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Track Reconstruction & the GNN4ITk Pipeline
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Tracking in ATLAS HL-LHC Inner Tracker (ITk)

• Track finding requires associating each hit to a track 
candidate

• Number of hits per                    event: 311,000 +/- 35,000
• Number of particles per                     event: 16,000 +/- 1,700
• Innermost pixel layer 25x100 μm2, all other pixel layers 

50x50 μm2

• Strip layers are at millimeter resolutions
• We focus on Athena simulation in the following slides
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GNN4ITk Pipeline

• Pipeline receives clusters = collections of energy deposits on silicon. These are associated 
with 3D spacepoints, to be used as nodes for stage 1 onwards

• Out of stage 3 we obtain a set of track candidates, each is an unordered set of spacepoints
• For processing in Athena track fitting chain, we associate these back to the original clusters, 

and order in increasing distance from beamspot origin
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Track Reconstruction Performance

• Tracking efficiency compared with current combinatorial kalman filter (CKF) 
technique

• Behaviour across η and pT similar to CKF - good sanity check!
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HL-LHC Offline & Online Track Reconstruction Needs

• Event filter (high level trigger) contains tracking
• CPU-based Fast Tracking: 23.2 HS06s/event (around 1 

second per single-core CPU), small drop in track 
efficiency: 1-2% on average, 5% for pT in [1,1.5]GeV

• GPU-based GNN4ITk pipeline: First two steps run in 
400-600 ms/event. But final step has previously taken 
around 42 seconds to run
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CPU-based Fast tracking vs Default tracking 
timing (HS06 x s) [ATLAS-TDR-029-ADD-1]

GNN4ITk pipeline execution times of first two 
stages, per event [ATL-PHYS-PUB-2024-018]

https://www.google.com/url?q=https://cds.cern.ch/record/2802799/files/ATLAS-TDR-029-ADD-1.pdf&sa=D&source=editors&ust=1729779472737324&usg=AOvVaw3yK2iYcuUzMcrIrrtmKwyd
https://www.google.com/url?q=https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2024-018/&sa=D&source=editors&ust=1729779472739695&usg=AOvVaw12VquyucFwhs7p-XrBYceZ
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Graph Segmentation
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Stage 3: Graph Segmentation

• The task: 
• Given a collection of hits in detector and 

directed edges (a hypothesis that the two 
hits were created successively by the 
same particle), each with a score… 

• Produce a set of track candidates (sets of 
nodes)

• Some nodes may belong to background 
tracks, some may be noise, some may be 
shared between target tracks
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Stage 3: Graph Segmentation
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• There are many ways to solve this problem
• In the case where we do not allow shared nodes, this is a classic graph partitioning 

problem

Ground truth tracks Constructed graph GNN prediction
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Stage 3: Graph Segmentation
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Ground truth tracks Would like to produce:
[1, 2, 3, 4, 5, 6]
[7, 2, 8, 9, 10]
[11, 12, 13, 14]
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• There are many ways to solve this problem
• In the case where we do not allow shared nodes, this is a classic graph partitioning 

problem
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The Easiest Solution: Connected Components
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Ground truth tracks Constructed graph GNN prediction

Recall that we have the GNN predicted edge scores:
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The Easiest Solution: Connected Components
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• The simplest idea is (weakly) Connected Components
• All nodes belonging to the same component after removing low-scoring edges, are 

assigned to a track
• That is, the nodes must be reachable via an undirected path (hence “weakly”)
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The Easiest Solution: Connected Components
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• This is an extremely fast algorithm with the Scipy implementation, requiring only a few 
milliseconds for O(1000) components, on a single thread

• Each node and edge visited only once, giving good scaling performance: O(N+E)
• Iterative Depth-first Search (DFS) means predictable and reliable memory behaviour (as 

opposed to recursive DFS)
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The Easiest Solution: Connected Components
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• This is an extremely fast algorithm with the Scipy implementation, requiring only a few 
milliseconds for O(1000) components, on a single thread

• Each node and edge visited only once, giving good scaling performance: O(N+E)
• Iterative Depth-first Search (DFS) means predictable and reliable memory behaviour (as 

opposed to recursive DFS)

• However note that (as in example), it can merge 
tracks into a single candidate if the score 
threshold is too low

• We can raise the threshold, but then we are just 
as likely to split a track in multiple candidates

• Both lead to low track finding efficiency
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Walking through the Hit Graph
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Walkthrough Algorithm

• To avoid merging tracks, we want out candidates to be “chain-like”, with maximum one incoming 
and one outgoing edge

• The walkthrough algorithm is inspired by the way traditional track finding is performed
• It performs well, but is much slower than CC
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Walkthrough Algorithm

• To avoid merging tracks, we want out candidates to be “chain-like”, with maximum one incoming 
and one outgoing edge

• The walkthrough algorithm is inspired by the way traditional track finding is performed
• It performs well, but is much slower than CC
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Walkthrough Algorithm

• Repeat steps 4 and 5 until all nodes have been used, or have no neighbours 
in the graph

• Clearly, as this is sequential, some tracks will arbitrarily be built that split later 
tracks
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Walkthrough Sub-algorithms

Precisely, the walkthrough requires the 
following sub-algorithms:

1. Remove Cycles
2. Filter Graph
3. Extract Chains
4. Topological Sort
5. Build Paths
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Walkthrough Sub-algorithms

Precisely, the walkthrough requires the 
following sub-algorithms:

1. Remove Cycles: Ensure the directed 
graph is acyclic by directing edges in 
increasing R, scaling as ~ O(E)

2. Filter Graph
3. Extract Chains
4. Topological Sort
5. Build Paths
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Flip this 
edge

Graph with number of nodes 
N, number of edges E
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Walkthrough Sub-algorithms

Precisely, the walkthrough requires the 
following sub-algorithms:

1. Remove Cycles 
2. Filter Graph: Remove low-scoring 

edges ~ O(E)
3. Extract Chains
4. Topological Sort
5. Build Paths

21

Remove 
this edge
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Walkthrough Sub-algorithms

Precisely, the walkthrough requires the 
following sub-algorithms:

1. Remove Cycles 
2. Filter Graph
3. Extract Chains: Apply connected 

components, and any chain-like 
components are instantly submitted 
as candidates ~ O(N+E)

4. Topological Sort
5. Build Paths
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Walkthrough Sub-algorithms

Precisely, the walkthrough requires the 
following sub-algorithms:

1. Remove Cycles 
2. Filter Graph
3. Extract Chains
4. Topological Sort: Order node indices 

such that earlier nodes can visit 
subsequent nodes if a path exists 
between the two ~ O(N+E)

5. Build Paths
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Implemented as a Breadth-first 
Search (visit each edge only once): 
Kahn’s Algorithm*

* A. B. Kahn. 1962. Topological sorting of large networks. 
Commun. ACM 5, 11 (Nov. 1962), 558–562. 
https://doi.org/10.1145/368996.369025
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Walkthrough Sub-algorithms

Precisely, the walkthrough requires the 
following sub-algorithms:

1. Remove Cycles 
2. Filter Graph
3. Extract Chains
4. Topological Sort
5. Build Paths: For each starting node, 

choose longest path - this is a DAG 
source-to-sink algorithm. Currently no 
heuristic to choose between 
equally-long paths ~ best case O(N), 
worst case O(N!)
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Walkthrough Sub-algorithms

Precisely, the walkthrough requires the 
following sub-algorithms:

5. Build Paths: To trade off between best 
case O(N) and worst case O(N!), we do 
a sort of beam search:
a. The highest scoring neighbour is 

always considered for the longest path 
(regardless of edge score)

b. Any neighbours with edge score > 0.6 
are considered for the longest path

Reduces combinatorics significantly, while 
avoiding splitting tracks (every node will have at 
least one outgoing edge)
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Walkthrough Sub-algorithms

Precisely, the walkthrough requires the 
following sub-algorithms:

1. Remove Cycles 
2. Filter Graph
3. Extract Chains
4. Topological Sort
5. Build Paths

To produce public physics results, most of 
these steps used NetworkX 
implementation. This took O(minutes) per 
event - we need something faster!

26



High Performance Graph Segmentation for ATLAS
GNN Track Reconstruction - CHEP 2024

Optimisations to Segmentation
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FastWalkthrough

A variety of improvements can be made:

1. Remove Cycles: Unchanged 
2. Filter Graph: Use Pytorch Geometric 

(PyG) graph representation
3. Extract Chains: Use Scipy CC and PyG 

scatter_max across components
4. Topological Sort: Pure python+numba 

implementation
5. Build Paths: Pre-process graphs to get 

max+min edges (with scatter operations), 
then pure python+numba 
implementation

(Timing is per-event)
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Junction Removal

• The preprocessing of junctions 
in FastWalkthrough can be 
extended to any heuristics

• For example, first remove 
chain-like components as usual

29

Connected Components
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Junction Removal

• The preprocessing of junctions 
in FastWalkthrough can be 
extended to any heuristics

• For example, first remove 
chain-like components as usual
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Chain-like: all hits must have in-degree and 
out-degree less or equal to 1

In-degree: 2
Out-degree: 2
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Junction Removal

• The preprocessing of junctions 
in FastWalkthrough can be 
extended to any heuristics

• For example, first remove 
chain-like components as usual

• Then remove all “junctions” 
(nodes with more than one 
outgoing or incoming edge)

31

Remove junctions (in or out degree >= 2)
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Junction Removal

• The preprocessing of junctions 
in FastWalkthrough can be 
extended to any heuristics

• For example, first remove 
chain-like components as usual

• Then remove all “junctions” 
(nodes with more than one 
outgoing or incoming edge)

• Then re-run connected 
components
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Connected Components
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Junction Removal

• One could apply many kinds of choices
• E.g. only remove “X-junctions”, but allow “Y-junctions”
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Junction removed 
(in-degree=out-degree=2)

Junction NOT removed
(in-degree ≠ out-degree)
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Junction Removal
• The best physics performance actually came simply from choosing the 

highest-scoring incoming and outgoing edges
• Then apply connected components, as usual
• This is Connected Components + Junction Removal Version 3 (CC+JR v3)

34

0.80.9

0.8 0.9

0.80.9

0.8 0.9



High Performance Graph Segmentation for 
ATLAS GNN Track Reconstruction - CHEP 2024

Comparison of Segmentation Approaches

We are able to reduce the running time of this stage (compared 
with that used to produce public physics results “CTD23”) by 3 
orders of magnitude, and increase the physics performance!
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Per-event execution times and relative difference in integrated physics efficiencies of the various graph segmentation 
techniques available in Stage 3 (graph segmentation). Differences are calculated relative to the baseline CTD23 
Walkthrough as (eff − CTD)/CTD. The score cut on CC set to 0.01, with the minimum and additive thresholds of 
walkthroughs set to 0.1 and 0.6 respectively. The running times are evaluated on a single CPU core (AMD EPYC 7763).
CTD23 Walkthrough is the same as that used in IDTR-2023-06|.
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Next Steps

• Small tweaks required to run on GPU (Pytorch, PyG support GPU 

out-of-the-box, numba requires some massaging) - expect to reduce existing 

CC+JR version closer to 10ms

• Integration with production systems - Athena and ACTS

• C++ implementation needed for integration, and expected to be somewhat 

faster than PyG+numba

• Current FastWalkthrough and CC+JR still involve duplication (e.g. running 

across number of edges E with CC ~O(E) then JR ~O(E))

• Fusing these steps will reduce again by some factor

• Expect to obtain an algorithm of >1KHz on single GPU with native CUDA
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