Faster Dynamic GNNs with GPUs

Shah Rukh Qasim (University of Zurich) Jan Kieseler (Karlsruhe Institute of Technology) jan.kieseler@cern.ch

Fabian Riemers (Karlsruhe Institute of Technology) Ayman Ratey (Karlsruhe Institute of Technology) Nico Serra (University of Zurich)

24.10.2024

GNNs for reconstruction and other tasks

- Challenges considering more traditional machine learning approaches
 - Sparse data
 - Non-regular shape
- GNNs are a natural fit
 - We don't have a graph structure but only a point cloud
 - So we learn the graph structure with what we call dynamic GNNs

Dynamic GNNs

- Feature vector for every point
- You apply a neural network to feature vectors of every point to get feature space F_s
- Build a graph as KNN of every node using euclidean distance in F_s
 - So you have N*K edges
 - Perform message passing with permutation invariant aggregation functions
 - Dynamic GNN:
 - The KNN graph isn't built in the original space but in a learned feature space

Dynamic GNNs

- One is DGCNN [2]
- GravNet has similar performance but is muc faster

[1] arXiv:1902.07987[2] arXiv:1801.07829

GNNs are expensive

- The CMS HGCAL can have up to 200k nodes
- Number of hits in trackers are also high
- KNN is the bottleneck
 - Among some others

Binning

- Implemented in CUDA for PyTorch
- We bin
- And search in onion layers
- Keeping in mind the distance to keep the kNN exact (not approximate) step 1: Bin

Results

- Inference times of a GravNet model
- DGCNN will be a few times more expensive
 - But much more reasonable
- Nvidia L40s
- No grad
 - But grad overhead is rather minimal

Results

- Inference times of a GravNet model
- DGCNN will be a few times more expensive
 - But much more reasonable
- Nvidia 1080Ti
- No grad
 - But grad overhead is rather minimal

Sole KNN

Conclusion

- We want to finish a few more tests
 - Check its working outside our container
 - Add DGCNN
 - Maybe choose a different name
 - To be full ready with the proceedings / paper
- But if you are in a hurry, it is actually ready
 - Give us the feedback too
- Find here:
 - <u>https://github.com/jkiesele/ml4reco_modules</u>
- In the longer run, we'll try to put it into pytorch / pyg / torch-cluster so it remains sustainably maintainable

Backup slides

Backup slides

Some more information about the model

• 3 dense nets in every gravnet block too

in_dim = 64 # Input dimension
prop_dim = 32 # Propagation dimension
space_dim = 4 # Space dimension
k = 64 # Number of neighbors to consider
hidden_dim = 128 # Dimension for the dense layers
output_dim = 10 # Output dimension (you can adjust
according to the task)

Multi particle reconstruction

[3] arXiv:2002.03605

- Object condensation [3]
 - Single shot clustering and propertyprediction
 - Not exactly the same as contrastive learning
- Learn a clustering space
 - Hits belonging to the same shower are learned to be clustered together in the clustering space
 - For every shower, we also learn a representative hit
 - All object properties are aggregated in this representative hit
- Use attractive and repulsive potentials in the loss

Object condensation

1.
$$\breve{V}_t(h) = q_{\alpha_t} w_t \ln\left(e \cdot \left(\frac{\|x_h - \overline{x}(t)\|^2}{2\overline{\varphi}_t^2 + \epsilon}\right) + 1\right)$$

2.
$$\hat{V}_t(h) = q_{\alpha_t} w_t \cdot \exp\left(-\frac{\|x_h - \overline{x}(t)\|^2}{2\overline{\varphi}_t^2 + \epsilon}\right)$$

3.
$$L_V = \frac{1}{|T|} \sum_{t \in T} \left(\frac{1}{|H_t|} \sum_{h \in H_t} q_h \breve{V}_t(h) + \frac{1}{|H - H_t|} \sum_{h \in (H - H_t)} q_h \hat{V}_t(h) \right)$$

4.
$$L_{\beta} = \frac{1}{|T|} \sum_{t \in T} (1 - \beta_{\alpha_t}) + s_B \frac{1}{|H_{\circ}|} \sum_{h \in H_{\circ}} \beta_H$$

$$GravNet \qquad S = \mathcal{D}_*(X_n) ,$$

$$F = \mathcal{D}_*(X_n) .$$

$$D = \{ \cup \{(x, h, d(x, y)) \forall x \in \text{KNN}(h)\} \}$$

$$d(x, h) = \exp(-\|S_x - S_h\|^2)$$

$$G_h = F_h - \text{mean}(\{d(x, h)F_x \ \forall x \in \mathcal{N}(h)\}) ,$$

$$I_h = F_h - \max(\{d(x, h)F_x \ \forall x \in \mathcal{N}(h)\}) .$$