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KERNEL METHODS

EMBEDDING 

(FEATURE MAP)

Generalization of the conventional Euclidean product by using as 

a kernel any arbitrary positive semi-definite function. 



KERNEL METHODS

• Many different kernel exists, and they all can be written in the 
form 𝜅 𝑥, 𝑥′ = 〈𝜙 𝑥 , 𝜙 𝑥′ 〉

• Different kernels adapt to different assumptions on the data

• 𝜅(𝑥, 𝑥′) = σ𝑖 𝑥𝑖𝑥𝑖
′ + 𝑐 𝑑 for polynomial dependencies

• 𝜅 𝑥, 𝑥′ = exp(− 𝑥 − 𝑥′ 2/𝜎) for linearly separable data

• 𝜅 𝑥, 𝑥′ = exp(−𝑑 𝑥, 𝑥′ /𝜎) if you have the distance function

• 𝜅 𝐺, 𝐺′ = exp(−GED(𝐺, 𝐺′)/𝜎) for graphs

• 𝜅 𝑥, 𝑥′ = 
𝛾
𝛻𝜃𝑓 𝑥; 𝜃 ⋅ 𝛻𝜃𝑓 𝑥′; 𝜃 𝑑𝜃 (path kernel)

M. Incudini, M. Grossi, et al. "The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for Deep Quantum 
Machine Learning." IEEE Transactions on Quantum Engineering - 10.1109/TQE.2023.3287736}



PROPERTIES OF KERNELS

• If 𝜅 is positive definite, then it is a kernel 
(and ∃𝜙. 𝜅 𝑥, 𝑥′ = 𝜙(𝑥)𝜙(𝑥′))

• Kernel trick: you don’t need to know 𝜙 to use a kernel

• Each kernel admit spectral decomposition 
𝜅 𝑥, 𝑥′ = σ𝑖=1

∞ 𝜆𝑖𝜙𝑖 𝑥 𝜙𝑖(𝑥
′) due to Mercer’s theorem 

with 𝜆𝑖 real, non-negative 

• Flexible to perform supervised (regression, classification) and 
unsupervised (dimensionality reduction, clustering) on more exotic 
data structures than real vectors. 



QUANTUM KERNELS

• Common aspect: Hilbert space

• Common aspect: efficient calculation of the inner product

Havlíček et al. "Supervised learning with quantum-enhanced feature spaces." Nature 567.7747 (2019).
Schuld and Killoran. "Quantum machine learning in feature Hilbert spaces." Physical review letters 122.4 (2019).



QUANTUM KERNELS
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• We usually do not know much about the nature of the task 

• We usually do not know whenever there exists a quantum 
feature map solving the task any better than some classical 
feature map 

General Problem



Is it possible to design an ansatz that is tailored for the task at 
hand, has favorable statistical properties, and retains a 
computational advantage over classical devices? 

General Question



AUTOMATIC 
CONSTRUCTION OF 
QUANTUM KERNELS



MOTIVATION

𝜙 𝑥 = exp −𝑖
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HOW CAN I CHOOSE THESE ONES?



What are the characteristics of a quantum kernel?

and… how can we construct a quantum kernel practically?

OPEN QUESTION



DESIDERATA

•AUTOMATIC PROCEDURE

•CHOOSE the ALL THE COMPONENTS

•As FAST as possible



INGREDIENTS

• A model for a quantum kernel

• One or more criteria to evaluate the quality of quantum kernels

• One or more optimization techniques to adaptively modify the 
quantum kernel



MODEL

• QK is represented as a combinatorial object 

• n-qubits, m-gates QK as a discrete object 

• vector encodes the QK over n-qubits, with a 

parameterized quantum circuit containing m gates 

• a family of criteria identified to assess properties such 

as expressivity, efficiency of classical simulability, 

or compatibility with the task at hand. 

• heuristic algorithm is employed to iteratively explore 

the space of quantum kernels → optimization

NB: nonconvexity of the cost function → no guarantee 

of finding an optimal solution 



CRITERIA I: 
CLASSICAL SIMULABILITY

• The unitary 𝑈(𝑥) should not be classically simulable
• No need for a quantum computer!

• Avoid quantum circuit without entangling gates

• Check the dimensionality of the dynamical Lie algebra of your 
circuit

• 𝑈 = exp(−𝑖𝜃𝑘𝐻𝑘) ⋅ … ⋅ exp(−𝑖𝜃1𝐻1)

• 𝑑 = dim span 𝑖𝐻1, … , 𝑖𝐻𝑘 ∈ exp # qubits

Somma et al. "Efficient solvability of Hamiltonians and limits on the power of some quantum computational models." Physical review 
letters 97.19 (2006): 190501.



CRITERIA II: 
EXPRESSIBILITY

• “Expressible” circuits are able to define an ensemble of states 
{𝑈 𝜃 0 ∣ 𝜃 ∈ Θ} that resemble the “uniform” distribution 
𝑈𝐻𝑎𝑎𝑟 0 ∣ 𝑈𝐻𝑎𝑎𝑟 is Haar random}.

• 𝐴 = 
𝐻𝑎𝑎𝑟

𝜙 𝜙 ⊗𝑡 𝑑𝜙 − 
Θ
𝜓 𝜃 𝜓 𝜃 𝑑𝜃

• The dimension of the dynamical Lie algebra is an approximate 
measure of the expressibility

Larocca et al. "Diagnosing barren plateaus with tools from quantum optimal control." Quantum 6 (2022): 824.



CRITERIA II: 
EXPRESSIBILITY

• There is a compromise between expressibility and practical 
applicability

• Expressible circuit exploit the full, exponentially sized Hilbert 
space and that lead to “complicated” kernels

• Unfavorable eigenvalue distributions
• All eigenvalues exponentially small, needing an exponential amount of data to 

learn the corresponding component

• Coefficients concentrated around some value
• Need exponential amount of measurement to distinguish the coefficients

Kübler, Buchholz, and Schölkopf. "The inductive bias of quantum kernels." Advances in Neural Information Processing Systems 34 
(2021): 12661-12673. // Thanasilp, Supanut, et al. "Exponential concentration and untrainability in quantum kernel methods." arXiv 
preprint arXiv:2208.11060 (2022).



EVALUATION I

• KernelEvaluator(𝐾, 𝜅, 𝑋, 𝑦)
• Target-Kernel Alignment

• Centered Target-Kernel Alignment

• Task-Model Alignment

• Lie Rank evaluator

• Covering numbers evaluator

• Haar evaluator

• Geometric difference



MODEL



OPTIMIZATION I

• Bayesian optimization

• Useful for costly functions

• Usually struggles with high-
dimensional optimization 
problems



OPTIMIZATION II

• Evolutionary algorithms

• Maintain a population of 
solutions and, for each 
iteration, perturb and select a 
subset of them

• Very expensive but can return 
high quality solutions



OPTIMIZATION III

• Reinforcement learning
(SARSA-𝜆)

• Huge space of actions, 
short horizon 

• Other schemes can be used



IMPLEMENTATION OF 
QUANTUM KERNELS



QUASK: QUANTUM ADVANTAGE 
SEEKER WITH KERNELS

Di Marcantonio, MG, et al. "QuASK--Quantum Advantage Seeker with Kernels.»

 Quantum Mach. Intell. 5, 20 (2023) - https://quask.web.cern.ch/ 



Anomaly detection of Beyond 
Standard Model events 

Background: QCD dijet events. 600 features per event           Too many for current hardware.

BSM anomalies: Graviton    &    New Scalar Boson

Particle features

𝜼: Pseudorapidity

𝝓: azimuthal angle

𝒑𝑻: transverse 
momentum



CONCLUDING 
REMARKS



TAKE-AWAY MESSAGE

Quantum kernels can be useful

but

we lack information to choose the quantum transformation

therefore

we use combinatorial optimization to choose a quantum circuit 

we exploit numerical properties to speedup the optimization
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