
Faster Dynamic GNNs with GPUs
Shah Rukh Qasim (University of Zurich)

Jan Kieseler (Karlsruhe Institute of Technology)

jan.kieseler@cern.ch

Fabian Riemers (Karlsruhe Institute of Technology)

Ayman Ratey (Karlsruhe Institute of Technology)

Nico Serra (University of Zurich)

24.10.2024

1

mailto:jan.kieseler@cern.ch

GNNs for reconstruction and other tasks

• Challenges considering more traditional
machine learning approaches
• Sparse data

• Non-regular shape

• GNNs are a natural fit
• We don’t have a graph structure but only a

point cloud

• So we learn the graph structure with what
we call dynamic GNNs

2

Dynamic GNNs

• Feature vector for every point
• You apply a neural network to feature vectors of every point to get

feature space 𝐹𝑠

• Build a graph as KNN of every node using euclidean distance in 𝐹𝑠
• So you have N*K edges
• Perform message passing with permutation invariant aggregation functions
• Dynamic GNN:

• The KNN graph isn’t built in the original space but in a learned feature space

3

Dynamic GNNs

• One is DGCNN [2]

• GravNet has similar performance but is much
faster

4

[1] arXiv:1902.07987
[2] arXiv:1801.07829

GNNs are expensive

• The CMS HGCAL can have up to 200k nodes

• Number of hits in trackers are also high

• KNN is the bottleneck
• Among some others

5

6

Binning
• Implemented in CUDA for PyTorch
• We bin
• And search in onion layers
• Keeping in mind the distance to keep the kNN exact (not

approximate)

Results

7

• Inference times of a
GravNet model

• DGCNN will be a few
times more expensive
• But much more

reasonable

• Nvidia L40s

• No grad
• But grad overhead is

rather minimal

Results

• Inference times of a GravNet
model

• DGCNN will be a few times
more expensive
• But much more reasonable

• Nvidia 1080Ti

• No grad
• But grad overhead is rather

minimal

8

Sole KNN

9

Conclusion

• We want to finish a few more tests
• Check its working outside our container
• Add DGCNN
• Maybe choose a different name
• To be full ready with the proceedings / paper

• But if you are in a hurry, it is actually ready
• Give us the feedback too

• Find here:
• https://github.com/jkiesele/ml4reco_modules

• In the longer run, we'll try to put it into
pytorch / pyg / torch-cluster so it
remains sustainably maintainable

10

https://github.com/jkiesele/ml4reco_modules

11

Backup slides
Backup slides

12

Some more information about the model

• 3 dense nets in every gravnet block too

13

in_dim = 64 # Input dimension
prop_dim = 32 # Propagation dimension
space_dim = 4 # Space dimension
k = 64 # Number of neighbors to consider
hidden_dim = 128 # Dimension for the dense layers
output_dim = 10 # Output dimension (you can adjust
according to the task)

• Object condensation [3]
• Single shot clustering and property-

prediction
• Not exactly the same as contrastive learning

• Learn a clustering space
• Hits belonging to the same shower are

learned to be clustered together in the
clustering space

• For every shower, we also learn a
representative hit

• All object properties are aggregated in this
representative hit

• Use attractive and repulsive potentials in
the loss

Multi particle reconstruction

14

[3] arXiv:2002.03605

Object condensation

15

2.

1.

4.

3.

GravNet

16

	Slide 1: Faster Dynamic GNNs with GPUs
	Slide 2: GNNs for reconstruction and other tasks
	Slide 3: Dynamic GNNs
	Slide 4: Dynamic GNNs
	Slide 5: GNNs are expensive
	Slide 6: Binning
	Slide 7: Results
	Slide 8: Results
	Slide 9: Sole KNN
	Slide 10: Conclusion
	Slide 11
	Slide 12: Backup slides
	Slide 13: Some more information about the model
	Slide 14: Multi particle reconstruction
	Slide 15: Object condensation
	Slide 16: GravNet

