

TrackHHL: A Quantum Computing
Algorithm for Track Reconstruction at the
LHCb Experiment

XENOFON CHIOTOPOULOS XENOFON.CHIOTOPOULOS@MAASTRICHTUNIVERSITY.NL

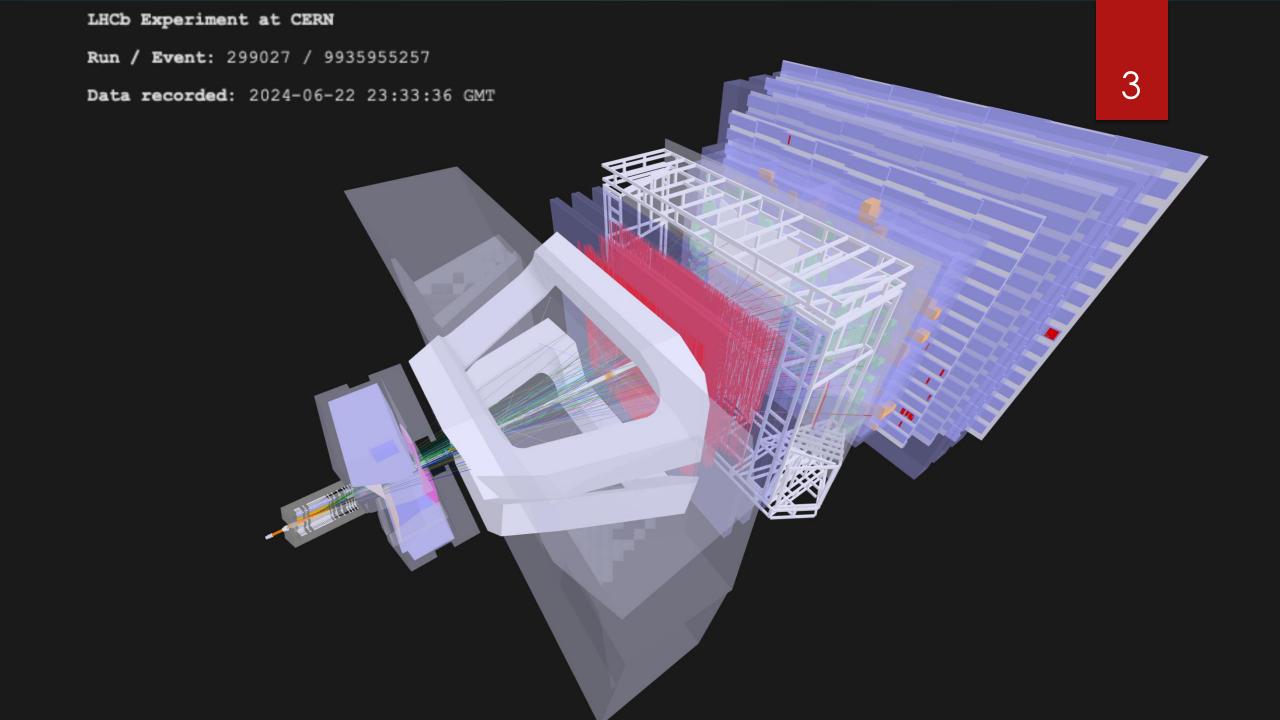
CHEP 2024 Krakow

Outlook

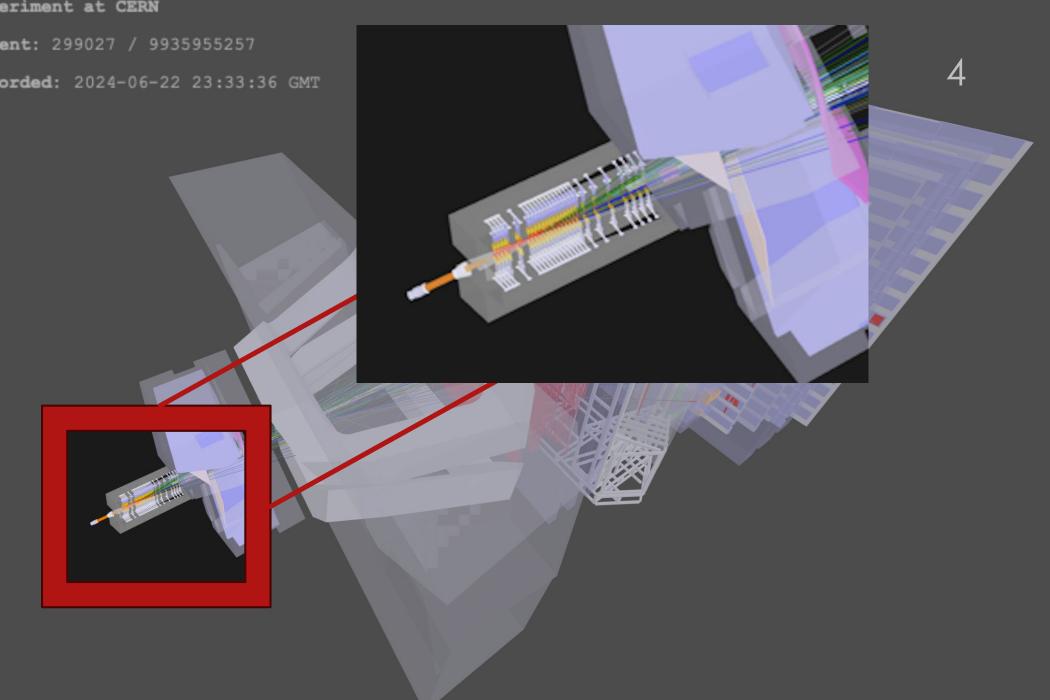
Presentation of a classical tracking algorithm compatible with Quantum computing, benchmarked on simulated LHCb data.

Introduction of a modified version of HHL that restricts Quantum Phase estimation to 1-Bit.

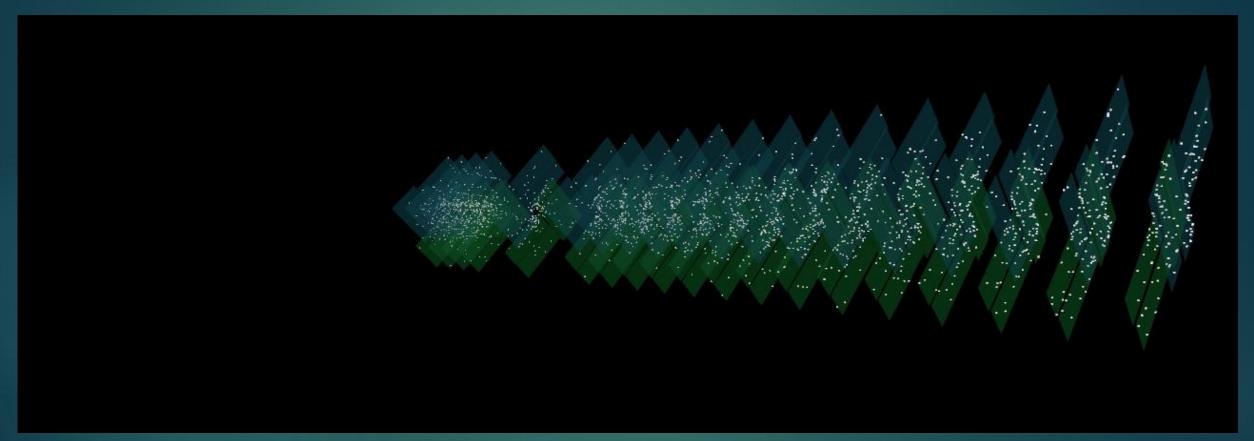
Preliminary Results on Primary Vertex reconstruction postprocessing the output of our quantum algorithm.



LHCb Experiment at CERN Run / Event: 299027 / 9935955257 Data recorded: 2024-06-22 23:33:36 GMT

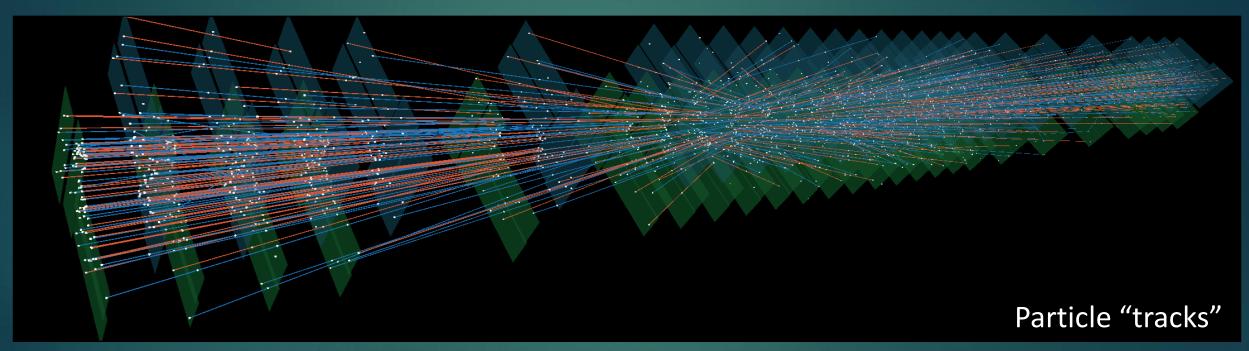


Hits in the VELO



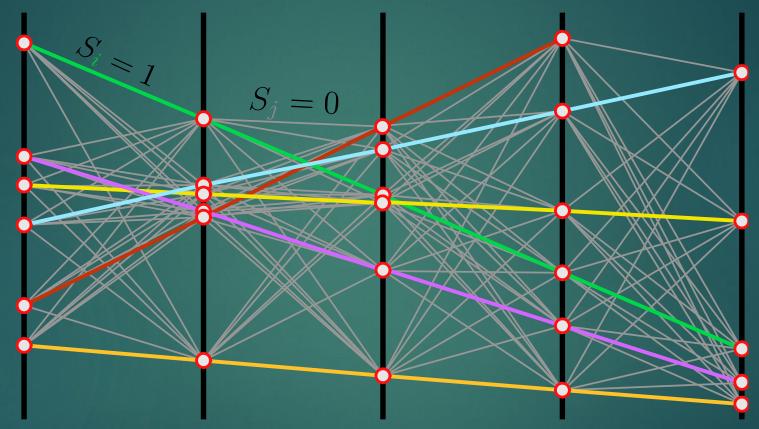
Creator: Davide Nicotra

Tracks in the VELO



Creator: Davide Nicotra

[arXiv:2308.00619] [JINST]



Segment $[S_{ab}]$: combination of hit a and hit b \rightarrow in consecutive layers - for now

$$\mathcal{H}(\mathbf{S}) = -\frac{1}{2} \left[\sum_{abc} f(\theta_{abc}, \varepsilon) S_{ab} S_{bc} + \gamma \sum_{ab} S_{ab}^2 + \delta \sum_{ab} (1 - 2S_{ab})^2 \right]$$

$$f(\theta_{abc}, \varepsilon) = \begin{cases} 1 & \text{if } \cos \theta_{abc} \ge 1 - \varepsilon \\ 0 & \text{otherwise} \end{cases}$$

- •(a) Angular term: assigns values for straight doublets
- •(b) Regularization term: makes the spectrum of A positive
- •(c) Gap term: ensures gap in the solution spectrum

$$\mathcal{H}(\mathbf{S}) = -\frac{1}{2} \left[\sum_{abc} f(\theta_{abc}, \varepsilon) S_{ab} S_{bc} + \gamma \sum_{ab} S_{ab}^2 + \delta \sum_{ab} (1 - 2S_{ab})^2 \right]$$

Relaxation of binary S values allows $\nabla_S H = 0$

$$-AS + b = 0$$

$$AS = b$$

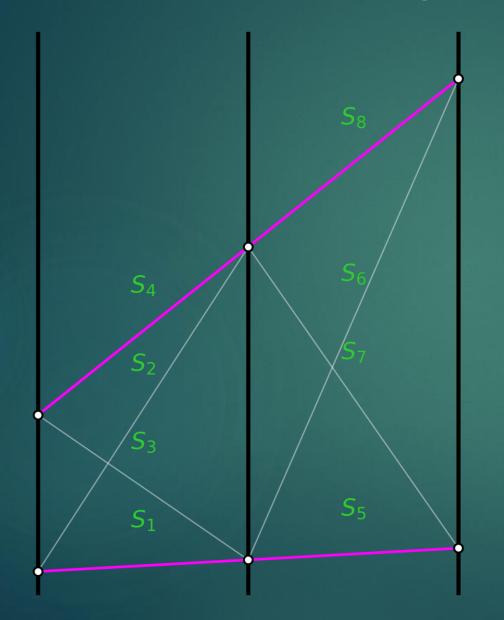
$$\mathcal{H}(\mathbf{S}) = -\frac{1}{2} \left[\sum_{abc} f(\theta_{abc}, \varepsilon) S_{ab} S_{bc} + \gamma \sum_{ab} S_{ab}^2 + \delta \sum_{ab} (1 - 2S_{ab})^2 \right]$$

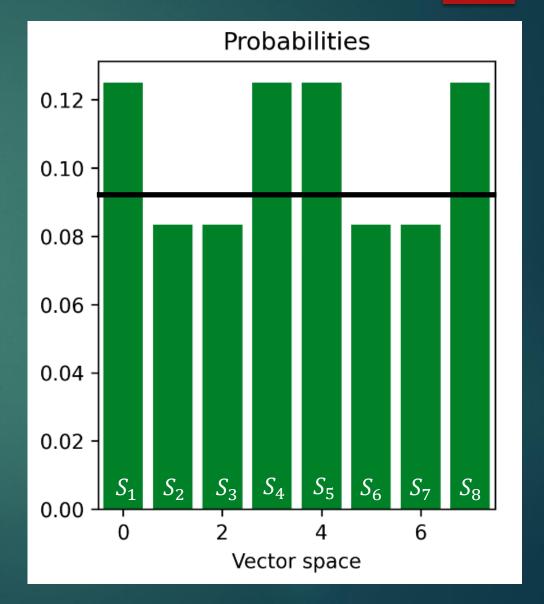
$$AS = b$$

$$A = \square$$

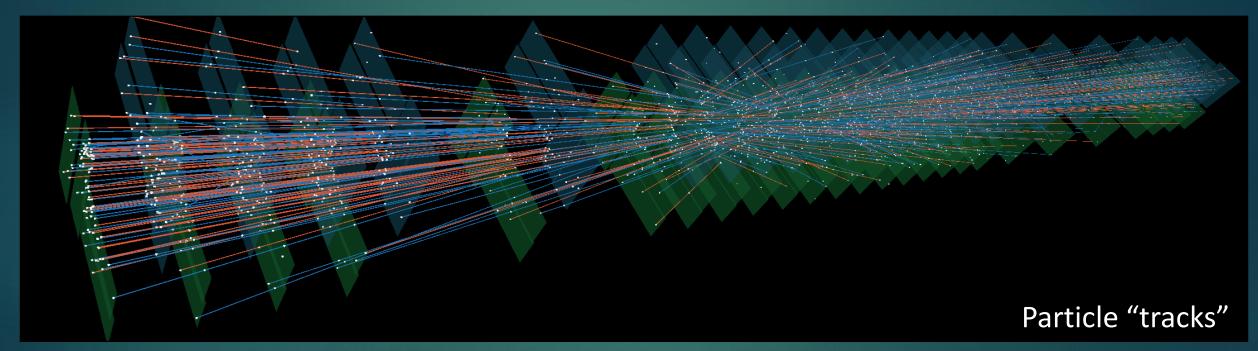
$$b =$$

Most Trivial Tracking Scenario





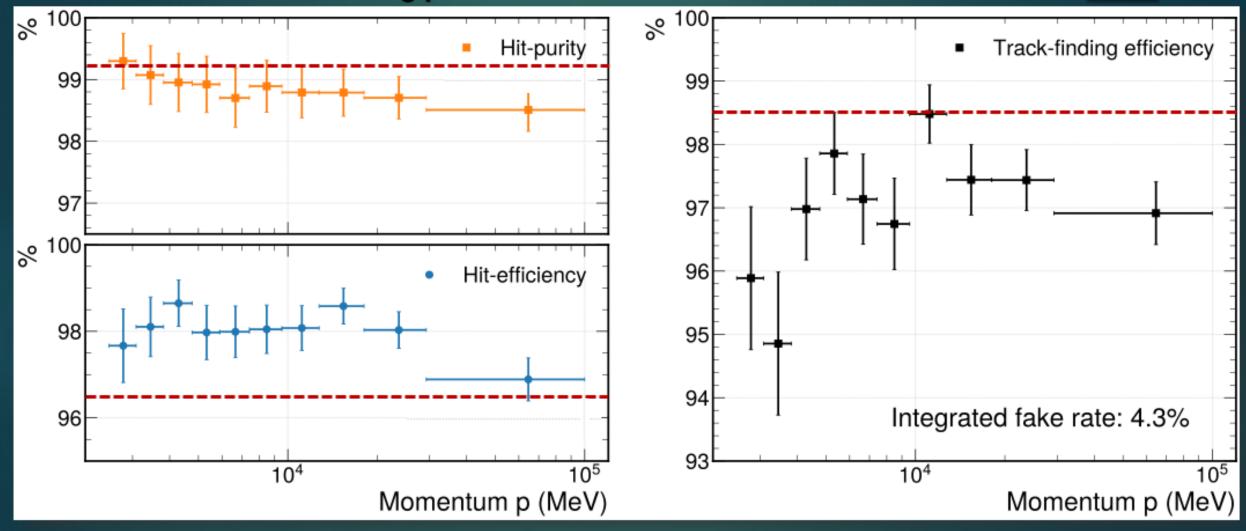
Solving it Classically



Creator: Davide Nicotra

Solving it Classically

Tracking performance on LHCb simulated events



HHL(Harrow– Hassidim–Lloyd) algorithm

$$AS = b$$

Classical Complexity: $\mathcal{O}(n^2)^*$

HHL Complexity: $\mathcal{O}(\kappa^2 \log n)$

- \rightarrow n = input matrix size
- \rightarrow k = condition number

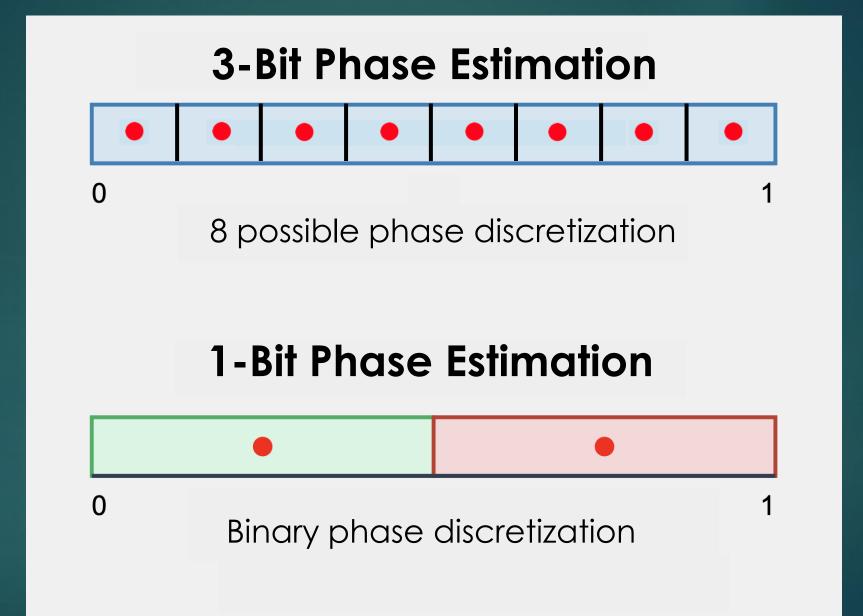
System size scales with:

- \rightarrow n = $p^2 \times Average\ Hits\ Per\ Track$
- $\triangleright p = particles in detector$

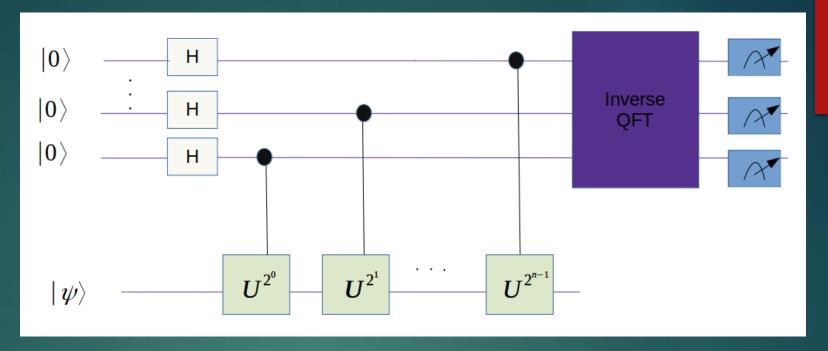
\mathbf{n}	Qubits	Depth	2-qubit gates
8	8	$12\ 071$	5 538
12	10	185 817	93 213
18	12	1 665 771	834 417
27	12	1 714 534	840 780
32	12	901 255	442 694
48	14	14 197 046	7 110 044
50	14	14 515 229	7 107 317

HHL requirements **State Preparation** $U(\mathbf{b})|0\rangle$ constant input vector **Phase Estimation** e^{iAt} extremely sparse matrix **Read-Out** $\langle S|M|S\rangle$ track parameters collision vertices $|0\rangle$ Estimation Estimation n_q Post Processing Phase Phase n_b

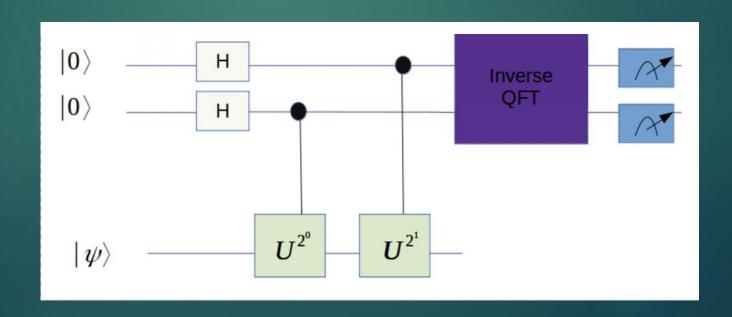
Challenges with HHL



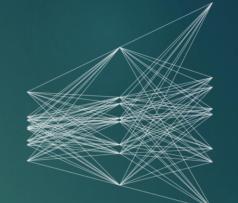
N-Bit QPE

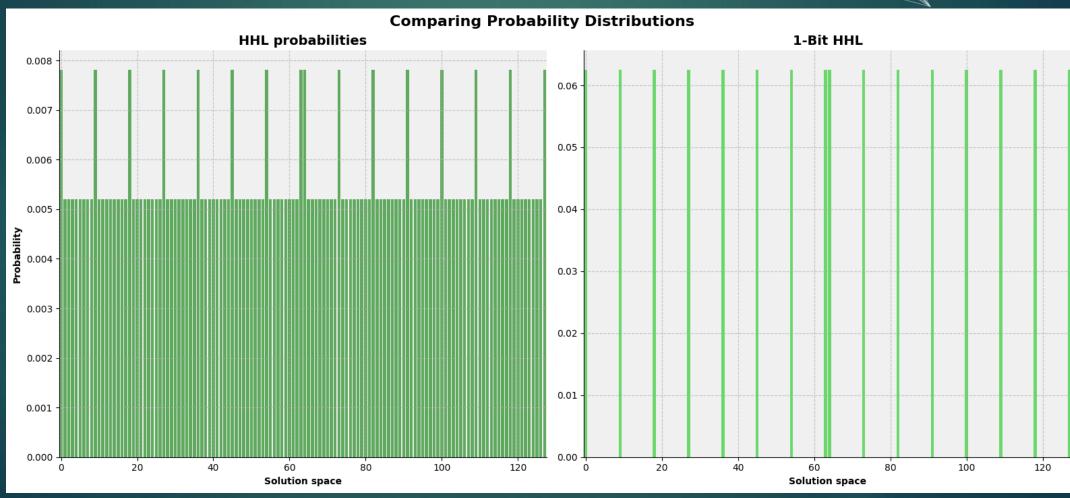


1-Bit QPE

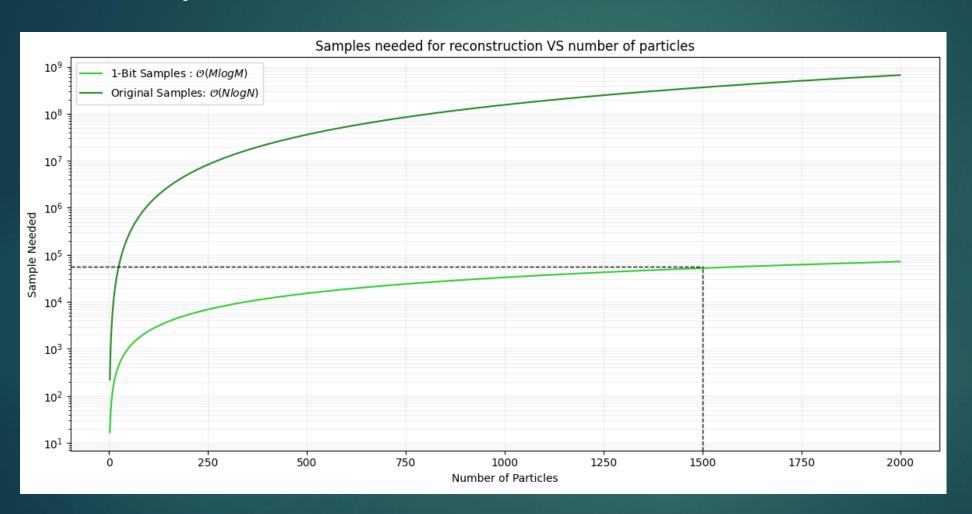


Trying to solve our Phase Estimation Problem





Output Problem



Event with 1500
 particles needs 10^{4.8}
 samples for 1-Bit

Event with 1500
 particles needs 10^{8.6}
 samples for HHL

$$\triangleright$$
 $M = p \times Average Hits Per Track$

$$\triangleright N = p^2 \times Average \ Hits \ Per \ Track$$

Comparison of Qubit Requirements HHL 1-Bit HHL 55 50 45 Number of Qubits 15 10 5 10⁰ 10¹ 10² 10³ 10⁴ 10⁵ 10^{6} 10⁷ 108 10⁹ N (Size of the Problem)

n	10 ¹	10^2	10 ³	10 ⁴	10 ⁵	10 ⁶	10 ⁷	10 ⁸	10 ⁹
Particles	1	5	15	50	158	500	1581	5000	15811

^{*5} Hits Per Track Assumption

Qubit Reduction

- > $2 \log_2 N + 2$ qubits for HHL > $\log_2 N + 3$ qubits for 1-Bit HHL

Solving our Phase Estimation Problem 1-Bit Phase Estimation

\mathbf{n}	Qubits	${f Qubits}^*$	Depth	${f Depth}^*$	4	2-qubit gates	2-qubit gates*
8	8	6	12 071	371		5 538	219
12	10	7	185 817	2 005		93 213	1 264
18	12	8	1 665 771	7 732		834 417	4 609
27	12	8	1 714 534	14 512		840 780	8 780
32	12	8	901 255	1 229		442 694	749
48	14	9	14 197 046	5 439		7 110 044	3 429
50	14	9	14 515 229	24 172		7 107 317	14 804

Achieved through circuit optimization and 1-bit phase estimation

^{*} Represents the 1-Bit Phase estimation results

- 2.5 - 2.0 - 1.5

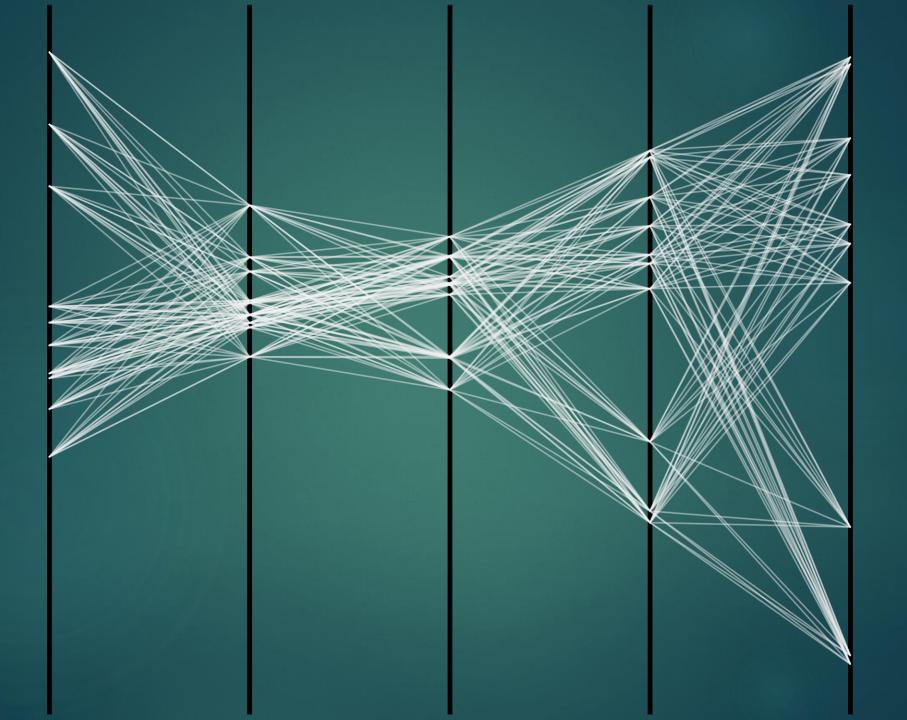
Largest Simulated Event Matrix

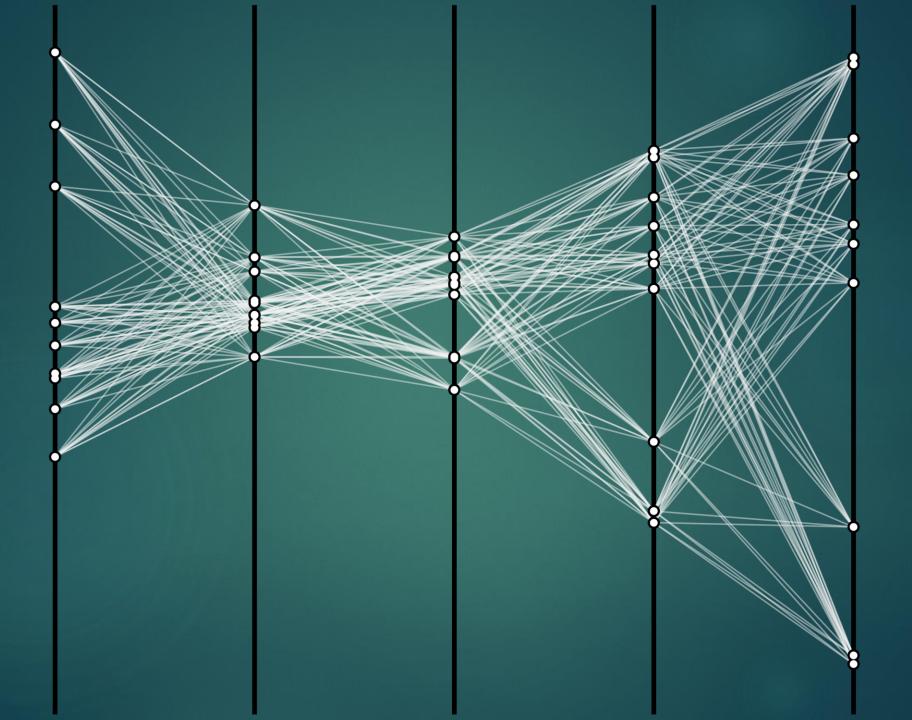
0.0

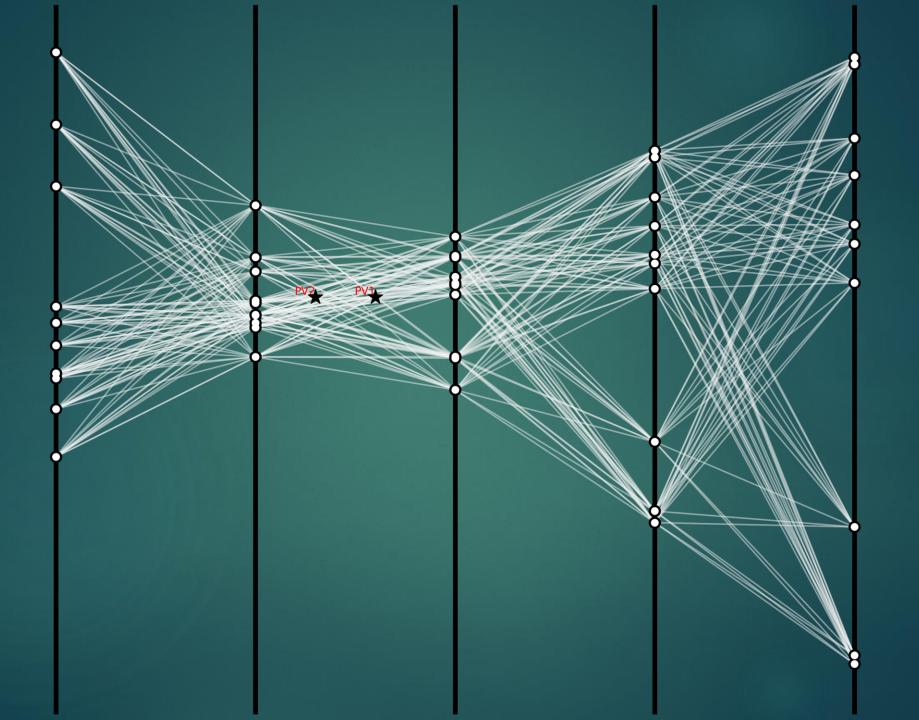
0.5

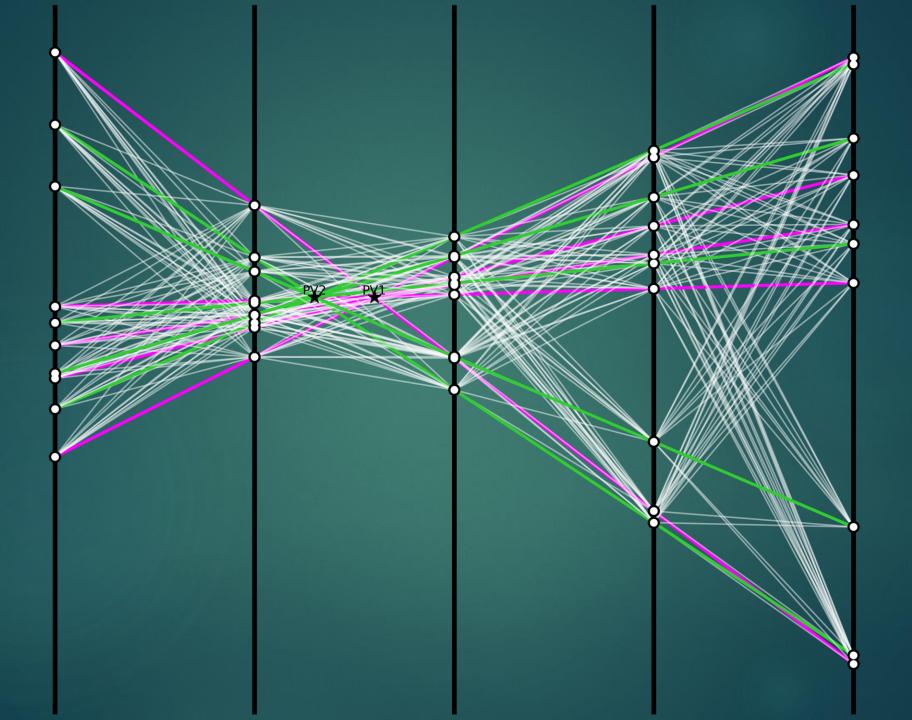
-0.5

-1.0





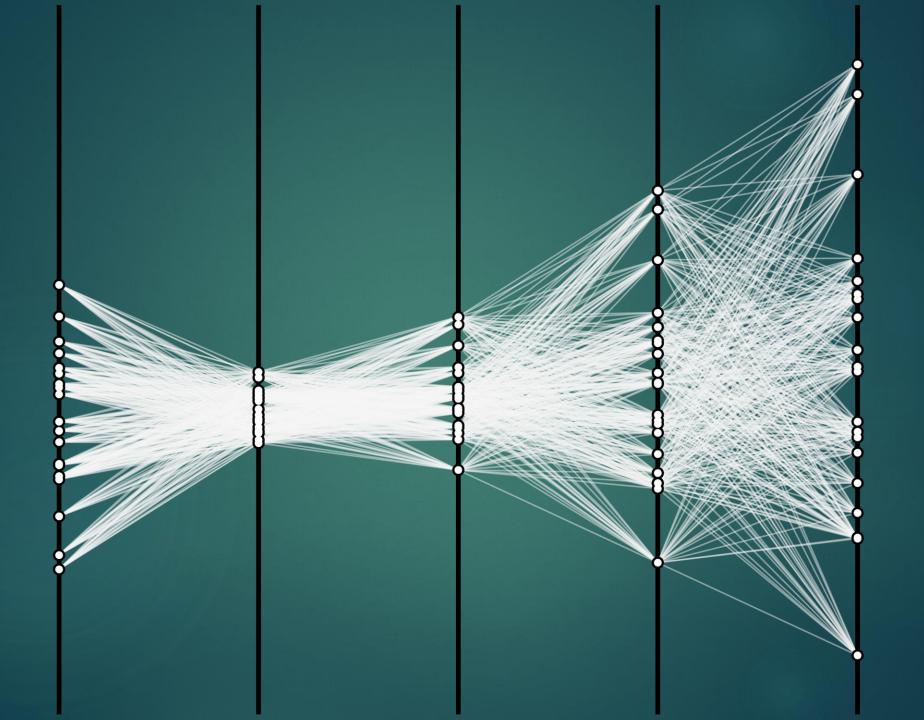




Benefits of 1-Bit HHL

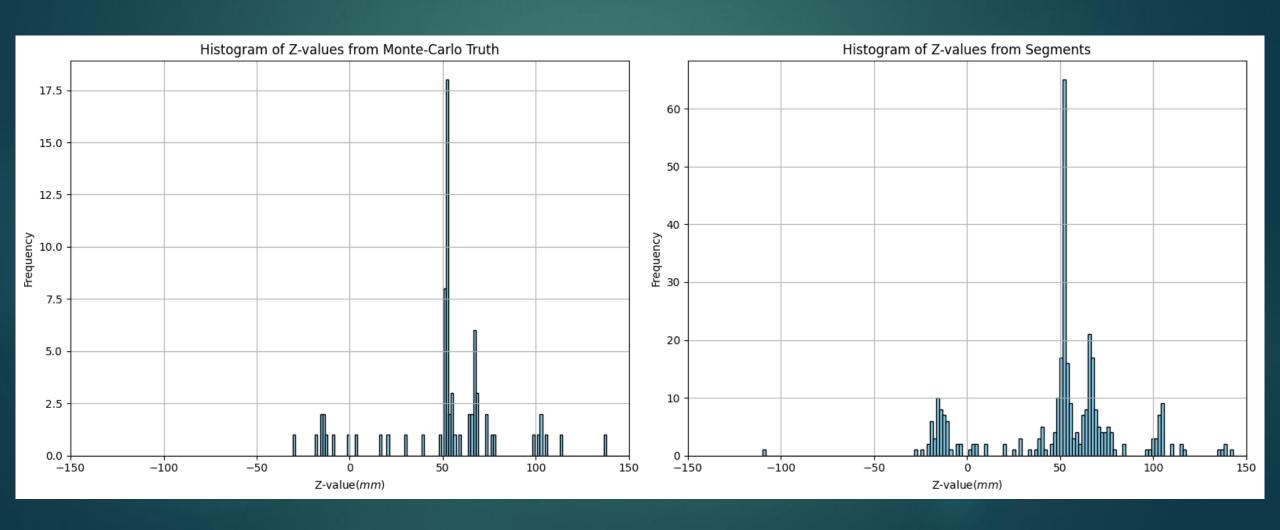
- ▶ Upto a × 10,000 reduction in circuit depth
- Pre-processing inside quantum circuit, logarithmic reduction in samples needed for reconstruction
- Reduction in qubits needed (where N is matrix dimension):
 - \triangleright 2 log₂ N + 2 qubits originally
 - \triangleright $\log_2 N + 3$ qubits for 1-Bit HHL

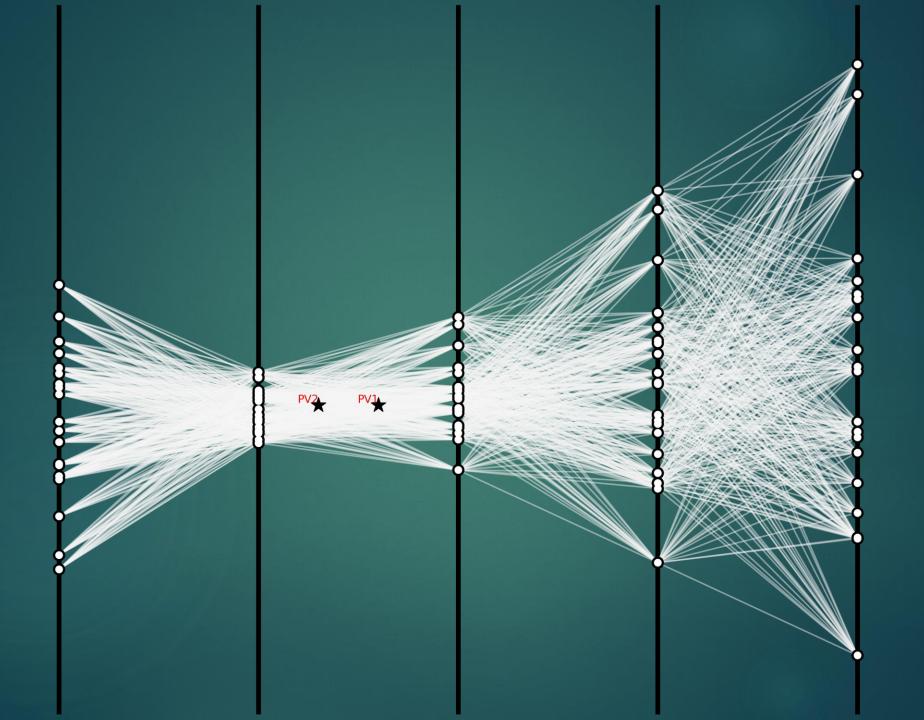
Further Solving our Read-Out Problem



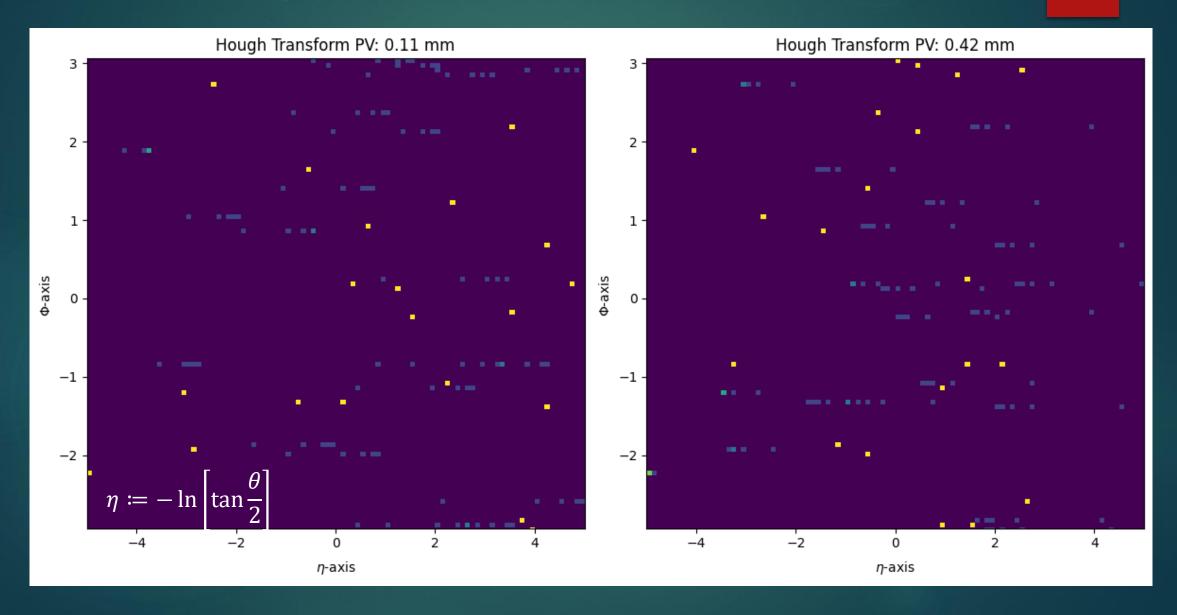
Solving the Readout Problem:

Reconstruct the Primary Vertices and re-find all tracks





The Hough Transform



Conclusions

- Matrix inversion track solvers have a good performance classically, HHL quantum version also shows good results
- Benchmarking the Primary Vertex finding on data with PV information
- Adopting 1-bit phase estimation HHL significantly improves feasibility in qubits, circuit depth and read-out

Future Work

- Take advantage of sparsity structures
- Encoding geometry information into the Hamiltonian
- Upgrading to new versions of Qiskit

