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Idea: Automatize the building of a CMS Level-1 trigger selection for various physics signatures 
using cut-based algorithms

Two “toy” examples for demonstration

Bs ➞ μμ VBF H  ➞ ττ

[1] Left: SM Bs ➞ μμ decay channels 
Right: BSM Bs ➞ μμ decay channels

Goal: Determine the optimal cut parameters through an automated procedure to 
maximize signal efficiency, while maintaining the rate near a budgeted rate according to a 
specified trade-off preference
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Guess a neural-net model 
e.g. binary classifier with 
dense layers and sigmoid 
output

Introduction: Similarity with neural-nets
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Theoretical background

6

● Optimizing cut-based trigger algorithms (seeds) is a 2-objective optimization problem 
(maximize efficiency and minimize rate)

● One can leverage achievement scalarization = scalarize the problem by using a reference point

● Wierzbicki:        [5, 6]

fi  … component of function to optimize  gi  … component of reference point

ωi  … scale factor ρ … augmentation coefficient

k … number of objectives

● In our case this loss function can be written as:
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Bs             μμ (optimization iterations)
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Optimization of double track matched muon [4] seed with cuts on: pT, η, quality, invariant mass, ΔR, Δz0, charge correlation using 
the reference point: desired efficiency = 1, desired rate = 15 kHz.

Left: Evolution of loss vs. iteration, showing that the loss decreases with each iteration (dashed line for visual guidance).
Right: Evolution in the efficiency vs. rate phase space, starting with iteration 0 in the bottom left (dashed line for visual guidance).



Bs             μμ (solution plausibility)
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Converged to 55 % efficiency (No Pile-Up) and 3.2 kHz rate ➞ 51 % efficiency with Pile-Up 200 

Optimized cuts:

Muon1:
pT > 3.551 GeV
η > X pruned
η < 2.431
qualityFlags = loose

Muon2:
pT > 3.481 GeV
η > X pruned
η < 2.431
qualityFlags = very loose

Correlations (Muon1 + Muon2):
Invariant Mass > 4.859 GeV
Invariant Mass < 6.522 GeV
ΔR > 0.0
ΔR < 1.64
Δq = 2 e (q1 ≠ q2)
Δz0 < 1.317 cm

Invariant mass of Bs meson: 5.37 GeV

Bs meson q = 0 e

Close together ➞ from same mother particle (cτ ~ 0.5 mm)

Max measurable η ~ 2.4 ➞ both pruned 



VBF H             ττ (moving the reference point)

Optimization of VBF H ➞ ττ for various reference points using a double Puppi NN tau [5] algorithm. The plots exhibit that moving the 
reference point (desired rate + desired efficiency) allows finding different solutions on the Pareto front.

Left: Various reference points converging to points on the approximated Pareto front (Efficiency without PU, dashed line for visual 
guidance).
Right: The points form an approximated Pareto front (Efficiency with PU 200, dashed line for visual guidance).
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Bs             μμ (creating an algorithm)

Optimization of all muon collection correlations (TkMuon = track matched muon, SAMuon= standalone muon, SADisplacedMuon = 
standalone displaced muon) separately with reference point: desired efficiency = 1, desired rate = 15 kHz.
This was done for a later combination via a logical “OR” into an algorithm.
Left: Evolution of loss vs. iteration, showing that the loss decreases with each iteration  (dashed lines for visual guidance).
Right: Evolution in the efficiency vs. rate phase space, starting with iteration 0 in the bottom left (dashed lines for visual guidance).
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Bs             μμ (creating an algorithm)

Adding the optimized combined algorithm (logical “OR” of all muon collection correlations of previous slide) to the prototype 
menu for Phase-2 (defined without using this optimization technique) and a comparison with other seeds of this menu.
Left: Efficiency (of Bs to μμ) vs. rate of the prototype menu with and without the optimized algorithm.
Right: Efficiency (of Bs to μμ) vs. rate of the “best” prototype menu seeds to compare with the optimized algorithm.

● Lowest rate and better efficiency than the prototype menu is achieved with the optimized DoubleTkMuon seed.
● Best overall efficiency is achieved with the optimized combined seed.
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Summary

● Optimizing cut-based algorithms is a 2-objective optimization problem
○ Maximize trigger efficiency
○ Minimize trigger rate

● It follows that there is an infinite set of “optimal” solutions

● Problem can be scalarized using a reference point, defining a preference for a 
solution

● A slightly more “fancy” hill climb algorithm was used to find a minimum

● Converges to a single point in the efficiency, rate phase space

● Converges well for the two “toy” examples Bs ➞ μμ and VBF H ➞ ττ
○ Moving the reference point allows finding different solutions

● The solutions can be checked for plausibility
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