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GNNs for reconstruction and other tasks

* Challenges considering more traditional
machine learning approaches
e Sparse data
* Non-regular shape

* GNNSs are a natural fit

* We don’t have a graph structure but only a
point cloud

* So we learn the graph structure with what
we call dynamic GNNs




Dynamic GNNSs

* Feature vector for every point

* You apply a neural network to feature vectors of every point to get
feature space F;

* Build a graph as KNN of every node using euclidean distance in F;
e So you have N*K edges
* Perform message passing with permutation invariant aggregation functions

* Dynamic GNN:
 The KNN graph isn’t built in the original space but in a learned feature space
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[1] arXiv:1902.07987
[2] arXiv:1801.07829



GNNs are expensive

* The CMS HGCAL can have up to 200k nodes
* Number of hits in trackers are also high

* KNN is the bottleneck
* Among some others



Binning

Implemented in CUDA for PyTorch

We bin

And search in onion layers

Keeping in mind the distance to keep the kNN exact (not
approximate)  step1:8in

Step 2: Sort

Sorted data:

Binsplits: | O |2 | 5[ 5|5|6| 8| 9/9]|9

Step 3: Search




Results

* Inference times of a
GravNet model

* DGCNN will be a few
times more expensive

e But much more
reasonable

* Nvidia L40s
* No grad

e But grad overhead is
rather minimal
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Results

* Inference times of a GravNet
model

e DGCNN will be a few times
more expensive
e But much more reasonable

 Nvidia 1080Ti

* No grad

* But grad overhead is rather
minimal
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Sole KNN

Performance of binned knn for N=10000
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Conclusion

We want to finish a few more tests
* Check its working outside our container
e Add DGCNN
* Maybe choose a different name
* To be full ready with the proceedings / paper

But if you are in a hurry, it is actually ready
* Give us the feedback too

Find here:
* https://github.com/jkiesele/ml4reco modules

In the longer run, we'll try to put it into
pytorch / pyg / torch-clustersoit
remains sustainably maintainable



https://github.com/jkiesele/ml4reco_modules
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Backup slides



Some more information about the model

* 3 dense nets in every gravnet block too

64  # Input dimension
32 # Propagation dimension
4  # Space dimension
64 # Number of neighbors to consider
128 # Dimension for the dense layers
10 # Output dimension (you can adjust
according to the task)
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Multi particle reconstruction

* Object condensation [3]

* Single shot clustering and property-
prediction

* Not exactly the same as contrastive learning

e Learn a clustering space

* Hits belonging to the same shower are
learned to be clustered together in the
clustering space

* For every shower, we also learn a
representative hit

* All object properties are aggregated in this
representative hit

e Use attractive and repulsive potentials in
the loss
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[3] arXiv:2002.03605
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Object condensation
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GravNet  ©=D:(Xa),
F=D,(X,) .

D = {U{(z, h,d(z,y)) Vx € KNN(h)}} .

d(x,h) = exp (—||Sx — Sh||2)

G, = Fj, —mean({d(z,h)F, Vz € N (h)}) ,

Ih = Fh — ma_x({d(zr;, h)Fm V € N(h)}) .
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