
Reconstruction in Key4hep using Gaudi

Juan Miguel Carceller j.m.carcell@cern.ch

CERN, EP-SFT

October 23, 2024

malto:j.m.carcell@cern.ch

Key4hep

• Turnkey software for future colliders

• Share components to reduce maintenance
and development cost and allow everyone
to benefit from its improvements

• Complete data processing framework, from
generation to data analysis

• Community with people from many
experiments: FCC, ILC, CLIC, CEPC, EIC,
Muon Collider, etc.

• Open biweekly meetings

Framework
(Gaudi)

k4geo

J.M. Carceller CERN EP-SFT CHEP 2024 1

https://indico.cern.ch/category/11461/

The Event Data Model in Key4hep: EDM4hep

• Data Model used in Key4hep, it is
the language that all components
must speak

• Classes for physics objects, like
MCParticle, with possible
relations to other objects

• Links between objects

• Objects are grouped in
collections, like
MCParticleCollection

EDM4hep DataModel Overview (v0.99)

Monte Carlo DigitizationRaw Data
Reconstruction &

Analysis

RecoMCParticleLink

TrackerHitSimTrackerHitLink

CaloHitSimCaloHitLink

CaloHitMCParticleLink

J.M. Carceller CERN EP-SFT CHEP 2024 2

The Event Data Model in Key4hep: EDM4hep

• Data Model used in Key4hep, it is
the language that all components
must speak

• Classes for physics objects, like
MCParticle, with possible
relations to other objects

• Links between objects

• Objects are grouped in
collections, like
MCParticleCollection

EDM4hep DataModel Overview (v0.99)

Monte Carlo DigitizationRaw Data
Reconstruction &

Analysis

RecoMCParticleLink

TrackerHitSimTrackerHitLink

CaloHitSimCaloHitLink

CaloHitMCParticleLink

T. Madlener’s talk on Thursday

J.M. Carceller CERN EP-SFT CHEP 2024 2

https://indico.cern.ch/event/1338689/contributions/6015945/

The Key4hep Framework

• Gaudi based core framework:

• k4FWCore provides the interface between EDM4hep and Gaudi

• k4Gen for integration with generators

• k4SimDelphes for integration with Delphes

• k4MarlinWrapper to call Marlin processors

• Algorithms for trackers, calorimeters

• Algorithms ported from the linear collider community

• . . .

J.M. Carceller CERN EP-SFT CHEP 2024 3

https://gitlab.cern.ch/gaudi/Gaudi/
https://github.com/key4hep/k4FWCore
https://github.com/HEP-FCC/k4Gen
https://github.com/key4hep/k4SimDelphes
https://github.com/key4hep/k4MarlinWrapper

Gaudi

• Event processing framework

• Algorithms are written in C++ and
are configured with steering files
in python

• Data is passed between
algorithms using a Transient
Event Data Store

• Lots of services for
histogramming, logging, etc.

AlgorithmA

Algorithm B

Algorithm C

Transient Event
Data Store

Data T1

Data T2, T3

Data T2

Data T4

Data T3, T4

Data T5

Data T1

Data T5 Apparent dataflow

Real dataflow

J.M. Carceller CERN EP-SFT CHEP 2024 4

Running reconstruction algorithms

• 1. Algorithms that do not use EDM4hep as their event data model

• 2. Algorithms that use EDM4hep as their event data model

J.M. Carceller CERN EP-SFT CHEP 2024 5

LCIO Converters
• LCIO is the EDM in the linear collider community

• Marlin processors (algorithms from the linear collider community) can be used in Gaudi
using the MarlinProcessorWrapper

• EDM4hep input and output can be used; Marlin processors take LCIO input and give LCIO
output

• Standalone converter lcio2edm4hep to convert files

Prev.
algorithm

ED
M

4hep
O

utput

MarlinProcessorWrapper

LC
IO

Input

LC
IO

O
utput

Next alg.
e.g. ACTS

ED
M

4hep
Input

EDM4hep2LCIO
converter

LCIO2EDM4hep
converter

J.M. Carceller CERN EP-SFT CHEP 2024 6

Running reconstruction algorithms

• 1. Algorithms that do not use EDM4hep as their event data model

• 2. Algorithms that use EDM4hep as their event data model

J.M. Carceller CERN EP-SFT CHEP 2024 7

Current status

• Most algorithms are implementing Gaudi::Algorithm

• Using a custom data service: PodioDataSvc and custom algorithms for input and output:
PodioInput and PodioOutput

• Issue: No support for multithreading, unable to use Gaudi HiveWhiteBoard

J.M. Carceller CERN EP-SFT CHEP 2024 8

Current status

• Most algorithms are implementing Gaudi::Algorithm

• Using a custom data service: PodioDataSvc and custom algorithms for input and output:
PodioInput and PodioOutput

• Issue: No support for multithreading, unable to use Gaudi HiveWhiteBoard

• New developments in Key4hep

• Support for functional algorithms
• Support for multithreading

J.M. Carceller CERN EP-SFT CHEP 2024 8

Functional algorithms in Gaudi

• Gaudi::Functional algorithms
• Multithreading friendly, no internal state
• Leave details of the framework to the framework

class MySum : public TransformAlgorithm<OutputData(const Input1&, const Input2&)> {
MySum(const std::string& name, ISvcLocator* pSvc)
: TransformAlgorithm(name, pSvc, {

KeyValue("Input1Loc", "Data1"),

KeyValue("Input2Loc", "Data2") },

KeyValue("OutputLoc", "Output/Data")) { }

OutputData operator()(const Input1& in1, const Input2& in2) const override {
return in1 + in2;

}

• Adapted to work in Key4hep with EDM4hep

J.M. Carceller CERN EP-SFT CHEP 2024 9

Functional algorithms in Key4hep

• New service, IOSvc, supports multithreading and reading and
writing ROOT TTrees and ROOT RNTuples
• Reading detects automatically if it’s a TTree or RNTuple

• Two input/output algorithms: Reader and Writer
• Reader will ask IOSvc to read and then will push itself the

collections to the store
• Writer will write the collections to a file

• Take into account collection ownership

• Easily change to multithreading by using Gaudi’s HiveWhiteBoard

svc = IOSvc("IOSvc")

svc.Input = "input.root"

svc.Output = "output.root"

svc.OutputType = "RNTuple"

J.M. Carceller CERN EP-SFT CHEP 2024 10

Functional algorithms in Key4hep: Features

• Support for having as input or output an arbitrary number of collections with std::vector

• Algorithms should work for all detectors (with different number of subdetectors)

• Reimplemented the Consumer, Transformer and MultiTransformer from Gaudi
• k4FWCore::Consumer, k4FWCore::Transformer and k4FWCore::MultiTransformer

• Algorithms can now:
• Pick up multiple collections and store them in a
std::vector when reading

• Iterate over the collections and push them
individually when pushing a std::vector

• Abstracted into a common function for reading
and a common function for pushing

J.M. Carceller CERN EP-SFT CHEP 2024 11

Functional algorithms in Key4hep: Features

• Support for having as input or output an arbitrary number of collections with std::vector

• Algorithms should work for all detectors (with different number of subdetectors)

• Reimplemented the Consumer, Transformer and MultiTransformer from Gaudi
• k4FWCore::Consumer, k4FWCore::Transformer and k4FWCore::MultiTransformer

• Algorithms can now:
• Pick up multiple collections and store them in a
std::vector when reading

• Iterate over the collections and push them
individually when pushing a std::vector

• Abstracted into a common function for reading
and a common function for pushing

Event Store IColl1 IColl2 IColl3

std::vector {IColl1, IColl2, IColl3}

Algorithm code

std::vector {OColl1, OColl2}

OColl1 OColl2Event Store
J.M. Carceller CERN EP-SFT CHEP 2024 11

Example with an arbitrary number of collections
struct ExampleAlgorithm final

: k4FWCore::Transformer<std::vector<edm4hep::MCParticleCollection>(

const std::vector<const edm4hep::MCParticleCollection*>& input)> {
ExampleAlgorithm(const std::string& name, ISvcLocator* svcLoc)

: Transformer(name, svcLoc, {KeyValues("InputCollections", {"MCParticles"})},

{KeyValues("OutputCollections", {"MCParticles"})}) {}

std::vector<edm4hep::MCParticleCollection> operator()(
const std::vector<const edm4hep::MCParticleCollection*>& input) const override {

std::vector<edm4hep::MCParticleCollection> outputCollections;

for (size_t i = 0; i < input.size(); ++i) {
...

}

return outputCollections;
}

};

• In the steering file multiple collections are passed in a list

consumer = ExampleFunctionalConsumerRuntimeCollections(

"Consumer",

InputCollections=["MCParticles0", "MCParticles1", "MCParticles2"],

OutputCollections=["NewMCParticles0", "NewMCParticles1", "NewMCParticles2"],

)
J.M. Carceller CERN EP-SFT CHEP 2024 12

Example algorithm: Overlay

• Ported from the original Overlay Timing from
iLCSoft

• Reads collections from background files and overlays
them on top of the signal

• edm4hep::MCParticle: all particles with a time
offset for background

• edm4hep::SimTrackerHit: only hits within a
configurable time-window

• edm4hep::SimCalorimeterHit: only if they have
any edm4hep::CaloHitContribution within a
specific time window. Hits with the same cellID
are merged

0.0 0.5 1.0 1.5 2.0
eDep [GeV] 1e 5

100

101

102

103

En
tri

es

overlay
signal
background1
background2

J.M. Carceller CERN EP-SFT CHEP 2024 13

https://github.com/iLCSoft/Overlay/blob/master/src/OverlayTiming.cc

Example algorithm: Overlay

• Feature: the Overlay algorithm takes any number of collections as input

• As many output collections as input collections

overlay = OverlayTiming()

overlay.MCParticles = ["MCParticles"]

overlay.BackgroundMCParticleCollectionName = "MCParticle"

overlay.SimTrackerHits = ["VertexBarrelCollection", "VertexEndcapCollection"]

overlay.OutputSimTrackerHits = ["NewVertexBarrelCollection", "NewVertexEndcapCollection"]

...

• For a different detector the number and names of the collections can be changed

J.M. Carceller CERN EP-SFT CHEP 2024 14

Other features

• Support for reading and writing metadata from algorithms

• Convenience python wrappers for IOSvc and ApplicationMgr

• if input/output is specified for IOSvc then a Reader/Writer algorithm is added. Reader
and Writer don’t have data dependencies but the wrapper correctly wraps them in a
sequencer

• To create a MetadadataSvc if it’s not there

• Backwards compatibility with existing algorithms

J.M. Carceller CERN EP-SFT CHEP 2024 15

Summary and Outlook

• Reconstruction algorithms in Key4hep
• Using EDM4hep natively
• Using LCIO, from the Linear Collider community, with the MarlinWrapper

• Support added for functional algorithms in Key4hep
• New IOSvc, with support for multithreading and reading and writing TTrees and

RNTuples

• Motivated by the lack of multithreading support
• Algorithms support reading and pushing arbitrary number of collections
• New algorithms are being implemented as functional algorithms
• Work on integrations with other software, like ACTS and Pandora

J.M. Carceller CERN EP-SFT CHEP 2024 16

Backup

J.M. Carceller CERN EP-SFT CHEP 2024 17

Past (and present)
• Using exclusively GaudiAlg
• Custom DataHandle class
• A custom DataWrapper is pushed to the store, thin wrapper of a pointer to a collection
• Two algorithms for IO: PodioInput and PodioOutput and an IO service: PodioDataSvc
• How it works:

• PodioDataSvc holds a podio::Frame (Frame = event) and some metadata. This Frame
owns all the collections

• PodioInput will ask PodioDataSvc to read and register the collections
• [Algorithm execution]. . .
• PodioOutput will use the podio::Frame to write the collections to a file (only those that

we want to write)
• Multiple issues

• Not designed for multithreading
• PodioDataSvc isn’t an implementation of IHiveWhiteBoardJ.M. Carceller CERN EP-SFT CHEP 2024 18

podio::Frame

• The Frame (from podio) is a data container where
collections can be stored

• Support for multithreading

• Typically represents an event but can be anything else

• A backend decides how it is written to a file (ROOT TTrees
most of the time, but can also be RNTuples)

• Takes ownership of the collections

Simple interface with get and put

frame.get("MCParticleCollection");

frame.put(std::move(coll), "NewCollection");

Also in python:

from podio.root_io import Reader

reader = Reader('myfile.root')

events = reader.get('events')

for frame in events:

coll = frame.get('MCParticleCollection')

J.M. Carceller CERN EP-SFT CHEP 2024 19

Functional algorithms

• Example: producer of an arbitrary number of collections

struct ExampleFunctionalProducerRuntimeCollections final
: k4FWCore::Producer<std::vector<edm4hep::MCParticleCollection>()> {

ExampleFunctionalProducerRuntimeCollections(const std::string& name, ISvcLocator* svcLoc)
: Producer(name, svcLoc, {}, {KeyValues("OutputCollections", {"MCParticles"})}) {}

std::vector<edm4hep::MCParticleCollection> operator()() const override {
const auto locs = outputLocations();
std::vector<edm4hep::MCParticleCollection> outputCollections;

for (size_t i = 0; i < locs.size(); ++i) {
info() << "Creating collection " << i << endmsg;

auto coll = edm4hep::MCParticleCollection();
coll.create(1, 2, 3, 4.f, 5.f, 6.f);

coll.create(2, 3, 4, 5.f, 6.f, 7.f);

outputCollections.emplace_back(std::move(coll));

}

return outputCollections;
}

};

J.M. Carceller CERN EP-SFT CHEP 2024 20

Functional algorithms in Key4hep: IOSvc
• Example of a steering file

from Gaudi.Configuration import INFO
from Configurables import ExampleFunctionalTransformer
from Configurables import EventDataSvc
from k4FWCore import ApplicationMgr, IOSvc

svc = IOSvc("IOSvc")

svc.Input = "input.root"

svc.Output = "output.root"

transformer = ExampleFunctionalTransformer(

"Transformer", InputCollection=["MCParticles"], OutputCollection=["NewMCParticles"]

)

mgr = ApplicationMgr(

TopAlg=[transformer],

EvtSel="NONE",

EvtMax=-1,

ExtSvc=[EventDataSvc("EventDataSvc")],

OutputLevel=INFO,

)

J.M. Carceller CERN EP-SFT CHEP 2024 21

Functional algorithms in Key4hep: IOSvc

• For multithreading, add

evtslots = 6

threads = 6

whiteboard = HiveWhiteBoard("EventDataSvc", EventSlots=evtslots)

slimeventloopmgr = HiveSlimEventLoopMgr("HiveSlimEventLoopMgr")

scheduler = AvalancheSchedulerSvc(ThreadPoolSize=threads)

• Pass it to the ApplicationMgr

mgr = ApplicationMgr(

TopAlg=[transformer],

EvtSel="NONE",

EvtMax=-1,

ExtSvc=[whiteboard],

EventLoop=slimeventloopmgr,

OutputLevel=INFO,

)

J.M. Carceller CERN EP-SFT CHEP 2024 22

Functional algorithms in Key4hep: backwards compatibility

• Existing algorithms are based on DataHandle and PodioDataSvc for reading and writing

• Question: can we mix old DataHandle based algorithms with new functional algorithms?

• Code has been implemented
• DataHandle based algorithms can fetch data produced by functional algorithms
• Functional algorithms can fetch data produced by DataHandle based algorithms

• Mixing of algorithms is possible

• Multithreading won’t work unless using the new IOSvc

J.M. Carceller CERN EP-SFT CHEP 2024 23

Functional algorithms in Key4hep: Example

• Using k4FWCore::Consumer

• Does not have any outputs

struct ExampleFunctionalConsumer final : k4FWCore::Consumer<void(const edm4hep::MCParticleCollection& input)> {
ExampleFunctionalConsumer(const std::string& name, ISvcLocator* svcLoc)

: Consumer(name, svcLoc, KeyValues("InputCollection", {"MCParticles"})) {}

void operator()(const edm4hep::MCParticleCollection& input) const override {
if (input.size() != 2) {
throw std::runtime_error("Wrong size of the MCParticle collection");

}

}

};

J.M. Carceller CERN EP-SFT CHEP 2024 24

Functional algorithms in Key4hep: Example

• Producer, does not have any inputs

struct ExampleFunctionalProducer final : k4FWCore::Producer<edm4hep::MCParticleCollection()> {
ExampleFunctionalProducer(const std::string& name, ISvcLocator* svcLoc)

: Producer(name, svcLoc, {}, KeyValues("OutputCollection", {"MCParticles"})) {}

edm4hep::MCParticleCollection operator()() const override {
auto coll = edm4hep::MCParticleCollection();
coll.create(1, 2, 3, 4.f, 5.f, 6.f);

coll.create(2, 3, 4, 5.f, 6.f, 7.f);

return coll;
}

};

J.M. Carceller CERN EP-SFT CHEP 2024 25

