684

https://cds.cern.ch/record/2913372?ln=it
https://cds.cern.ch/record/2858890?ln=it
https://indi.to/8frYG
https://arxiv.org/abs/2402.13684

Backup

29

Vertex and Pileup

30

Secondary Vertices

31

Secondary Vertex from Taus and Heavy Flavour

32

SV from GenJets

33

Jets and Fake Jets

34

Tau

35

Signal Background

Tau properties

36

Muon features

37

FatJets

38

SubJets

39

Electrons

40

Photon from generator level photons

41

Photon from Jets

42

MET

43

Z(ll)H(bb)

44

VBF Higgs to mumu

45

ODE integration accuracy

46

Flow Matching as a solution

Main idea:

Learn vector field u,
approximation of v

u is the field going from
noise to data under a
Gaussian assumption

t=0: p(z) = N(0,1)

t=1: p(z) = N(x, sigma_min)

47

y = NN(x)
Loss = || u - y ||

Oversampling: statistical treatment

48

Oversampling → the final histogram
is given by the weighted sum of
sub-histograms filled with the
distributions of events sharing the
same GEN

Note: the final uncertainty is larger
than just calling TH1::Fill()

+ + … +1/N ✕ 1/N ✕ 1/N ✕

EVENT-1 EVENT-2 EVENT-3

Final Histogram

N = oversampling factor

EVENT-1 EVENT-2 EVENT-
3

+ + … +
Usually, a histogram is filled with
events (and their weights)

Oversampling

49

● Non-oversampled case
○ 𝑤 statistical weight associated with the MC event
○ For the i-th bin of an histogram, the probability of being in this bin and the

associated uncertainty are

● Oversampled case
○ A fold is the set of RECO events sharing the same GEN

Discrete Flows: transforms
Affine:

Splines:

50

How do we transform the variables?
Various ways to do it (as long as the
transformation is invertible!)

Each model is made up of multiple
conditioner+transformation
blocks

This gives us an expressive final
transformation with good
correlations
between variables

Coupling flow

51

Ai-1

Bi-1

Ci-1

Di-1

Ai

Bi

Ci

Di

Ai+1

Bi+1

Ci+1

Di+1

y=f(x;ϑ)

x=f-1(y;ϑ)

ϑ

ϑ

Autoregressive flow

52

Ai-1

Bi-1

Ai

Bi

ϑ

 y=f(x;ϑ)

y=f(x)

Ai-1

Bi-1

Ai

Biy=f-1(x;ϑ)

y=f-1(x)

Some technical info

53

FlashSim uses the following
packages and tools

● RDataFrame
● numpy
● pytorch
● torchcfm and nflow

Data transfer RDF <--> numpy not
yet fully efficient (would benefit
from RDF “custom batch process”
capabilities)

RDF
from

NanoAOD

Add needed
new vars
definition

Extract from
RDF to numpy

Split in
batches

Store as
training file

Input GEN

oversample

Extract input
vars as
numpy

Call NN
model

Save back to
RDF

Fo
r e

ac
h

co
lle

ct
io

n

Store as
output

NANOAOD 53

