
Graeme Stewart, Philippe Gras, Atell Krasnopolski, Sanmay Ganguly, Sattwamo Ghosh

Fast Jet Finding in Julia
CHEP 2024

￼1

EP-SFT

mailto:graeme.andrew.stewart@cern.ch

Graeme Stewart CERN EP-SFT

Jets at the LHC

• Jets are a
critical part of
LHC physics

• Decays
captured in the
calorimeter

• Early stage of
reconstruction
to aggregate
calo hits to jets

2

Graeme Stewart CERN EP-SFT

Jets in Julia…?
• There is a ubiquitously used jet finding package in C++, FastJet

• The initial motivation for trying to implement this in Julia was to investigate both
performance and ergonomics

• Presented at CHEP 2023 (comparing Julia, Python, accelerated Python and Fast jet)

• Initial Julia results were very encouraging [arXiv:2309.17309]

• Excellent runtime performance, easy to work with the code

• Decided to go ahead and make this a production Julia package

• Meshes very well with other developments in the JuliaHEP universe

3

https://fastjet.fr
https://indico.jlab.org/event/459/contributions/11540/
https://arxiv.org/abs/2309.17309

Graeme Stewart CERN EP-SFT

Sequential Jet Algorithms in Brief (pp flavour)

1. Define a distance parameter (we use 0.4, which at LHC is typical)

1. This is a “cone size”

2. For each active pseudo-jet (=particle, cluster)

1. Measure the geometric distance, , to the nearest active
pseudo-jet , (if else)

2. Define the metric distance, , as

3. Choose the jet with the lowest

1. If this jet has an active partner , merge these jets

2. If not, this is a final jet

4. Repeat steps 2-3 until no jets remain active

R

i
d

j d < R d = R
dij

dij = d × min(p2p
Ti , p2p

Tj)

dij

j

4

There is a parallelisation
opportunity here

This piece is serial(ish) This algorithm from FastJet
[arXiv:1111.6097]

Algorithm:

p=-1 AntiKt

p=0 Cambridge/Achen

p=1 Inclusive Kt

Graeme Stewart CERN EP-SFT

Anti-kT Example

• When the algorithm
favours merging of high
pseudo jets

• This provides infrared
stability and co-linear safety

• Thus extremely popular
algorithm at LHC

p = − 1
pT

5

Graeme Stewart CERN EP-SFT

Anti-kT Example

• When the algorithm
favours merging of high
pseudo jets

• This provides infrared
stability and co-linear safety

• Thus extremely popular
algorithm at LHC

p = − 1
pT

5

Graeme Stewart CERN EP-SFT

Different Strategies
• There are two implementation strategies

• N2Plain: A basic implementation of the algorithm,

essentially just implementing the flow on the previous
slide, all jets considered in a global pool

• N2Tiled: A tiled implementation of the algorithm, where
the plane is split into tiles of size

• So that only neighbouring tiles need to be
considered when calculating distances

• The tiled algorithm involves more bookkeeping, but
reduces the work needing done

• The basic algorithm does more calculations, but these are
more amenable to parallelisation

(y, ϕ) R

6

Tiled Implementation
For a jet centred in the circle, only blue
tile neighbours need to be considered

y

ϕ
y = Rapidity

Graeme Stewart CERN EP-SFT

A Real Release!
• JetReconstruction.jl was release on June 17 this year (v0.3.0)

• A fair amount of refactoring was required to ensure that the
two pp strategies (N2Plain and N2Tiled) behaved in the same
way

• Internal restructuring to uniformly use PseudoJets and
return ClusterSequence objects

• Implemented exclusive jet selections (n_jet or dij_max cut)

• Implemented generalised kT algorithm (i.e. for arbitrary)

• Choice of strategies: N2Plain, N2Tiled and Best

• Fixes to visualisation and improved examples

• Significant improvements to documentation

• Documenter.jl setup

• Published at https://juliahep.github.io/JetReconstruction.jl/
stable/

p2p
T p

7

https://github.com/JuliaHEP/JetReconstruction.jl
https://documenter.juliadocs.org/stable/
https://juliahep.github.io/JetReconstruction.jl/stable/
https://juliahep.github.io/JetReconstruction.jl/stable/

Graeme Stewart CERN EP-SFT

pp Algorithm Performance*

• Julia is consistently faster than Fastjet

• N2Tiled: Gains are roughly 15% for the tiled algorithm

• N2Plain: Fastjet for the plain algorithm is a bit pathological at low - it’s better behaved for

• Julia wins by taking more advantage of SIMD and loop vectorisation

R R ≥ 1.0

8 * See backup for benchmark parameters

Graeme Stewart CERN EP-SFT

pp Algorithm Performance*

• Julia is consistently faster than Fastjet

• N2Tiled: Gains are roughly 15% for the tiled algorithm

• N2Plain: Fastjet for the plain algorithm is a bit pathological at low - it’s better behaved for

• Julia wins by taking more advantage of SIMD and loop vectorisation

R R ≥ 1.0

8 * See backup for benchmark parameters

Graeme Stewart CERN EP-SFT

pp Algorithm Performance*

• Julia is consistently faster than Fastjet

• N2Tiled: Gains are roughly 15% for the tiled algorithm

• N2Plain: Fastjet for the plain algorithm is a bit pathological at low - it’s better behaved for

• Julia wins by taking more advantage of SIMD and loop vectorisation

R R ≥ 1.0

8 * See backup for benchmark parameters

Graeme Stewart CERN EP-SFT

pp Algorithm Performance*

• Julia is consistently faster than Fastjet

• N2Tiled: Gains are roughly 15% for the tiled algorithm

• N2Plain: Fastjet for the plain algorithm is a bit pathological at low - it’s better behaved for

• Julia wins by taking more advantage of SIMD and loop vectorisation

R R ≥ 1.0

8

For many more interesting performance benchmarks

on different architectures, see Sam Skipsey’s talk

from Monday, Comparative efficiency of HEP

codes across languages and architectures

* See backup for benchmark parameters

https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/
https://indico.cern.ch/event/1338689/contributions/6010656/

Graeme Stewart CERN EP-SFT

e+e- Jet Reconstruction
• The core of the algorithms used is the same as for pp events

• Find the nearest neighbour geometrically for all pairs of pseudo jets

• i.e., in space, instead of

• Calculate a metric distance, , between these NN pairs

• For the lowest value of the , merge these two pseudo jets into one

• Or in some cases finalise that jet (a.k.a. “beam merge”)

• Keep going until all jets are merged or finalised

(θ, ϕ) (y, ϕ)
dij

dij

9

Graeme Stewart CERN EP-SFT

A Tale of Three Algorithms…

10

1 − cos Θij 1 − cos Θij Δy2
ij + Δθ2

ij

2min(E2
i , E2

j)(1 − cos θij) min(E2p
i , E2p

j)
1 − cos θij

1 − cos R min(p−2
Ti , p−2p

Ti)
Δy2

ij + Δθ2
ij

R

Geometric  
Distance

Metric  
Distance, dij

Parameters

Notes

p, R R

For , ,
equivalent to Durham

p = 1 π < R < 3π
If then
gives {AntiKt, Cambridge/

Aachen, Inclusive Kt}

p2p
T p = {−1,0,1}

Durham e+e− Generalised kT e+e− AntiKt pp

 is the angle between jets and Θij i j

Graeme Stewart CERN EP-SFT

A Few Implementation Details…
• The PseudoJet class used in the reconstruction wasn’t very suitable for

• It is working in space not space

• Want to cache normalised momenta to calculate from a dot product

• We introduced a new EEJet class

• Both are concrete subtypes of abstract FourMomentum (as is PseudoJet for pp)

• In the pipeline is to update all of these types to AbstractLorentzVector as a type we use across the
ecosystem

• During the reconstruction an optimised Structure of Arrays layout is used

• This is beautifully easy to do, thanks to Julia’s StructArrays.jl package

• The tiled strategy is not implemented here

• Particle densities are too low to make this worthwhile

• Released as v0.4.0 (Durham) and v0.4.1 (Generalised Kt)

• Accidental performance regression - fixed in v0.4.3!

pp e+e−

(y, ϕ) (θ, ϕ)
dij

e+e−

11

Graeme Stewart CERN EP-SFT

e+e- Algorithm Performance

• Consistently faster than Fastjet by ~30% for Durham algorithm

• Generalised similarly better than Fastjet by ~20% at most valuese+e− R

12

Graeme Stewart CERN EP-SFT

e+e- Algorithm Performance

• Consistently faster than Fastjet by ~30% for Durham algorithm

• Generalised similarly better than Fastjet by ~20% at most valuese+e− R

12

Graeme Stewart CERN EP-SFT

e+e- Algorithm Performance

• Consistently faster than Fastjet by ~30% for Durham algorithm

• Generalised similarly better than Fastjet by ~20% at most valuese+e− R

12

Graeme Stewart CERN EP-SFT

FCCee Jets!
• All test up to now have used ASCII HepMC3 files

• Read and converted into suitable internal EDM types

• A bit tedious for the user - we want to read their
EDM directly

• For future collider studies we can!

• Take advantage of UnROOT.jl to read EDM4hep files

• And EDM4hep.jl to interpret the data into a nice data
model in Julia

• What’s needed?

• Define the converters from EDM4hep Reconstructed
particles into JetReconstruction’s EDM

13

Both packages presented at this CHEP

https://indico.cern.ch/event/1338689/contributions/6016137/
https://indico.cern.ch/event/1338689/contributions/6016139/

Graeme Stewart CERN EP-SFT

FCCee Jets!
• All test up to now have used ASCII HepMC3 files

• Read and converted into suitable internal EDM types

• A bit tedious for the user - we want to read their
EDM directly

• For future collider studies we can!

• Take advantage of UnROOT.jl to read EDM4hep files

• And EDM4hep.jl to interpret the data into a nice data
model in Julia

• What’s needed?

• Define the converters from EDM4hep Reconstructed
particles into JetReconstruction’s EDM

13

JetReconstruction.px(rp::ReconstructedParticle) = rp.momentum.x
JetReconstruction.py(rp::ReconstructedParticle) = rp.momentum.y
JetReconstruction.pz(rp::ReconstructedParticle) = rp.momentum.z
JetReconstruction.energy(rp::ReconstructedParticle) = rp.energy

function JetReconstruction.EEjet(rp::ReconstructedParticle)
 EEjet(JetReconstruction.px(rp), JetReconstruction.py(rp),
 JetReconstruction.pz(rp), JetReconstruction.energy(rp))
end

Implemented as a package extension -

only loaded when EDM4hep is used

Both packages presented at this CHEP

https://indico.cern.ch/event/1338689/contributions/6016137/
https://indico.cern.ch/event/1338689/contributions/6016139/

Graeme Stewart CERN EP-SFT

FCCee Jets!
• All test up to now have used ASCII HepMC3 files

• Read and converted into suitable internal EDM types

• A bit tedious for the user - we want to read their
EDM directly

• For future collider studies we can!

• Take advantage of UnROOT.jl to read EDM4hep files

• And EDM4hep.jl to interpret the data into a nice data
model in Julia

• What’s needed?

• Define the converters from EDM4hep Reconstructed
particles into JetReconstruction’s EDM

13

JetReconstruction.px(rp::ReconstructedParticle) = rp.momentum.x
JetReconstruction.py(rp::ReconstructedParticle) = rp.momentum.y
JetReconstruction.pz(rp::ReconstructedParticle) = rp.momentum.z
JetReconstruction.energy(rp::ReconstructedParticle) = rp.energy

function JetReconstruction.EEjet(rp::ReconstructedParticle)
 EEjet(JetReconstruction.px(rp), JetReconstruction.py(rp),
 JetReconstruction.pz(rp), JetReconstruction.energy(rp))
end

Implemented as a package extension -

only loaded when EDM4hep is used

Both packages presented at this CHEP

https://indico.cern.ch/event/1338689/contributions/6016137/
https://indico.cern.ch/event/1338689/contributions/6016139/

Graeme Stewart CERN EP-SFT

FCCee Jets!
• All test up to now have used ASCII HepMC3 files

• Read and converted into suitable internal EDM types

• A bit tedious for the user - we want to read their
EDM directly

• For future collider studies we can!

• Take advantage of UnROOT.jl to read EDM4hep files

• And EDM4hep.jl to interpret the data into a nice data
model in Julia

• What’s needed?

• Define the converters from EDM4hep Reconstructed
particles into JetReconstruction’s EDM

13

JetReconstruction.px(rp::ReconstructedParticle) = rp.momentum.x
JetReconstruction.py(rp::ReconstructedParticle) = rp.momentum.y
JetReconstruction.pz(rp::ReconstructedParticle) = rp.momentum.z
JetReconstruction.energy(rp::ReconstructedParticle) = rp.energy

function JetReconstruction.EEjet(rp::ReconstructedParticle)
 EEjet(JetReconstruction.px(rp), JetReconstruction.py(rp),
 JetReconstruction.pz(rp), JetReconstruction.energy(rp))
end

Implemented as a package extension -

only loaded when EDM4hep is used

Both packages presented at this CHEP

On a single thread we can process

EDM4hep jets at 24kHz (jet reco only) ⏱

https://indico.cern.ch/event/1338689/contributions/6016137/
https://indico.cern.ch/event/1338689/contributions/6016139/

Graeme Stewart CERN EP-SFT

Substructure and Taggers

• Finding jets and looking at exclusive and inclusive samples is on the beginning

• Substructure provides more information about the particles which initiated the jet (q,
g, W, Z, H, …)

• Essential for identifying boosted heavy particles as part of the search for new physics

14

Graeme Stewart CERN EP-SFT

Mass Drop Tagger
• Walk back through the clustering sequence of Cambridge/Aachen, splitting a jet into its two

ancestors and

• If there is a signifiant mass drop, then is tagged (subject to an asymmetry criterion)

• Otherwise, repeat using

• Same results as Fastjet, much better runtime

j
j1 j2

mj1 < μmj j

j1

15

Also implemented: the

John Hopkins tagger

Graeme Stewart CERN EP-SFT

Jet Trimming

• Trimming removes a jet’s soft components

• Ideally cutting out spurious pile-up radiation

• Same results as Fastjet, about the same runtime

16

Also implemented: jet

filtering

Graeme Stewart CERN EP-SFT

Status and Outlook

• JetReconstruction.jl is available: easy to use, works really well!

• Growing set of features

• Most important/popular algorithms for and

• Jet selections

• Tagging, trimming and filtering (to be merged)

• Direct EDM imports - should be easy to add more

• Will be boosted by AbstractLorentzVector work from JuliaHEP community

• Largely faster than Fastjet by 15-30% for realistic cases 🎉

• Seen use in ATLAS, CMS and in FCCee

• Improved jet constituent interfaces in the pipeline, discussing with users

• Builds on the very positive experience of using Julia for performance and ergonomics

Please try it out, tell us your wishes, give us your feedback!

pp e+e−

17

https://github.com/JuliaHEP/JetReconstruction.jl

Backup

18

Graeme Stewart CERN EP-SFT

Benchmark Parameters

• JetReconstruction: AMD Ryzen 7, 5700G 3.8GHz (8 cores, plus HT), 32GB RAM, AlmaLinux 9.4

• JetSubstructure: M1, OSX 14.5

• Codes:

• Julia v1.11.1; JetReconstruction v0.4.3; julia-JetSubstructure

• Benchmark helpers in JetReconstructionBenchmarks.jl (including Pythia generated source events)

• Fastjet v3.4.3 (compiled with gcc 11.4.1, -O2)

• Jitter - benchmark values taken over 32 runs and are stable to ~1%

• More platforms:

• See Sam Skipsey’s talk, Comparative efficiency of HEP codes across languages and architectures

19

https://julialang.org
https://github.com/JuliaHEP/JetReconstruction.jl
https://github.com/sattwamo/julia-JetSubstructure
https://github.com/graeme-a-stewart/JetReconstructionBenchmarks.jl
https://fastjet.fr
https://indico.cern.ch/event/1338689/contributions/6010656/

Graeme Stewart CERN EP-SFT

Multi-threaded Performance

• Simple multithreading activated by @threads

• Good: it works!

• Bad: performance a bit lacklustre after ~5 threads

20

Graeme Stewart CERN EP-SFT

Variation with R: N2Plain

21

Graeme Stewart CERN EP-SFT

Variation with R: N2Tiled

22

Graeme Stewart CERN EP-SFT

Generalised Kte+e−

23

Graeme Stewart CERN EP-SFT

Cambridge/Aachen for pp

24

Graeme Stewart CERN EP-SFT

Inclusive Kt for pp

25

