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Transformers

U-nets



Problem Definition
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● Track finding
○ Grouping hits that likely originate 

from the same particle
● Track fitting

○ The derivation of track parameters 
of a group of hits

● Track parameters
○ Describe the particle trajectory

Track Reconstruction

Image: [4]
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● Traditional algorithm for the task, used in LHC
● Track finding needs a combinatorial KF

Kalman Filters (KF)

Image: [1]



● KF and CKF scale poorly, inherently sequential [1]
● High Luminosity LHC

○ Number of generated particles and recorded hits to 
increase manyfold [3]

● 12s per event [2] *
● Fast KF: 1.8s per event [2] *

* Used CPU: Intel Xeon E5-2620v2

Scalability Issue
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● Graph neural networks
○ Goal is to identify connections between the hits that 

represent actual physical trajectories
○ 2.2s* per event [5]

● U-nets
○ A convolutional neural network for image segmentation
○ Investigated within our team: pixel segmentation

* GPU used: Nvidia A100 Tensor Core

Active Field of Research



The Transformer



● Deep learning architecture
● Success in NLP (and many other fields)

What is a Transformer?

transformer
  detector      physics
recordings information
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● Can be parallelized
● Can handle variable length input
● Equivariant to input order
● Captures complex non-linear dynamics in data

 

Why Use a Transformer?
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Transformer Architecture [6]



Proposed Approaches



| 13

● U-Net: Segments digital image representation of event into 
segments representing the different tracks

● Encoder-Decoder Model (EncDec): Autoregressively 
builds the full track, starting from a given seed

● Encoder-only Classifier (EncCla): Based on distribution 
of track parameters among classes, predict the class of each 
hit 

● Encoder-only Regressor (EncReg): Regress track 
parameters of each hit and cluster together based on 
proximity

Four Pipelines [11]



● Track defining parameters placed in balanced bins 
(i.e. classes)

● Transformer predicts the class of each hit

Encoder-only Classifier: EncCla
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● Used for regressing track-defining parameters
● Clustering hits based on regressed parameters

Encoder-only Regressor: EncReg
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Simulations



● Iterative increase of complexity
● REDuced VIrtual Detector (REDVID) [9]

○ https://virtualdetector.com/redvid/
○ https://indico.cern.ch/event/1338689/contributions/6015906/ 

● TrackML-derived subsets [4]

Complexity-Reduced Approach
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https://virtualdetector.com/redvid/
https://indico.cern.ch/event/1338689/contributions/6015906/


REDVID Linear Datasets
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3D-lin:10-50

Max nr. hits
per event

450

EncCla: phi, theta, p
EncReg: sin(phi),

cos(phi), theta
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EncCla, EncReg, U-net:
radial coefficient
pitch coefficient
azimuthal coefficient

REDVID Helical Datasets

Images: https://www.to-calculate.com/geometry/evolute-helix.php, [7]

3D-hel:
10-50

3D-hel:
50-100

Max nr. 
hits
per event

450 900

https://www.to-calculate.com/geometry/evolute-helix.php
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EncCla: phi, theta, q, p
EncReg: sin(phi), q,

cos(phi), theta

TrackML-derived Datasets [4]
TML:10-50 TML:200-500

Max nr. hits
per event

700 5000



Results
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FitAccuracy Score
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…

0.04 + 0.01 = 0.05

TrackML [4]
sum of weights of majority 

particle (>50% hits in cluster 
come from it)

…

…

…
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FitAccuracy Scores [11]

* FA = Flash attention
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Other Efficiency Scores [5]
Perfect

only hits from 1 particle
no hits of it outside of 

cluster

LHC
>=75% hits are from 1 

particle

Double Majority
>=50% hits from 1 particle 

and <50% of its hits outside 
cluster
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Physics Performance of EncReg

5
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Computational  Performance
Run on Nvidia A100 GPU



Transformers for 
tracking: promising 
and worth further 

research!
https://arxiv.org/abs/2407.07179  

https://arxiv.org/abs/2407.07179


Thank you.
Questions?
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Rotational Invariance of Phi
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Rotational Invariance of Phi
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● No pre-specified 
number of clusters

● No assumptions 
about the data and 
cluster distribution 

● Time complexity in 
O(n^2)

HDBSCAN [8]

Image: https://hdbscan.readthedocs.io/en/latest/advanced_hdbscan.html
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Graph Neural Networks Lieret et al. [10]



| 35

● MHA – memory intensive
○ L x H matrices of S x S floating point values
○ L - nr. layers, H - nr. heads, S - sequence length

● Flash attention [7]
○ Splitting matrix in blocks and doing calculations 

separately, then combining results
○ 3x faster and 20x more memory efficient

Memory Bottleneck
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● Autoregressive model
○ Adds hits to reconstructed tracks that were missed by the 

pipeline
● Binary classifier network

○ Determines whether each hit of a cluster truly belongs 
there

● Regressor network
○ Transformer Regressor, but per-cluster not per-event
○ Hits with track parameters too different from the rest of 

the group get removed

Refiner Network


