Ranking-based machine learning for track seed selection in ACTS

Corentin Allaire Hadrien Grasland David Rousseau Françoise Bouvet

Laboratoire de Physique des 2 Infinis

With support of ATRAPP ANR-21-CE31-0022

Corentin Allaire @ CHEP

Acts and Open Data Detector

Open source tracking software: https://github.com/acts-project/acts

Testing environment for new tracking algorithms:

- Open Data Detector (ODD) :
 - Virtual detector: benchmarking
 - Based on the Track ML challenge
 - Full silicon design (similar to ATLAS ITk)
 - Realistic detector material
- Performance benchmarks:
 - Full tracking chain
 - Performance writer
 - Useful for machine learning developing/testing

The Classical Tracking Chain

Four main steps:

- Space point formation: Create measurement points (hits) from detector data
- Track Seeding: Find triplets of hits compatible with particle hypothesis to serve as starting points for trajectories
- Track Finding: Starting from the seed, find the particle trajectory in the detector (and reconstruct their associated parameters)
- Ambiguity Solving: Cleaning step, remove extra duplicated and fake tracks

The Classical Tracking Chain

When considering the ODD with ttbar events, pille up 200, we have (per events):

- Seed: ~100k seed per events
- Tracks (after finding): ~ 10k Tracks
- Tracks (after solving): ~ 800
- Total truth particle: ~ 800

Where are all these extra seeds coming from?

Three types of seed

The seed can be sorted into 3 categories:

- Good seed: Seed corresponding to truth particles; their 3 hits are all associated with the same truth particle (~ 1k)
- Duplicated seed: Same as the good hits but leads to worst quality tracks (fewer hits, larger Chi2 ...), can be ranked based on track quality (~24k)
- **Fake seed**: Seed with hits coming from more than 1 truth particles will lead to a fake trajectory (~77.5k)

Each **fake** and **duplicated** seed will be reconstructed by the CKF (track finding) afterwards Huge time loss

Removing seed early can help us speed up the tracking chain

Machine learning based Seed filtering

Max distance

seeds

Corentin Allaire @ CHEP

Machine learning based Seed filtering

Cluster seed together

Neural Network: Score each seed, keep the highest score per cluster, remove the lowest scores:

- 5 hidden layers MLP (80, 80, 100, 80, 80)
- Use 14 seed variables as input
- One score per seed Select the best one in each cluster
- Available in Acts via Onnxruntime
- Hyper-parameters of the networks are not fully tuned; our lab got flooded 2 weeks ago

Pt

Eta

Phi

• Z0

24 October, 2024

Corentin Allaire @ CHEP

Seed Quality

• Space point 1 (x,y,z)

• Space point 2 (x,y,z)

• Space point 3 (x,y,z)

Ranking Neural Network

Part1 Part2 Part3 Part4

Score distribution

Seed Efficiency

- Performances studied at the level of the seeds
- Efficiency (good seed): Fraction of the original good seed still present
- Efficiency (truth matched): Fraction of the original truth particles still matched to at least 1 seed (good or duplicate)
- Reduction of the number of seeds by a factor of ~10 with a minor drop in efficiency

	Number of seed	Efficiency (good seed)	Efficiency (truth matched)	Duplicate Seed	Fake Seed
Default Seeding	109×10 ³		100 %	5.5×10 ³	105×10 ³
Default + Clustering	54×10 ³	44.0 %	99.2 %	1.1×10 ³	52×10 ³
Default + Clustering + Threshold	12×10 ³	43.4 %	98.7 %	1.1×10 ³	10×10 ³

Seed Efficiency

- Reduction of the duplicate rate by a factor of ~5
- Effect on the efficiency uniform through the detector
- Impact on the efficiency independent of the local seed density (the clustering works properly)

Track Efficiency

- Effect on the ML Seed filtering tested on the full tracking chain (track remaining after the ambiguity solver)
- Acts implement a seed deduplication as part of the CKF to remove duplicates
- Efficiency computed with respect to the number of truth particle
- Seed include Seed Filtering + CKF + Ambiguity Solver
- Minor decrease in performance, speed up by a factor of ~2

	Efficiency	Duplicate Rate	Fake Rate	Speed [s/event]
Default	92.6 %	2.5×10 ⁻³ %	0.22 %	7.2
Default + Seed deduplucation	92.5 %	1.5×10 ⁻³ %	0.22 %	3.4
Default + ML Seed Filter	91.5 %	2.1×10 ⁻³ %	0.17 %	1.5

Corentin Allaire @ CHEP

12

24 October, 2024

Track Efficiency

Corentin Allaire @ CHEP

Summary

- ML Seed Filter: Combine clustering and a ranking based neural network
- ~2 times faster than the classical one and similar performances
- Available right now in Acts with an example to run it with the ODD, can be tested by any experiment using Acts

Outlook

- Fine-tuning needed (I am waiting for the river to leave our lab alone)
- Only removes 80% of the duplicates, could use metric learning to project the seed in a space where clustering is easier
- Testing planned on real detectors

BACKUP

DBScan clustering

- Idea : 1 cluster = 1 truth particle
- Reimplemented in Acts
- Clustering based on data density
- Use 2 parameters :
 - ε: Max distance between neighbour
 - Min_{sample}: Min number of elements per cluster
- More than Min_{sample} neighbour Create a cluster
- For each element of the cluster, do the same
 extend the cluster
- In the Ambiguity Solver :
 - distance in (η , φ); ϵ =0.07 ; Min_{sample}=2

Cluster components

Cluster components

