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Scientific motivation

• The goal of track reconstruction is to assign a 
label to all the hits detected in an event

• With the High Luminosity LHC upgrade, the 
luminosity will increase

• The events will become more and more complex 

• The wall time required for event reconstruction 
increases exponentially with luminosity

• A speedup in track reconstruction is mandatory
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Graph Neural Networks

• A possible research direction is using Machine Learning
• A GNN is an optimizable transformation on all attributes of the graph (nodes, edges, global 

context) that preserves graph symmetries

• Global approach in contrast with the classical local approach

Global attributes

Vertex attributes

Edges attributes

• Several groups are testing this approach (e.g. EXATrkX [1] collaboration, Atlas ITK 

[2], LHCb [3] …) 

[1] X. Ju, D. Murnane,  Calafiura P. et al. Performance of a geometric deep learning pipeline for HL-LHC particle tracking. Eur. Phys. J. C 81, 876 (2021). https://doi.org/10.1140/epjc/s10052-021-09675-8

[2] S. Caillou, P. Calafiura, et al.. ATLAS ITk Track Reconstruction with a GNN-based pipeline. Connecting The Dots, May 2022, Princeton, United States

[3] A. Correia, et al. Graph Neural Network-Based Track Finding in the LHCb Vertex Detector, arXiv:2407.12119

https://exatrkx.github.io/


Could the GNN
benefit from
Quantum Computing?
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Quantum computing and GNN

C. Tüysüz in 2021 proposed a hybrid approach [4] to study a possible quantum advantage

[4] Tüysüz C. et al. Hybrid quantum classical graph neural networks for particle track reconstruction. Quantum Mach. Intell. 3, 29 (2021). https://doi.org/10.1007/s42484-021-00055-9
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The quantum circuit

• The quantum layer consists of:
• An Information Encoding Circuit (IEC)

• stores classical data into quantum states using angle encoding

• A Parametrized Quantum Circuit (PQC)

• rotates the input states in the Hilbert space depending on the angle parameters of the gates

• generates entanglement between the qubits

• Measurement of the final state

• The PQC parameters are trained to minimize the global loss function

0

0

0

0



What are the strengths 

and weaknesses of this 

approach?

Could it be improved?
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Motivation and goals

* Access to the IBM Quantum Services was obtained through the IBM Quantum Hub at CERN under the CERN-INFN agreement contract KR5386/IT.

• Implement the network

• Find an appropriate dataset to work with

• Study the model for increasing pileup values

• Testing the model on noiseless and 

noisy simulator

• Running on real IBM quantum 

hardware*

With a complete characterization of 

QGNN for particle tracking it is possible 

to study and implement improvements
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QGNN implementation

• We have implemented different versions of the 
QGNN with different frameworks:
• Tensorflow-quantum + Cirq (from Tüysüz’s work)

• abandoned cause software deprecation

• Torch + Qiskit

• not usable due to very long training time (few days instead 
of few hours)

• Jax + Pennylane + Qiskit

• Data is stored in Jax format

• The Neural Network is defined in Flax

• Quantum circuits are implemented in Pennylane

• The backend for the training is the IBM Qiskit-aer simulator

• The quantum hardware is IBM-Osaka
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Dataset and preprocessing

• Goal of preprocessing:
• select events with pileup 10, 50, 100, 150 and 200

• prepare the data to feed the model

• We use the TrackML Challenge dataset
• Collection of thousands of simulated events with average pileup 200

• Each event is a set of hits, so we need to build the associated graph structure

• An event is coded as a graph where:
• Nodes are hits in a detector layer

• Edges are track segments

• Connections between hits in adjacent layers can be 
seen as candidate edges

• The network should learn to recognize true 
and fake edges

https://www.kaggle.com/competitions/trackml-particle-identification/overview
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• We have trained the network on a local 

simulator to perform scalability tests
• 35 training graphs and 10 validation graphs 

of pileup 10, 50, 100, 150 and 200

• Accuracy is higher with lower pileup

• The dataset is increasingly unbalanced for 

decreasing pileup

• Error bars are obtained by k-folding

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁

Training the QGNN
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• Other metrics show that the QGNN can correctly recognize fake edges, but 

struggles with true edge classification

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Training the QGNN
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• Most of the errors occur in the innermost layers 

of the detector

• In layers 0-1 we find the vast majority of the 
combinatorial for the track segment candidates

Tracks length

Track length
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Where the network goes wrong

Real true edges True Positive False Negative

Real false edges True Negative False Positive

A visual confusion 

matrix of an event
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Inference

• We have run the tests on 10 graphs with 
different backends:
• Noiseless simulators by Qiskit and Pennylane

• Noisy Qiskit Aer simulator

• IBM’s quantum hardware* (IBM_Osaka)

• What we can observe:
• There is no significant difference between the 

results for noiseless and noisy simulated values, 
the two curves are overlapping

• Quantum hardware accuracy decreases quickly

* Test set reduced due to issues in QPU time and resources availability



Prospects and 
conclusion
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Critical points and prospects

Critical points Prospects

Dataset
The dataset is too complex for the QGNN 

architecture

• Quantum: simplify and use toy models

• HEP: use different preprocessing filters

Classical 

GNN
The model is simplified wrt the state of the art

Align with ExaTrkX or other GNN 

architectures

Quantum 

concepts

• In the NISQ era, iterations are a relevant 

bottleneck

• Computing time on simulators increases 

exponentially with the number of qubits

Focus more on superposition and 

entanglement (e.g. do not use circuits that 

manage information edge by edge)
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Conclusion

• We have successfully implemented a QGNN model
• We trained and performed inferences on simulators and real quantum hardware

• The training time on simulators is reasonable, which is mandatory for future studies

• Using quantum hardware for this type of problems is still complicated due to QPU 
time and resource availability

• Tracking is not a low-hanging fruit application for quantum machine learning
• We are working on different approaches to tackle this challenge

our repo is on INFN’s gitlab! 
https://baltig.infn.it/quantum-fe/qgnn-tracking

https://baltig.infn.it/quantum-fe/qgnn-tracking


Thank you for 
your attention!
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