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GNNs for reconstruction and other tasks

• Challenges considering more traditional 
machine learning approaches
• Sparse data

• Non-regular shape

• GNNs are a natural fit
• We don’t have a graph structure but only a 

point cloud

• So we learn the graph structure with what 
we call dynamic GNNs
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Dynamic GNNs

• Feature vector for every point
• You apply a neural network to feature vectors of every point to get 

feature space 𝐹𝑠

• Build a graph as KNN of every node using euclidean distance in 𝐹𝑠
• So you have N*K edges
• Perform message passing with permutation invariant aggregation functions
• Dynamic GNN:

• The KNN graph isn’t built in the original space but in a learned feature space

3



Dynamic GNNs

• One is DGCNN [2]

• GravNet has similar  performance but is much 
faster
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[1] arXiv:1902.07987
[2] arXiv:1801.07829



GNNs are expensive

• The CMS HGCAL can have up to 200k nodes

• Number of hits in trackers are also high

• KNN is the bottleneck
• Among some others
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Binning
• Implemented in CUDA for PyTorch
• We bin
• And search in onion layers
• Keeping in mind the distance to keep the kNN exact (not 

approximate)



Results
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• Inference times of a 
GravNet model

• DGCNN will be a few 
times more expensive 
• But much more 

reasonable

• Nvidia L40s

• No grad 
• But grad overhead is 

rather minimal



Results

• Inference times of a GravNet 
model

• DGCNN will be a few times 
more expensive 
• But much more reasonable

• Nvidia 1080Ti

• No grad 
• But grad overhead is rather 

minimal
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Sole KNN
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Conclusion

• We want to finish a few more tests
• Check its working outside our container
• Add DGCNN
• Maybe choose a different name
• To be full ready with the proceedings / paper

• But if you are in a hurry, it is actually ready
• Give us the feedback too

• Find here:
• https://github.com/jkiesele/ml4reco_modules

• In the longer run, we'll try to put it into 
pytorch / pyg / torch-cluster so it 
remains sustainably maintainable
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Backup slides
Backup slides
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Some more information about the model

• 3 dense nets in every gravnet block too
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in_dim = 64       # Input dimension
prop_dim = 32     # Propagation dimension
space_dim = 4     # Space dimension
k = 64            # Number of neighbors to consider
hidden_dim = 128  # Dimension for the dense layers
output_dim = 10   # Output dimension (you can adjust 
according to the task)



• Object condensation [3]
• Single shot clustering and property-

prediction
• Not exactly the same as contrastive learning

• Learn a clustering space
• Hits belonging to the same shower are 

learned to be clustered together in the 
clustering space

• For every shower, we also learn a 
representative hit

• All object properties are aggregated in this 
representative hit

• Use attractive and repulsive potentials in 
the loss

Multi particle reconstruction
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[3] arXiv:2002.03605



Object condensation
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GravNet
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