
Experience with the alpaka performance portability library

in the CMS software
CHEP 2024 – October 21st, 2024

Andrea Bocci1 for the CMS Collaboration

1 CERN

version 1.0.3

October 21 , 2024ˢᵗ A. Bocci - Experience with the alpaka performance portability library in the CMS software 2 / 22

a brief history of GPUs at CMS

● 2016: first concrete interest in using (NVIDIA) GPUs for offloading reconstruction algorithms
● 2017: first CUDA code for Pixel local reconstruction
● 2018: continuous R&D activities

● data structures, memory allocation strategies, caching and reuse
● CUDA-based algorithms

● 2019: optimisations and debugging
● more CUDA-based algorithms
● first work on GPU-to-CPU code portability

● 2020: upstream integration
● support for Run-3 and Phase-2 workflows
● better integration with the HLT menu
● automatic offloading to GPUs when available

● 2021: integration and adoption at HLT
● 2022: deployment in production
● 2023: migration to alpaka-based framework

● improved data structures, automatic offloading
● 2024: alpaka-based framework and algorithms in production

NVIDIA GTC
(2018)

ACAT 2019

CHEP 2019

ACAT
2021 CHEP 2023

https://creativecommons.org/licenses/by-sa/4.0/

October 21 , 2024ˢᵗ A. Bocci - Experience with the alpaka performance portability library in the CMS software 3 / 22

performance portability ?

 okkos

std::par

https://creativecommons.org/licenses/by-sa/4.0/
https://xkcd.com/927

October 21 , 2024ˢᵗ A. Bocci - Experience with the alpaka performance portability library in the CMS software 4 / 22

why performance portability

run transparently on different GPUs:
AMD MI250x at LUMI-G HPC

https://creativecommons.org/licenses/by-sa/4.0/

October 21 , 2024ˢᵗ A. Bocci - Experience with the alpaka performance portability library in the CMS software 5 / 22

what is alpaka ?

● alpaka is a header-only C++17 abstraction library for heterogeneous software development
● it aims to provide performance portability

across accelerators through the abstraction
of the underlying levels of parallelism

● may expose the underlying details when necessary
● (almost) native performance on different hardware

● supports all platforms of interest to CMS
● x86 and ARM CPUs

– with serial and parallel execution
● stable support for NVIDIA and AMD GPUs

– with CUDA and ROCm backends
● experimental support for Intel GPUs and FPGAs, based on SYCL and oneAPI

● developed at CASUS at HZDR, and at CERN
● open source project, easy to contribute to: https://github.com/alpaka-group/alpaka/

● it is production-ready today !

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/alpaka-group/alpaka/
https://www.casus.science/home/
https://www.hzdr.de/
https://home.cern/
https://github.com/alpaka-group/alpaka/
https://github.com/alpaka-group/alpaka/

October 21 , 2024ˢᵗ A. Bocci - Experience with the alpaka performance portability library in the CMS software 6 / 22

alpaka is under active development

● alpaka 1.0.0 released on November 2023
● experimental support for Intel oneAPI, with SYCL Unified Shared Memory model
● support std::mdspan and Kokkos’ mdspan

● alpaka 1.1.0 released on January 2024 ← used by CMS for 2024 releases
● stable support for Intel oneAPI
● implement additional math functions and warp-level functions

● alpaka 1.2.0 just released on October 2024
● more complete support for Intel oneAPI
● introduce helpers for writing parallel kernels ← already used in CMS software
● last release to support c++17, keep the 1.2.x branch for long term support

● looking ahead: plans for alpaka 2.0.0
● move to c++20 and introduce Concepts
● make more device-side operations constexpr
● improve memory buffers and views
● support grid-wide synchronisation
● support CUDA graphs / HIP graphs / TBB flow graphs

https://creativecommons.org/licenses/by-sa/4.0/
https://github.com/alpaka-group/alpaka/releases/tag/1.0.0
https://www.intel.com/content/www/us/en/developer/articles/code-sample/dpcpp-usm-code-sample.html
https://en.cppreference.com/w/cpp/container/mdspan
https://github.com/kokkos/mdspan
https://github.com/alpaka-group/alpaka/releases/tag/1.1.0
https://github.com/alpaka-group/alpaka/releases/tag/1.2.0
https://github.com/alpaka-group/alpaka/pull/2402
https://github.com/alpaka-group/alpaka/pull/2403
https://github.com/alpaka-group/alpaka/pull/2307

October 21 , 2024ˢᵗ A. Bocci - Experience with the alpaka performance portability library in the CMS software 7 / 22

the alpaka migration

● common data structures
● Structures of Arrays (SoA)
● persistent data formats

● new heterogeneous framework
● asynchronous execution
● automatic back-end selection
● automatic data transfers
● EventSetup support

● performance portability
● adoption of alpaka
● back-ends and build rules

● adopt a performance portability library
– reduce code duplication

● adopt a generic and consistent SoA approach for
heterogeneous data structures

– implement common optimisations and minimise
memory operations

– offer a common interface, and reduce the
development and maintenance efforts

● adopt an improved version of the accelerator
framework in CMSSW

– automate data transfers from GPUs to host

– support automatic selection of the “best” backend
among the host and all available accelerators

● simplify the logic and the dependency among
modules, reduce code duplication

https://creativecommons.org/licenses/by-sa/4.0/

October 21 , 2024ˢᵗ A. Bocci - Experience with the alpaka performance portability library in the CMS software 8 / 22

benefits of alpaka as a portability library

● single code base targetting CPUs and GPUs
● reduce code duplication and maintenance effort
● implement a common interface to the data and algorithms

● modular builds
● always build code to run on CPUs
● build code to run on the GPUs as additional shared libraries, only if supported by the architecture

– e.g. no HIP/ROCm on ARM, no CUDA on RISC-V

– developers can enable only available backends to speed up local builds

● load GPU-based libraries at runtime only if they are present on the machine
– match available hardware to the environment and to the job’s configuration

● uniform algorithms and data structures
● framework can automatically schedule tasks on the CPU or on the GPUs
● framework can automatically schedule copies (to and) from the GPUs

https://creativecommons.org/licenses/by-sa/4.0/

October 21 , 2024ˢᵗ A. Bocci - Experience with the alpaka performance portability library in the CMS software 9 / 22

single code running on CPUs and GPUs

● uniform algorithms and data structures
● framework can automatically schedule tasks on the CPU or on the GPUs
● framework can automatically schedule copies (to and) from the GPUs

Note: each column is
normalised to unity

https://creativecommons.org/licenses/by-sa/4.0/

October 21 , 2024ˢᵗ A. Bocci - Experience with the alpaka performance portability library in the CMS software 10 / 22

Structures of Arrays

using PFRecHitsNeighbours = Eigen::Matrix<int32_t, 8, 1>;

GENERATE_SOA_LAYOUT(PFRecHitSoALayout,

 SOA_COLUMN(uint32_t, detId),

 SOA_COLUMN(float, energy),

 SOA_COLUMN(float, time),

 SOA_COLUMN(int, depth),

 SOA_COLUMN(PFLayer::Layer, layer),

 SOA_EIGEN_COLUMN(PFRecHitsNeighbours, neighbours),

 SOA_COLUMN(float, x),

 SOA_COLUMN(float, y),

 SOA_COLUMN(float, z),

 SOA_SCALAR(uint32_t, size)

)

using PFRecHitSoA = PFRecHitSoALayout<>;

using PFRecHitHostCollection =

 PortableHostCollection<PFRecHitSoA>;

namespace ALPAKA_ACCELERATOR_NAMESPACE {

 using PFRecHitDeviceCollection =

 PortableCollection<::reco::PFRecHitSoA>;

}

SET_PORTABLEHOSTCOLLECTION_READ_RULES(

 PFRecHitHostCollection);

DataFormats/ParticleFlowReco/interface/PFRecHitHostCollection.h

…/ParticleFlowReco/interface/alpaka/PFRecHitDeviceCollection.h

DataFormats/ParticleFlowReco/src/classes_serial.cc

DataFormats/ParticleFlowReco/interface/PFRecHitSoA.h

syntax similar to a struct

use on CPU …

 … on GPU …

… in ROOT files

● uniform algorithms and data structures
● framework can automatically schedule tasks on the CPU or on the GPUs
● framework can automatically schedule copies (to and) from the GPUs

https://creativecommons.org/licenses/by-sa/4.0/

October 21 , 2024ˢᵗ A. Bocci - Experience with the alpaka performance portability library in the CMS software 11 / 22

unpacker

local reco

calibrations

unpacker@alpaka

local reco@alpaka

raw data raw data

unpacker@cpu

local reco@cpu

calibrations@cpu

unpacker@cuda

local reco@cuda

calibrations@cuda

host copy@cuda

switch

raw data

calibrations@alpaka

automatic host copy

le
ga

cy
 v

er
si

on

CU
DA

 v
er

si
on

al
pa

ka
 v

er
si

on

improved heterogeneous framework

● uniform algorithms and data structures
● framework can automatically schedule tasks on the CPU or on the GPUs
● framework can automatically schedule copies (to and) from the GPUs

https://creativecommons.org/licenses/by-sa/4.0/

impact on the HLT farm

October 21 , 2024ˢᵗ A. Bocci - Experience with the alpaka performance portability library in the CMS software 13 / 22

the HLT reconstruction with CPUs

CPU only

880 ± 1 W

400 ± 3 ev/s performance on
2022 HLT nodes

https://creativecommons.org/licenses/by-sa/4.0/

October 21 , 2024ˢᵗ A. Bocci - Experience with the alpaka performance portability library in the CMS software 14 / 22

port time-consuming algortihms to GPUs

● HLT algorithms running on GPUs in 2024
● pixel local reconstruction
● ntuplet reconstruction, tracks and vertex fitting

– see the talk by Daniele about the offline validation
● ECAL unpacking and local reconstruction
● HCAL local reconstruction

– see the poster by Martin
● HCAL Particle Flow clustering

– see the poster by Jonathan

● GPU implementation under development
● ECAL local calibrations
● electron seeding

– see the talk by Charis on Wednesday
● full primary vertex reconstrution

CPU only

https://creativecommons.org/licenses/by-sa/4.0/
https://indico.cern.ch/event/1338689/contributions/6011614/
https://indico.cern.ch/event/1338689/contributions/6018442/
https://indico.cern.ch/event/1338689/contributions/6015436/
https://indico.cern.ch/event/1338689/contributions/6010071/

October 21 , 2024ˢᵗ A. Bocci - Experience with the alpaka performance portability library in the CMS software 15 / 22

the HLT reconstruction with GPUs

with GPUs

603 ± 6 ev/s

1136 ± 2 W

400 ± 3 ev/s

+50% throughput

performance on
2022 HLT nodes

https://creativecommons.org/licenses/by-sa/4.0/

October 21 , 2024ˢᵗ A. Bocci - Experience with the alpaka performance portability library in the CMS software 16 / 22

with GPUs with GPUs
0 ms

100 ms

200 ms

300 ms

400 ms

500 ms

600 ms

700 ms

ECAL

HCAL

Pixel track and vertex

Particle Flow

Full track and vertex

E/Gamma

Jets/MET

Taus

Muons

other

non-event processing

av
er

ag
e

pr
oc

es
si

ng
 ti

m
e

pe
r

ev
en

t

CMS Preliminary 13.6 TeV

646 ms/ev

415 ms/ev

impact on the HLT farm

CMS Run 3 GPU-equipped HLT farm
● 200 nodes:

● 2 × AMD EPYC “Milan” 7763 processors
● 2 × NVIDIA Tesla T4 GPUs

● +20% extention in 2024 with 18 nodes:
● 2 × AMD EPYC “Bergamo” 9754 processors
● 3 × NVIDIA L4 GPUs

● thanks to the use of GPUs
● 50% better event processing throughput
● 35% less processing time per event
● 15% - 20% better performance at initial cost
● 15% - 25% better performance per kW

-35% time / event

performance on
2022 HLT nodes

https://creativecommons.org/licenses/by-sa/4.0/

looking ahead

October 21 , 2024ˢᵗ A. Bocci - Experience with the alpaka performance portability library in the CMS software 18 / 22

how well can GPU usage scale ?

● ideal test case
● consider only the fraction of the HLT that has been

ported to alpaka
● can run on CPUs (x86, ARM)
● can run almost entirely on GPUs

● baseline
● performance of a CPU-only setup
● 2 × AMD EPYC “Bergamo” 9754 processors

● scaling
● add 1×, 2×, 3×, 4× NVIDIA L4 GPUs
● subtract the baseline

● results
● throughput: NGPUs × 512.3 ev/s + 1196.5 ev/s
● power draw: NGPUs × 102.1 W + 1043.8 W 1000 W 1100 W 1200 W 1300 W 1400 W 1500 W

0 ev/s

1000 ev/s

2000 ev/s

3000 ev/s

4000 ev/s

4 GPUs

3 GPUs

2 GPUs

1 GPU

no GPUs

1198 ev/s

1691 ev/s

2230 ev/s

2765 ev/s

3223 ev/s

power consumption
th

ro
ug

hp
ut

CMS Preliminary 13.6 TeV

baselineeach GPU

https://creativecommons.org/licenses/by-sa/4.0/

October 21 , 2024ˢᵗ A. Bocci - Experience with the alpaka performance portability library in the CMS software 19 / 22

0 4 8 12 16 20 24 28 32 36 40 44 48
0 ev/s

200 ev/s

400 ev/s

600 ev/s

800 ev/s

1000 ev/s

1200 ev/s

NVIDIA L40S

1 job

2 jobs

3 jobs

4 jobs

5 jobs

6 jobs

7 jobs

8 jobs

threads per job

th
ro

ug
hp

ut

Preliminary

what about oher architectures ?

0 4 8 12 16 20 24
0 ev/s

100 ev/s

200 ev/s

300 ev/s

400 ev/s

500 ev/s

600 ev/s

NVIDIA Grace Hopper superchip

1 job

2 jobs

3 jobs

4 jobs

5 jobs

6 jobs

threads per job

th
ro

ug
hp

ut

0 4 8 12 16 20 24 28 32 36 40 44 48
0 ev/s

100 ev/s

200 ev/s

300 ev/s

400 ev/s

500 ev/s

600 ev/s

AMD MI250X GPU

2 jobs

4 jobs

6 jobs

8 jobs

10 jobs

12 jobs

threads per job

th
ro

ug
hp

ut

0 4 8 12 16 20 24 28 32 36 40 44 48
0 ev/s

50 ev/s

100 ev/s

150 ev/s

200 ev/s

250 ev/s

AMD Radeon Pro W7800

1 job

2 jobs

3 jobs

4 jobs

threads per job

th
ro

ug
hp

ut

Preliminary

Preliminary

Preliminary

NVIDIA Grace Hopper (GPU)
at Oak Ridge

AMD Radeon Pro W7800 GPU

full AMD Instinct MI250X GPU
at LUMI HPC

NVIDIA L40S GPU

Note: MI250X does
not include the pixel
reconstruction

https://creativecommons.org/licenses/by-sa/4.0/

conclusions

October 21 , 2024ˢᵗ A. Bocci - Experience with the alpaka performance portability library in the CMS software 21 / 22

conclusions

● lessons learned
● writing new reconstruction algorithms takes effort

– whether they run only on CPU or on heterogeneous hardware

● code duplication is Bad™
– duplicate effort to add the same features and fix the same bugs

– introduce more bugs

● a portability framework
can help minimise these efforts

● looking ahead
● GPUs can achieve impressive performance

– if used for a large enough fraction of the algorithms

● optimising the performance of heterogenous hardware is complicated!
● need to gain more experience with non-NVIDIA hardware

https://creativecommons.org/licenses/by-sa/4.0/

Questions ?

October 21 , 2024ˢᵗ A. Bocci - Experience with the alpaka performance portability library in the CMS software 24 / 22

the portability challenge

● new code written using the native CUDA API, targetting NVIDIA
GPUs

● most widespread GPU architecture, supports x86 and ARM
● no RISC V yet ?

● develop new algorithms to run on GPUs
● ad hoc compatibility layer
● a lot of #ifdef __CUDA_ARCH__ scattered through the code

● port existing algorithms to run on GPUs
● two implementations: legacy (CPU-only) and parallel (GPU-only)
● duplication of development, maintenance and validation efforts

● most offline sites do not use GPUs yet…
● adoption of GPUs from other vendors in HPCs is increasing

● LUMI-G, in Finland, and Frontier, at Oak Ridge, use AMD MI250X GPUs
● Aurora, at Argonne National Laboratory, will use Intel Xe GPUs

● can we target different CPUs and GPUs with a single code base ?

how do we run here ?

and here ?

maintenance issues!

code duplication!

https://creativecommons.org/licenses/by-sa/4.0/

October 21 , 2024ˢᵗ A. Bocci - Experience with the alpaka performance portability library in the CMS software 25 / 22

alpaka core concepts

Platform and Device
● identify the type of hardware (e.g. NVIDIA GPUs) and individual devices (e.g. each single GPU) present

on the machine
● the DevCpu device serves two purposes:

– as the “host” device, for managing the data flow (e.g. perform memory allocation and transfers, run EDProducer, etc.)

– as an “accelerator” device, for running heterogeneous code (e.g. to run an algorithm on the CPU)

● platforms and devices should be created at the start of the program and used consistently

owning Buffer and non-owning View
● point to a scalar or a N-dimensional array in host or device memory
● scalars and 1-dimensional arrays can be accessed with the pointer *, -> and array [] operators
● on device that support it, the buffer allocations/deallocations can use a queue-ordered semantic

nota bene: all Alpaka objects behave like shared_ptrs, and should be passed by value or by
const&

https://creativecommons.org/licenses/by-sa/4.0/

October 21 , 2024ˢᵗ A. Bocci - Experience with the alpaka performance portability library in the CMS software 26 / 22

alpaka core concepts

Queues and Events
● queues identify a work queue where tasks (memory ops, kernel executions, …) are executed in order

– for example, a queue could represent an underlying CUDA stream or a CPU thread
● queues can be sync(hronous or blocking) or async(hronous or non-blocking)

– work submitted to a sync queue is executed immediately, before returning to the caller
– work submitted to an async queue is executed in the background, without waiting for its completion

● events identify points in time along the work queue
– can be used to query or wait for the readiness of a task submitted to a queue

● queues and events are always associated to a specific device

Tags and Accelerators
● tags describe all possible accelerators
● accelerators encapsulate the execution policy on a specific device

– N-dimensional work division (1D, 2D, 3D, …)
– on CPU: serial vs parallel execution of the “blocks” (single thread, multi-threads, TBB tasks, …)

● accelerators are created any time a kernel is executed, and can be used in device code to extract the
execution configuration

https://creativecommons.org/licenses/by-sa/4.0/

October 21 , 2024ˢᵗ A. Bocci - Experience with the alpaka performance portability library in the CMS software 27 / 22

alpaka in CMSSW: backends

● in CMSSW we tie together the Device, Queue, Event and Accelerator types in a “backend”
● each backend is associated to a namespace

● synchronous execution on the CPU, with a single thread:

● asynchronous execution on a GPU, with a grid of blocks and threads:

namespace alpaka_serial_sync {

 using Platform = alpaka::PlatformCpu;

 using Device = alpaka::DevCpu;

 using Queue = alpaka::QueueCpuBlocking;

 using Event = alpaka::EventCpu;

 template <typename TDim> using Acc = alpaka::AccCpuSerial<TDim, uint32_t>;

}

namespace alpaka_cuda_async {

 using Platform = alpaka::PlatformCudaRt;

 using Device = alpaka::DevCudaRt;

 using Queue = alpaka::QueueCudaRtNonBlocking;

 using Event = alpaka::EventCudaRt;

 template <typename TDim> using Acc = alpaka::AccGpuCudaRt<TDim, uint32_t>;

}

https://creativecommons.org/licenses/by-sa/4.0/

October 21 , 2024ˢᵗ A. Bocci - Experience with the alpaka performance portability library in the CMS software 28 / 22

files and directory structure

● to support the compilation of Alpaka -based plugins and libraries for multiple backends,
we have introduced a new directory structure ad a new file type:

● alpaka/ subdirectories under interface/, src/, plugins/ or test/
● *.dev.cc files

DataFormats/PortableTestObjects/
├── BuildFile.xml
├── README.md
├── interface/
│ ├── TestHostCollection.h
│ └── TestSoA.h
│
│
└── src/
 │
 │
 │
 ├── classes.h
 └── classes_def.xml

HeterogeneousCore/AlpakaTest/
├── plugins/
│ ├── BuildFile.xml
│ └── TestAlpakaAnalyzer.cc
│
│
│
│
│
└── test/
 ├── BuildFile.xml
 ├── reader.py
 ├── testHeterogeneousCoreAlpakaTestWriteRead.sh
 └── writer.py

https://creativecommons.org/licenses/by-sa/4.0/

October 21 , 2024ˢᵗ A. Bocci - Experience with the alpaka performance portability library in the CMS software 29 / 22

files and directory structure

● to support the compilation of Alpaka -based plugins and libraries for multiple backends,
we have introduced a new directory structure ad a new file type:

● alpaka/ subdirectories under interface/, src/, plugins/ or test/
● *.dev.cc files

DataFormats/PortableTestObjects/
├── BuildFile.xml
├── README.md
├── interface/
│ ├── TestHostCollection.h
│ ├── TestSoA.h
│ └── alpaka/
│ └── TestDeviceCollection.h
└── src/
 ├── alpaka/
 │ ├── classes_cuda.h
 │ └── classes_cuda_def.xml
 ├── classes.h
 └── classes_def.xml

HeterogeneousCore/AlpakaTest/
├── plugins/
│ ├── BuildFile.xml
│ ├── TestAlpakaAnalyzer.cc
│ └── alpaka/
│ ├── TestAlgo.dev.cc
│ ├── TestAlgo.h
│ ├── TestAlpakaProducer.cc
│ └── TestAlpakaTranscriber.cc
└── test/
 ├── BuildFile.xml
 ├── reader.py
 ├── testHeterogeneousCoreAlpakaTestWriteRead.sh
 └── writer.py

https://creativecommons.org/licenses/by-sa/4.0/

October 21 , 2024ˢᵗ A. Bocci - Experience with the alpaka performance portability library in the CMS software 30 / 22

alpaka/ directories

*.dev.cc files by the device compiler
● for example, nvcc 12.2 or hipcc 5.6
● what is available:

– the host side API of the selected accelerator:
e.g. alpaka::memcpy(queue,dest, source)

– device code:
e.g. ALPAKA_FN_ACC void func(TAcc const& acc, …) { … }

– kernel launches:
e.g. alpaka::exec<Acc1D>(queue, workDiv, kernel{}, …);

● what is discouraged
– access to ROOT and the full CMSSW framework

*.cc files by the host compiler
● for example, gcc 12.3
● what is available:

– standard C++, e.g. ROOT and CMSSW framework

– the host side API of the selected accelerator:
e.g. alpaka::memcpy(queue,dest, source)

● what is not allowed:
– device code:

e.g. ALPAKA_FN_ACC void func(TAcc const& acc, …) { … }

– kernel launches:
e.g. alpaka::exec<Acc1D>(queue, workDiv, kernel{}, …);

● all code under the …/{src,plugins,test}/alpaka/ directories is compiled multiple times
● into a separate shared library for each back-end

– isolate compile-time and run-time dependencies, minimise code loaded at runtime
● defining the ALPAKA_ACCELERATOR_NAMESPACE macro to the corresponding backend namespace

– automate using the correct types, avoid symbol clashes

https://creativecommons.org/licenses/by-sa/4.0/

October 21 , 2024ˢᵗ A. Bocci - Experience with the alpaka performance portability library in the CMS software 31 / 22

CMS HLT reconstruction break down

CPU only with GPUs

https://creativecommons.org/licenses/by-sa/4.0/

