
Application of TRACCC seeding to

the CEPC vertex detector

YiZhou Zhang, WeiDong Li, Xiaocong Ai, Tao Lin

zhangyz@ihep.ac.cn

The Institute of High Energy Physics, IHEP, China

CHEP2024

Krakow, Poland

23rd Oct 2024

mailto:zhangyz@ihep.ac.cn

Outline

1 Introduction

2 Integration of TRACCC with CEPCSW

2

5 Performance

3 Geometry & EDM

4 Extension of seeding algorithm

6 Summary

3

The CEPC is a 100 km circular electron-positron collider aiming to
• Precisely measure the Higgs boson’s properties

• Study electroweak physics at Z-boson peak

• Will produce:

➢ At 250 GeV: Higgs bosons (4 × 106)

➢ At 160 GeV: W bosons (> 108)

➢ At 90 GeV: Z bosons (> 4 × 1012)

Schematic view of CEPC‘s 4th

Concept Detector

1 Introduction

The conceptual design report (CDR) has

been completed in Oct. 2018.
• High track efficiency (~100%)

• High momentum resolution (~0.1%)

The 4th conceptual detector was proposed on the

basis of the CEPC CDR
• is characterized by a combination of silicon detectors

and drift chamber designed to provide both tracking and

PID for charged particles

Circular Electron Positron Collider (CEPC)

4

CEPC Vertex Detector
• is the innermost tracker playing a dominant role

in determining the vertices of a collision event.

• Covers:

➢ radial range from 16 mm to 60 mm

➢ Z range from -125mm to 125mm

1 Introduction

Schematic view of CEPC Vertex Detector

Only the silicon sensor sensitive region (in orange) is depicted.

The vertex detector surrounds the beam pipe (in red).

Layers of CEPC Vertex Detector

Vertex Detector of CEPC

Layout of the CEPC baseline tracker

The VTX is located closest to the interaction point.

The baseline layout of the Vertex Detector

consists of
• 6 concentric cylindrical layers of high spatial

resolution silicon pixel sensors.

• Two layers of silicon pixel sensors are

mounted on both sides of each of three

ladders to provide 6 space points.

5

The key components of core software include:
• Gaudi/Gaudi Hive: defines interfaces to all software

components and controls their execution

• EDM4hep: generic event data model

• k4FWCore: manages the event data

• DD4hep: geometry description

• CEPC-specific components: GeomSvc, detector

simulation, beam background mixing, fast simulation,

machine learning interface, etc.

CEPCSW is organized as a multi-layer structure
• Applications: simulation, reconstruction and analysis

• Core software

• External libraries

1 Introduction CEPC software (CEPCSW) environment

https://code.ihep.ac.cn/cepc/CEPCSW

6

TRACCC
• * TRACCC is one of the ACTS R&D projects,

which is developing full track reconstruction

algorithms that can run on accelerators.

• has been introduced at Beomki’s talk:

➢ https://indico.cern.ch/event/1338689/cont

ributions/6010050/

• Is standalone and features a modular

architecture

• Has excellent physics and computing

performance

1 Introduction

SYCL
• SYCL is a high-level C++ programming model. An

uniformed written code can run on a variety of platforms.

• * High Portability and Programming Efficiency 👆

Status of TRACCC

TRACCC: track reconstruction on accelerators

https://indico.cern.ch/event/1338689/contributions/6010050/

7

1 Introduction

Conclusion:

• huge # of hits & background / event:

➢ high demand on track recognition

➢ substantial computational load

→ heterogeneous computing (e.x. TRACCC) and parallelization techniques are required.

* This contribution mainly focuses on:

• the implementation of seeding algorithm for the vertex detector (VTX), based on

TRACCC, in the CEPCSW environment.

Challenges for tracking in the CEPC Vertex Detector

1. Piling-up of multiple events
• The size of detector time window (117

pile-up for t ҧ𝑡)is determined by DAQ

2. High beam-related background
• particularly in Z energy region

3. Reuse of offline tracking algorithm for the purpose of online high level trigger
• Same rec algorithm: offline environment & online Event Filter

Requirements: Physical Event Rate

Outline

1 Introduction

2 Integration of TRACCC with CEPCSW

8

5 Performance

3 Geometry & EDM

4 Extension of seeding algorithm

6 Summary

9

2 Integration of TRACCC with CEPCSW

Implement a Gaudi algorithm for seeding

• Initialize():
• Read the detector file and digitization config file

• Initialize the memory resource and the algorithms

• Execute():
• For each event, read hits and run the algorithms

➢ EDM4hep::TrackerHit is converted to Cells & modules

➢ 👆 will only converted to Cells in TRACCC v0.16.0

• Since CEPCSW and TRACCC are using different

compilers (Clang, GCC), respectively
➢ Develop a wrapper for TRACCC SYCL algorithms

• Algorithms includes:
➢ Clusterization & Spacepoint Formation (only CPU)

➢ Seeding Algorithm

➢ Track Params EstimationGaudi Algorithm using TRACCC reconstruction

Outline

1 Introduction

2 Integration of TRACCC with CEPCSW

10

5 Performance

3 Geometry & EDM

4 Extension of seeding algorithm

6 Summary

11

Geometry are prepared using various ACTS tools

1. Convert the CEPC VTX geometry file (in DD4hep

format) to TGeo format

2. The geometry file is translated into Acts::Surface

objects using Acts::TGeoLayerBuilder, and is

exported to a detector file by

Acts::CsvTrackingGeometryWriter.

3. A digitization config file is written to provide the

segmentation information of each surface.

Verification:
Use Fast ATLAS Track Simulation (FATRAS) & ACTS’

digitization tool to produce full simulation information and

generate cells.

3 Geometry & EDM Geometry conversion

Gid of fatras of ACTS

X-Y projection of VTX

12

Cell ID conversion between EDM4hep & TRACCC
• CEPCSW cell id needs to be converted into the TRACCC gid

to retrieve correct geometry

CEPCSW cell id:
Layer: {0,1,2,3,4,5} # Indicate 6 layers from inside to outside

Module: { L0: 0-9, L1: 0-9, L2: 0-10, L3: 0-10, L4: 0-16, L5: 0-16}

Indicate ladders in the φ direction

Sensor: 0

Barrelside: 1 for z > 0 else -1

one ladders has 2 sensors separated by z

TRACCC gid:
Volume: {3}

Boundary: 0

Layer: {2, 4, 6} # adjacent layers are treated as the same layers

Approach: 0

Sensitive: {L2: 1-40, L4: 1-44, L6:1-68}

The sensitive counts from z>0 to z<0, then counts in φ direction (the

order is same to CEPC), and then counts from inner to outer layers.

Converter for VXD gid

Cells local position:
CEPCSW:

• take center point as the origin

TRACCC

• use the lower left corner as the

origin.

So the cells’ local coordinates need to

be modified.

Adjust the local coordinates

for the difference between CEPCSW & TRACCC

3 Geometry & EDM Data model conversion

13

Common memory for EDM4hep & VecMem
We want TRACCC to use hits data from EDM4hep

directly !!

• TRACCC uses VecMem as the vectorised data

model across multiple device types.

• EDM4hep and VecMem may use the same

storage format (std::pmr::vector), so TRACCC

can directly use the hit data with no data-copy.

Add Collection layer interfaces:

Add CollectionData layer interfaces:

Modify the DataContainer storage format (vector → pmr::vector)

Layout of the PODIO storage format

Modify the data storage format

of PODIO
EDM4hep is generated by PODIO,

so we modify the DataContainer of

PODIO.

We add interfaces to get pmr::vector directly.

3 Geometry & EDM

Modified data transfer process

14

In CEPCSW alg

In TRACCC alg

The address of pmr::vector does not changed.

Customized EDM4hep data collection
• Define a data collection whose member is

completely the same as the EDM of TRACCC

• So we can directly use edm4hep::ACTSCells

as the input of TRACCC.
Modified edm4hep.yamlVerification

• Now TRACCC can directly read the simulated hits

from Geant4 which is stored in EDM4hep format

• No non-essential data-copy is needed

3 Geometry & EDM

Reduce time overhead of vector → pmr::vector conversion

×

Outline

1 Introduction

2 Integration of TRACCC with CEPCSW

15

5 Performance

3 Geometry & EDM

4 Extension of seeding algorithm

6 Summary

16

Seed Formation

CEPC VTX detector:

• Two sides of each layer have sensors

• A single seed contains 6 space points

Default TRACCC seeding alg:

• creates 3-space-point seeds

→ The seeding alg needs to be extended for

6-space-points case.

Seed Formation Alg:
After seeding, combine the found

triplets that sharing the same

space-points into a “bigger” seed.

We have implemented Seed

Formation algorithm in TRACCC

4 Extension of seeding algorithm 6-layers seeds finding

7

3

17

6-layers seeds finding: Seed Formation steps in GPU
For each middle space point in parallel:

1. pick the triplet with lowest impact params (𝑑0) among all triplets where the middle sp is located

2. find the bottom sp & top sp that are closest to the bottom sp & top sp of the current triplet

3. form a new seed of 5 points and sort them according to their radius

Z

r

0

L1

L2

L3

L4

L5

L6

Hit

Found triplets

1

2

4

5

6

In GPU

Example:

Paralleling for hit 3 👉

bottom middle top

1 3 5

lowest 𝑑0 1 3 6

1 3 7

2 3 5

2 3 6

2 3 7

Bot_inner Bot_outer Mid_inner Mid_outer Top_inner Top_outer

1 2 3 3 5 6

Paralleling middle sp

{1，2}

1.radius() < 2.radius()

{5，6} | {7, 6}

5.radius() < 6.radius()

4 Extension of seeding algorithm

4

7

3

18

6-layers seeds finding: Seed Formation step in CPU
Iterate through all new 5-point seeds:

• if two seeds have the same bottom sp & top sp, merge both into hexaplets (6-layer seeds)

Z

r

0

L1

L2

L3

L4

L5

L6

Hit

Found triplets

1

2

5

6

middle sp

Bot_inner Bot_outer Mid_inner Mid_outer Top_inner Top_outer

1 2 4 4 5 6

Bot_inner Bot_outer Mid_inner Mid_outer Top_inner Top_outer

1 2 3 3 5 6

In CPU

For hit 3 👇

For hit 4 👇 ＋

Bot_inner Bot_outer Mid_inner Mid_outer Top_inner Top_outer

1 2 3 4 5 6

{3，4}

3.radius() < 4.radius()

4 Extension of seeding algorithm

Outline

1 Introduction

2 Integration of TRACCC with CEPCSW

19

5 Performance

3 Geometry & EDM

4 Extension of seeding algorithm

6 Summary

20

Difference between rec and sim track param
Track parameters include d0, phi (particle: mu-)

Particle: mu-/pi-/e-/K-/proton Energy: 10 GeV

Number of events: 1000 Number of tracks per event: 10

• Good seed: half space-points of the seed are from the

same particle.

• Pick tracks with polar angle |cosθ| < 0.921 to avoid

boundary effects.

• The seeding efficiency is above 99.5% without

background for all types of particles

• Resolution of d0/phi is as expected

5 Performance Seeding efficiency with different particles

21

Particle: mu- Energy: 10 GeV

Number of events: 5000

Number of tracks per event: 10

• After adding 0.3% noise, reconstruction efficiency

drops slightly.

• Reason for the decrease in efficiency: If the

noise and hit are too close, they may be

grouped in the same space-point during

clustering, which may result in *wrong

position* or *wrong particle id*.

• Higher repetition rate after adding noise.

• Why no-noise case has ≈30% repetition rate:

When processing the Seed Formation

algorithm, if there are two triplets from the

same track that do not share points at all, a

duplicate seed is generated.

5 Performance Seeding efficiency with background

22

Particle: mu- Energy: 10 GeV

Total track num: 50000

Number of tracks per event: 10/50/100/500/1000

Conclusion:

• The Seed Formation algorithm may combine

two triplets with different particle id into a

Seed. And the marked particle id of that is

defined as the mode of the particle id of all

space-points, which causes the absence of

the proper particle id.

5 Performance Seeding efficiency versus # of track / event

23

Computing evaluation of TRACCC seeding
Particle: mu- Energy: 10 GeV

Run TRACCC in heterogeneous device:

• CPU: Intel(R) Xeon(R) Silver 4214 CPU @ 2.20GHz

• GPU: NVIDIA Corporation TU102GL [Quadro RTX 8000]

We tested the computing efficiency on CPU&GPU with only single CPU thread
• Even in this circumstances, we can beat a single CPU with a single “workstation” GPU at 100 tracks’ event.

• With multiple CPU cores in use, GPU can only “win” at large pipe-up case.

5 Performance

Outline

1 Introduction

2 Integration of TRACCC with CEPCSW

24

5 Performance

3 Geometry & EDM

4 Extension of seeding algorithm

6 Summary

25
6 summary

1. TRACCC has been applied to the CEPCSW for the first time.

If you want to apply TRACCC on your experiments:

• The geometry conversion can be easily done by ACTS Tools.

• The EDM conversion needs careful manually search for one-to-one correspondence

• The TRACCC’s algorithm can be extended for the special detector

2. For the performance of TRACCC

• The physical performance of the seeding algorithm is promising

• GPU shows better computing performance than the CPU for large pile-up events

Previous Reports:

ACTS Developers Meeting:

https://indico.cern.ch/event/1388561/

https://indico.cern.ch/event/1406633/ (Apply ACTS in the inner tracker of CEPC)

Acts Parallelization Meeting (TRACCC):

https://indico.cern.ch/event/1356203/

TAKE-AWAY MESSAGE

https://indico.cern.ch/event/1388561/
https://indico.cern.ch/event/1406633/
https://indico.cern.ch/event/1356203/

Thank You

YiZhou Zhang, WeiDong Li, Xiaocong Ai, Tao Lin

zhangyz@ihep.ac.cn

The Institute of High Energy Physics, IHEP, China

CHEP2024

Krakow, Poland

23rd Oct 2024

mailto:zhangyz@ihep.ac.cn

Backup

28

2 Integration of TRACCC with CEPCSW

• Physical performance improvements brought by the algorithm

• 重复率下降
• 6个点的角度重建误差比3个点好

29

1 Introduction

1. The performance of CPUs is still growing exponentially, although a bit slower than a few years ago.

2. GPUs are growing at the same rate, with the offset remaining almost unchanged.

3. Leveraging modern hardware and parallelization remains our main direction for algorithm development

* TRACCC is one of the ACTS R&D projects, which is developing full track reconstruction algorithms that can run on

accelerators.

使用成本

30

Data model conversion between EDM4hep & TRACCC
• CEPCSW cellid needs to be converted into the TRACCC gid to

retrieve the correct module.

CEPCSW cellid:
Layer: {0,1,2,3,4,5} # Indicate 6 layers from inside to outside

Module: { L0: 0-9, L1: 0-9, L2: 0-10, L3: 0-10, L4: 0-16, L5: 0-16}

Indicate ladders in the φ direction

Sensor: 0

Barrelside: 1 for z > 0 else -1

one ladders has 2 sensors separated by z

TRACCC gid:
Volume: {3}

Boundary: 0

Layer: {2, 4, 6} # adjacent layers are treated as the same layers

Approach: 0

Sensitive: {L2: 1-40, L4: 1-44, L6:1-68}

The sensitive counts from z>0 to z<0, then counts in φ direction

(the order is same to CEPC), and then counts from inner to

outer layers.

Generated hits of CEPC VXD by Geant4

Converter for VXD gid

Cells local position:
Geant4 take the center point as

the origin, while TRACCC use

lower left corner as the origin.

So the cells’ local coordinates

need to be modified.

Adjust the local coordinates

for the difference between EDM4hep & TRACCC

Gid of fatras of ACTS

3 Geometry & EDM

31

2 Integration of TRACCC with CEPCSW

Implementation of Seeding Algorithm with TRACCC for VerTex

Detector (VTX) of the CEPC experiment
• A Gaudi algorithm has been developed for Seeding Algorithm, incorporating TRACCC

clusterization, spacepoint formation, seed finding, and track params estimation algorithms.

• Geometry required for Seeding Algorithm are prepared using various ACTS tools

• The CEPC geometry file, originally in DD4hep format, is first converted to TGeo

format. It is then translated into Acts::Surface objects using Acts::TGeoLayerBuilder,

and is exported to a detector file by Acts::CsvTrackingGeometryWriter.

• A digitization config file is written to provide the segmentation information of each

surface.

Gaudi Algorithm using TRACCC reconstruction

Gaudi Algorithm workflow
• Initialize(): Build the silicon detector description by detector file and digitization

config file, and initialize the memory resource and TRACCC’s algorithms.

• Execute(): Read hits and run seeding algorithm for each events

• An wrapper of TRACCC SYCL algorithms is developed since CEPCSW

& TRACCC using different compilers (Clang & GCC).

• In CEPCSW, hits are generated by Geant4 and stored in EDM4hep format.

Therefore, data model conversion between EDM4hep & TRACCC is

required before and after the seeding.

32

2 Integration of TRACCC with CEPCSW

Implementation of Seeding Algorithm with TRACCC for VerTex

Detector (VTX) of the CEPC experiment
• A Gaudi algorithm has been developed for Seeding Algorithm, incorporating TRACCC

clusterization, spacepoint formation, seed finding, and track params estimation algorithms.

• Geometry required for Seeding Algorithm are prepared using various ACTS tools

• The CEPC geometry file, originally in DD4hep format, is first converted to TGeo

format. It is then translated into Acts::Surface objects using Acts::TGeoLayerBuilder,

and is exported to a detector file by Acts::CsvTrackingGeometryWriter.

• A digitization config file is written to provide the segmentation information of each

surface.

Gaudi Algorithm using TRACCC reconstruction

Seeding workflow
• Data model conversion between EDM4hep & TRACCC is required before and

after Seeding Algorithm (page 9)

• CEPCSW cellid needs to be converted into the Acts gid to retrieve the

correct module.

• using one common memory for both EDM4hep and VecMem to avoid the

overhead from data copy (page 10)

• Using one common memory for both EDM4hep and VecMem to avoid the

overhead from data copy (page 10)

• default seeding algorithm in TRACCC, which creates three-space-points seeds,

