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a brief history of GPUs at CMS

● 2016: first concrete interest in using (NVIDIA) GPUs for offloading reconstruction algorithms
● 2017: first CUDA code for Pixel local reconstruction
● 2018: continuous R&D activities

● data structures, memory allocation strategies, caching and reuse
● CUDA-based algorithms

● 2019: optimisations and debugging
● more CUDA-based algorithms
● first work on GPU-to-CPU code portability

● 2020: upstream integration
● support for Run-3 and Phase-2 workflows
● better integration with the HLT menu
● automatic offloading to GPUs when available

● 2021: integration and adoption at HLT
● 2022: deployment in production
● 2023: migration to alpaka-based framework

● improved data structures, automatic offloading
● 2024: alpaka-based framework and algorithms in production

NVIDIA GTC 
(2018)

ACAT 2019

CHEP 2019

ACAT
2021 CHEP 2023

https://creativecommons.org/licenses/by-sa/4.0/
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performance portability ?

          okkos

std::par

https://creativecommons.org/licenses/by-sa/4.0/
https://xkcd.com/927
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why performance portability

run transparently on different GPUs:
AMD MI250x at LUMI-G HPC

https://creativecommons.org/licenses/by-sa/4.0/
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what is alpaka ?

● alpaka is a header-only C++17 abstraction library for heterogeneous software development
● it aims to provide performance portability 

across accelerators through the abstraction 
of the underlying levels of parallelism

● may expose the underlying details when necessary
● (almost) native performance on different hardware

● supports all platforms of interest to CMS
● x86 and ARM CPUs

– with serial and parallel execution
● stable support for NVIDIA and AMD GPUs

– with CUDA and ROCm backends
● experimental support for Intel GPUs and FPGAs, based on SYCL and oneAPI

● developed at CASUS at HZDR, and at CERN
● open source project, easy to contribute to: https://github.com/alpaka-group/alpaka/

● it is production-ready today !

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/alpaka-group/alpaka/
https://www.casus.science/home/
https://www.hzdr.de/
https://home.cern/
https://github.com/alpaka-group/alpaka/
https://github.com/alpaka-group/alpaka/
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alpaka is under active development

● alpaka 1.0.0 released on November 2023 
● experimental support for Intel oneAPI, with SYCL Unified Shared Memory model
● support std::mdspan and Kokkos’ mdspan

● alpaka 1.1.0 released on January 2024    ← used by CMS for 2024 releases
● stable support for Intel oneAPI
● implement additional math functions and warp-level functions

● alpaka 1.2.0 just released on October 2024
● more complete support for Intel oneAPI
● introduce helpers for writing parallel kernels    ← already used in CMS software
● last release to support c++17, keep the 1.2.x branch for long term support

● looking ahead: plans for alpaka 2.0.0
● move to c++20 and introduce Concepts
● make more device-side operations constexpr
● improve memory buffers and views
● support grid-wide synchronisation
● support CUDA graphs / HIP graphs / TBB flow graphs

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/alpaka-group/alpaka/releases/tag/1.0.0
https://www.intel.com/content/www/us/en/developer/articles/code-sample/dpcpp-usm-code-sample.html
https://en.cppreference.com/w/cpp/container/mdspan
https://github.com/kokkos/mdspan
https://github.com/alpaka-group/alpaka/releases/tag/1.1.0
https://github.com/alpaka-group/alpaka/releases/tag/1.2.0
https://github.com/alpaka-group/alpaka/pull/2402
https://github.com/alpaka-group/alpaka/pull/2403
https://github.com/alpaka-group/alpaka/pull/2307
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the alpaka migration

● common data structures
● Structures of Arrays (SoA)
● persistent data formats

● new heterogeneous framework
● asynchronous execution
● automatic back-end selection
● automatic data transfers
● EventSetup support

● performance portability
● adoption of alpaka
● back-ends and build rules

● adopt a performance portability library
– reduce code duplication

● adopt a generic and consistent SoA approach for 
heterogeneous data structures

– implement common optimisations and minimise 
memory operations

– offer a common interface, and reduce the 
development and maintenance efforts

● adopt an improved version of the accelerator 
framework in CMSSW

– automate data transfers from GPUs to host

– support automatic selection of the “best” backend 
among the host and all available accelerators

● simplify the logic and the dependency among 
modules, reduce code duplication

https://creativecommons.org/licenses/by-sa/4.0/
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benefits of alpaka as a portability library

● single code base targetting CPUs and GPUs
● reduce code duplication and maintenance effort
● implement a common interface to the data and algorithms

● modular builds
● always build code to run on CPUs
● build code to run on the GPUs as additional shared libraries, only if supported by the architecture

– e.g. no HIP/ROCm on ARM, no CUDA on RISC-V

– developers can enable only available backends to speed up local builds

● load GPU-based libraries at runtime only if they are present on the machine
– match available hardware to the environment and to the job’s configuration

● uniform algorithms and data structures
● framework can automatically schedule tasks on the CPU or on the GPUs
● framework can automatically schedule copies (to and) from the GPUs

https://creativecommons.org/licenses/by-sa/4.0/
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single code running on CPUs and GPUs

● uniform algorithms and data structures
● framework can automatically schedule tasks on the CPU or on the GPUs
● framework can automatically schedule copies (to and) from the GPUs

Note: each column is 
normalised to unity

https://creativecommons.org/licenses/by-sa/4.0/


October 21 , 2024ˢᵗ A. Bocci   -   Experience with the alpaka performance portability library in the CMS software 10 / 22

Structures of Arrays

using PFRecHitsNeighbours = Eigen::Matrix<int32_t, 8, 1>;

GENERATE_SOA_LAYOUT(PFRecHitSoALayout,

    SOA_COLUMN(uint32_t, detId),

    SOA_COLUMN(float, energy),

    SOA_COLUMN(float, time),

    SOA_COLUMN(int, depth),

    SOA_COLUMN(PFLayer::Layer, layer),

    SOA_EIGEN_COLUMN(PFRecHitsNeighbours, neighbours),

    SOA_COLUMN(float, x),

    SOA_COLUMN(float, y),

    SOA_COLUMN(float, z),

    SOA_SCALAR(uint32_t, size)

)

using PFRecHitSoA = PFRecHitSoALayout<>;

using PFRecHitHostCollection =

    PortableHostCollection<PFRecHitSoA>;

namespace ALPAKA_ACCELERATOR_NAMESPACE {

  using PFRecHitDeviceCollection =

    PortableCollection<::reco::PFRecHitSoA>;

}

SET_PORTABLEHOSTCOLLECTION_READ_RULES(

    PFRecHitHostCollection);

DataFormats/ParticleFlowReco/interface/PFRecHitHostCollection.h

…/ParticleFlowReco/interface/alpaka/PFRecHitDeviceCollection.h

DataFormats/ParticleFlowReco/src/classes_serial.cc

DataFormats/ParticleFlowReco/interface/PFRecHitSoA.h

syntax similar to a struct

use on CPU …

 … on GPU …

… in ROOT files

● uniform algorithms and data structures
● framework can automatically schedule tasks on the CPU or on the GPUs
● framework can automatically schedule copies (to and) from the GPUs

https://creativecommons.org/licenses/by-sa/4.0/
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unpacker

local reco

calibrations

unpacker@alpaka

local reco@alpaka

raw data raw data

unpacker@cpu

local reco@cpu

calibrations@cpu

unpacker@cuda

local reco@cuda

calibrations@cuda

host copy@cuda

switch

raw data

calibrations@alpaka

automatic host copy
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improved heterogeneous framework

● uniform algorithms and data structures
● framework can automatically schedule tasks on the CPU or on the GPUs
● framework can automatically schedule copies (to and) from the GPUs

https://creativecommons.org/licenses/by-sa/4.0/
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the HLT reconstruction with CPUs

CPU only

880 ± 1 W

400 ± 3 ev/s performance on 
2022 HLT nodes

https://creativecommons.org/licenses/by-sa/4.0/
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port time-consuming algortihms to GPUs

● HLT algorithms running on GPUs in 2024
● pixel local reconstruction
● ntuplet reconstruction, tracks and vertex fitting

– see  the talk by Daniele about the offline validation 
● ECAL unpacking and local reconstruction
● HCAL local reconstruction

– see the poster by Martin
● HCAL Particle Flow clustering

– see the poster by Jonathan

● GPU implementation under development 
● ECAL local calibrations
● electron seeding

– see the talk by Charis on Wednesday
● full primary vertex reconstrution

CPU only

https://creativecommons.org/licenses/by-sa/4.0/
https://indico.cern.ch/event/1338689/contributions/6011614/
https://indico.cern.ch/event/1338689/contributions/6018442/
https://indico.cern.ch/event/1338689/contributions/6015436/
https://indico.cern.ch/event/1338689/contributions/6010071/
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the HLT reconstruction with GPUs

with GPUs

603 ± 6 ev/s

1136 ± 2 W

400 ± 3 ev/s

+50% throughput

performance on 
2022 HLT nodes

https://creativecommons.org/licenses/by-sa/4.0/
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with GPUs with GPUs
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646 ms/ev
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impact on the HLT farm

CMS Run 3 GPU-equipped HLT farm 
● 200 nodes:

● 2 × AMD EPYC “Milan” 7763 processors
● 2 × NVIDIA Tesla T4 GPUs

● +20% extention in 2024 with 18 nodes:
● 2 × AMD EPYC “Bergamo” 9754 processors
● 3 × NVIDIA L4 GPUs

● thanks to the use of GPUs
● 50% better event processing throughput
● 35% less processing time per event
● 15% - 20% better performance at initial cost
● 15% - 25% better performance per kW

-35% time / event

performance on 
2022 HLT nodes

https://creativecommons.org/licenses/by-sa/4.0/
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how well can GPU usage scale ?

● ideal test case
● consider only the fraction of the HLT that has been 

ported to alpaka
● can run on CPUs (x86, ARM)
● can run almost entirely on GPUs

● baseline
● performance of a CPU-only setup
● 2 × AMD EPYC “Bergamo” 9754 processors

● scaling
● add 1×, 2×, 3×, 4× NVIDIA L4 GPUs
● subtract the baseline

● results
● throughput: NGPUs × 512.3 ev/s + 1196.5 ev/s
● power draw: NGPUs × 102.1 W    + 1043.8 W 1000 W 1100 W 1200 W 1300 W 1400 W 1500 W

0 ev/s

1000 ev/s

2000 ev/s

3000 ev/s

4000 ev/s

4 GPUs

3 GPUs

2 GPUs

1 GPU

no GPUs

1198 ev/s

1691 ev/s

2230 ev/s

2765 ev/s

3223 ev/s

power consumption
th

ro
ug

hp
ut

CMS Preliminary 13.6 TeV

baselineeach GPU
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what about oher architectures ?
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NVIDIA Grace Hopper (GPU) 
at Oak Ridge

AMD Radeon Pro W7800 GPU

full AMD Instinct MI250X GPU 
at LUMI HPC

NVIDIA L40S GPU

Note: MI250X does 
not include the pixel 
reconstruction

https://creativecommons.org/licenses/by-sa/4.0/
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conclusions

● lessons learned
● writing new reconstruction algorithms takes effort

– whether they run only on CPU or on heterogeneous hardware

● code duplication is Bad™
– duplicate effort to add the same features and fix the same bugs

– introduce more bugs

● a portability framework 
can help minimise these efforts

● looking ahead
● GPUs can achieve impressive performance

– if used for a large enough fraction of the algorithms

● optimising the performance of heterogenous hardware is complicated!
● need to gain more experience with non-NVIDIA hardware

https://creativecommons.org/licenses/by-sa/4.0/
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the portability challenge

● new code written using the native CUDA API, targetting NVIDIA 
GPUs

● most widespread GPU architecture, supports x86 and ARM
● no RISC V yet ?

● develop new algorithms to run on GPUs
● ad hoc compatibility layer
● a lot of #ifdef __CUDA_ARCH__ scattered through the code

● port existing algorithms to run on GPUs
● two implementations: legacy (CPU-only) and parallel (GPU-only)
● duplication of development, maintenance and validation efforts

● most offline sites do not use GPUs yet…
● adoption of GPUs from other vendors in HPCs is increasing

● LUMI-G, in Finland, and Frontier, at Oak Ridge, use AMD MI250X GPUs
● Aurora, at Argonne National Laboratory, will use Intel Xe GPUs

● can we target different CPUs and GPUs with a single code base ?

how do we run here ?

and here ?

maintenance issues!

code duplication!

https://creativecommons.org/licenses/by-sa/4.0/
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alpaka core concepts

Platform and Device
● identify the type of hardware (e.g. NVIDIA GPUs) and individual devices (e.g. each single GPU) present 

on the machine
● the DevCpu device serves two purposes:

– as the “host” device, for managing the data flow (e.g. perform memory allocation and transfers, run EDProducer, etc.) 

– as an “accelerator” device, for running heterogeneous code (e.g. to run an algorithm on the CPU)

● platforms and devices should be created at the start of the program and used consistently

owning Buffer and non-owning View
● point to a scalar or a N-dimensional array in host or device memory
● scalars and 1-dimensional arrays can be accessed with the pointer *, -> and array [] operators 
● on device that support it, the buffer allocations/deallocations can use a queue-ordered semantic

nota bene: all Alpaka objects behave like shared_ptrs, and should be passed by value or by 
const&

https://creativecommons.org/licenses/by-sa/4.0/
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alpaka core concepts

Queues and Events
● queues identify a work queue where tasks (memory ops, kernel executions, …) are executed in order

– for example, a queue could represent an underlying CUDA stream or a CPU thread
● queues can be sync(hronous or blocking) or async(hronous or non-blocking)

– work submitted to a sync queue is executed immediately, before returning to the caller
– work submitted to an async queue is executed in the background, without waiting for its completion

● events identify points in time along the work queue
– can be used to query or wait for the readiness of a task submitted to a queue

● queues and events are always associated to a specific device

Tags and Accelerators
● tags describe all possible accelerators
● accelerators encapsulate the execution policy on a specific device

– N-dimensional work division (1D, 2D, 3D, …)
– on CPU: serial vs parallel execution of the “blocks” (single thread, multi-threads, TBB tasks, …)

● accelerators are created any time a kernel is executed, and can be used in device code to extract the 
execution configuration

https://creativecommons.org/licenses/by-sa/4.0/
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alpaka in CMSSW: backends

● in CMSSW we tie together the Device, Queue, Event and Accelerator types in a “backend”
● each backend is associated to a namespace

● synchronous execution on the CPU, with a single thread:

● asynchronous execution on a GPU, with a grid of blocks and threads:

namespace alpaka_serial_sync {

    using Platform = alpaka::PlatformCpu;

    using Device = alpaka::DevCpu;

    using Queue = alpaka::QueueCpuBlocking;

    using Event = alpaka::EventCpu;

    template <typename TDim> using Acc = alpaka::AccCpuSerial<TDim, uint32_t>;

}

namespace alpaka_cuda_async {

  using Platform = alpaka::PlatformCudaRt;

  using Device = alpaka::DevCudaRt;

  using Queue = alpaka::QueueCudaRtNonBlocking;

  using Event = alpaka::EventCudaRt;

  template <typename TDim> using Acc = alpaka::AccGpuCudaRt<TDim, uint32_t>;

}

https://creativecommons.org/licenses/by-sa/4.0/
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files and directory structure

● to support the compilation of Alpaka -based plugins and libraries for multiple backends, 
we have introduced a new directory structure ad a new file type:

● alpaka/ subdirectories    under interface/, src/, plugins/ or test/
● *.dev.cc files

DataFormats/PortableTestObjects/
├── BuildFile.xml
├── README.md
├── interface/
│   ├── TestHostCollection.h
│   └── TestSoA.h
│
│
└── src/
    │
    │
    │
    ├── classes.h
    └── classes_def.xml 

HeterogeneousCore/AlpakaTest/
├── plugins/
│   ├── BuildFile.xml
│   └── TestAlpakaAnalyzer.cc
│
│
│
│
│
└── test/
    ├── BuildFile.xml
    ├── reader.py
    ├── testHeterogeneousCoreAlpakaTestWriteRead.sh
    └── writer.py

https://creativecommons.org/licenses/by-sa/4.0/
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files and directory structure

● to support the compilation of Alpaka -based plugins and libraries for multiple backends, 
we have introduced a new directory structure ad a new file type:

● alpaka/ subdirectories    under interface/, src/, plugins/ or test/
● *.dev.cc files

DataFormats/PortableTestObjects/
├── BuildFile.xml
├── README.md
├── interface/
│   ├── TestHostCollection.h
│   ├── TestSoA.h
│   └── alpaka/
│       └── TestDeviceCollection.h
└── src/
    ├── alpaka/
    │   ├── classes_cuda.h
    │   └── classes_cuda_def.xml
    ├── classes.h
    └── classes_def.xml 

HeterogeneousCore/AlpakaTest/
├── plugins/
│   ├── BuildFile.xml
│   ├── TestAlpakaAnalyzer.cc
│   └── alpaka/
│       ├── TestAlgo.dev.cc
│       ├── TestAlgo.h
│       ├── TestAlpakaProducer.cc
│       └── TestAlpakaTranscriber.cc
└── test/
    ├── BuildFile.xml
    ├── reader.py
    ├── testHeterogeneousCoreAlpakaTestWriteRead.sh
    └── writer.py

https://creativecommons.org/licenses/by-sa/4.0/
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alpaka/ directories

*.dev.cc files by the device compiler
● for example, nvcc 12.2 or hipcc 5.6 
● what is available:

– the host side API of the selected accelerator:
e.g. alpaka::memcpy(queue,dest, source)

– device code:
e.g. ALPAKA_FN_ACC void func(TAcc const& acc, …) { … }

– kernel launches:
e.g. alpaka::exec<Acc1D>(queue, workDiv, kernel{}, …);

● what is discouraged
– access to ROOT and the full CMSSW framework

*.cc files by the host compiler
● for example, gcc 12.3
● what is available:

– standard C++, e.g. ROOT and CMSSW framework

– the host side API of the selected accelerator:
e.g. alpaka::memcpy(queue,dest, source)

● what is not allowed:
– device code:

e.g. ALPAKA_FN_ACC void func(TAcc const& acc, …) { … }

– kernel launches:
e.g. alpaka::exec<Acc1D>(queue, workDiv, kernel{}, …);

● all code under the …/{src,plugins,test}/alpaka/ directories is compiled multiple times 
● into a separate shared library for each back-end

– isolate compile-time and run-time dependencies, minimise code loaded at runtime
● defining the ALPAKA_ACCELERATOR_NAMESPACE macro to the corresponding backend namespace

– automate using the correct types, avoid symbol clashes

https://creativecommons.org/licenses/by-sa/4.0/
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CMS HLT reconstruction break down

CPU only with GPUs
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