

Efficient ML-Assisted Particle Track Reconstruction Designs

Nadezhda Dobreva

<u>nadezhda.dobreva@ru.nl</u>

CHEP 24/10/2024

https://arxiv.org/abs/2407.07179

Team

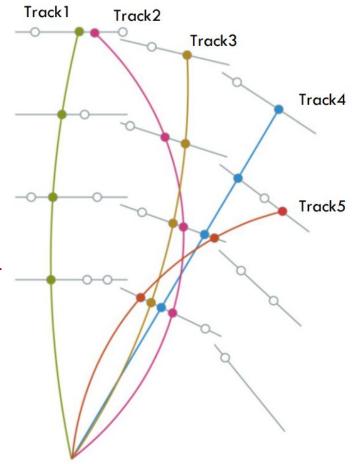
• The project collaborators:

- Radboud University (Nadezhda Dobreva)
- Nikhef (Sascha Caron, Zef Wolffs, Uraz Odyurt)
- SURF (Yue Zhao)
- University of Valencia (Antonio Ferrer Sanchez, Roberto Ruiz de Austri Bazan, Jose D. Martin-Guerrero)

U-nets

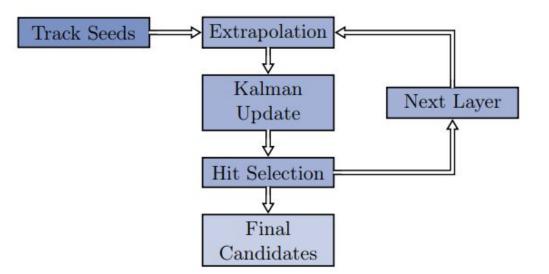
Transformers

Problem Definition


Track Reconstruction

• Track finding

• Grouping hits that likely originate from the same particle


• Track fitting

- The derivation of track parameter of a group of hits
- Track parameters
 - Describe the particle trajectory

Kalman Filters (KF)

- Traditional algorithm for the task, used in LHC
- Track finding needs a combinatorial KF

Scalability Issue

- KF and CKF scale poorly, inherently sequential [1]
- High Luminosity LHC
 - Number of generated particles and recorded hits to increase manyfold [3]
- 12s per event [2] *
- Fast KF: 1.8s per event [2] *

* Used CPU: Intel Xeon E5-2620v2

Active Field of Research

• Graph neural networks

- Goal is to identify connections between the hits that represent actual physical trajectories
- 2.2s* per event [5]

• U-nets

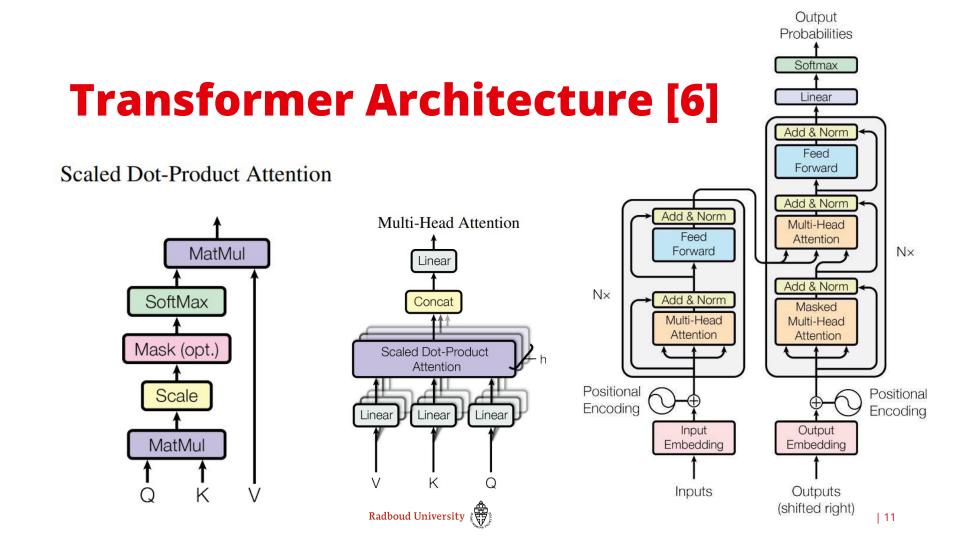
- A convolutional neural network for image segmentation
- Investigated within our team: pixel segmentation

* GPU used: Nvidia A100 Tensor Core

The Transformer

What is a Transformer?

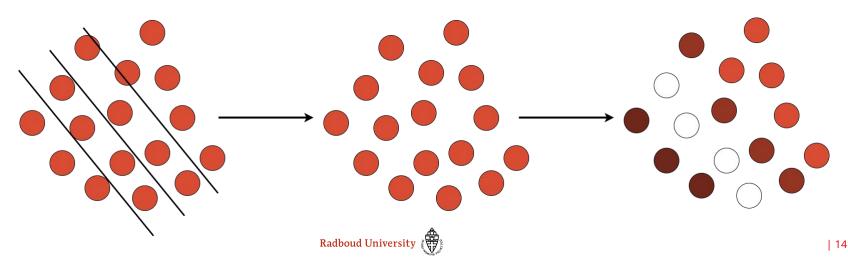
- Deep learning architecture
- Success in NLP (and many other fields)



Why Use a Transformer?

- Can be parallelized
- Can handle variable length input
- Equivariant to input order
- Captures complex non-linear dynamics in data

Proposed Approaches


Four Pipelines [11]

- **U-Net:** Segments digital image representation of event into segments representing the different tracks
- Encoder-Decoder Model (EncDec): Autoregressively builds the full track, starting from a given seed
- Encoder-only Classifier (EncCla): Based on distribution of track parameters among classes, predict the class of each hit
- Encoder-only Regressor (EncReg): Regress track parameters of each hit and cluster together based on proximity

Encoder-only Classifier: EncCla

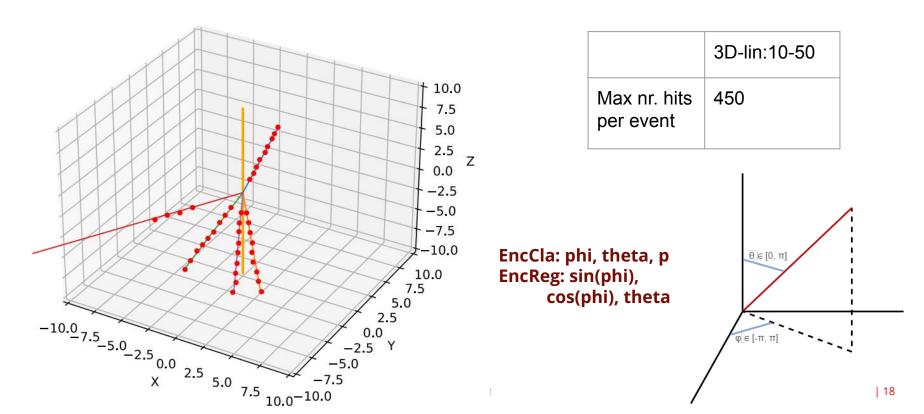
- Track defining parameters placed in balanced bins (i.e. classes)
- Transformer predicts the class of each hit

Encoder-only Regressor: EncReg

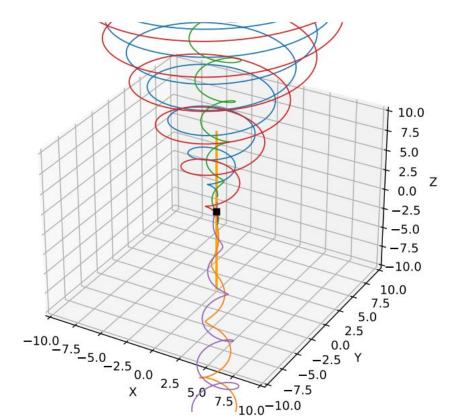
- Used for regressing track-defining parameters
- Clustering hits based on regressed parameters

Simulations

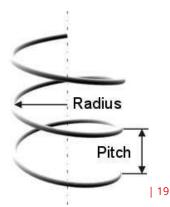
Complexity-Reduced Approach


• Iterative increase of complexity

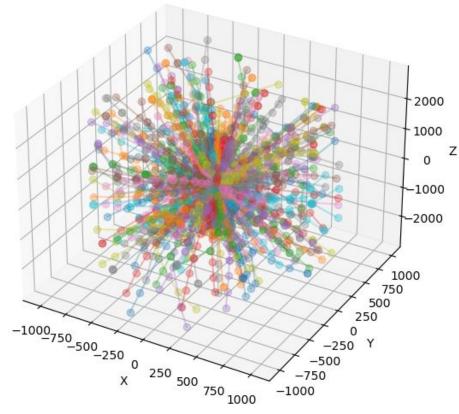
• **REDuced Virtual Detector (REDVID) [9]**


- <u>https://virtualdetector.com/redvid/</u>
- <u>https://indico.cern.ch/event/1338689/contributions/6015906/</u>
- TrackML-derived subsets [4]

REDVID Linear Datasets

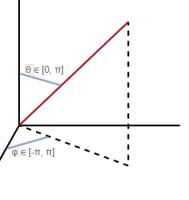


REDVID Helical Datasets



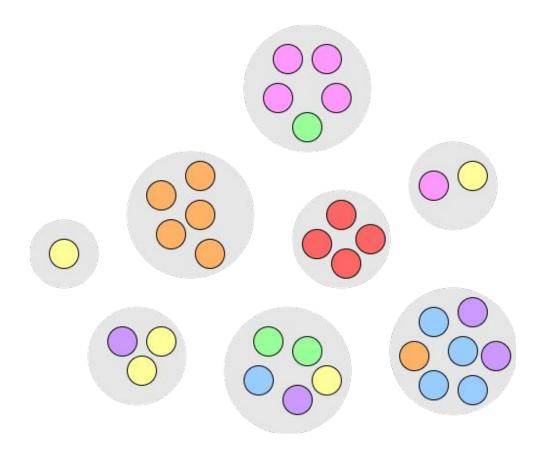
	3D-hel: 10-50	3D-hel: 50-100
Max nr. hits per event	450	900

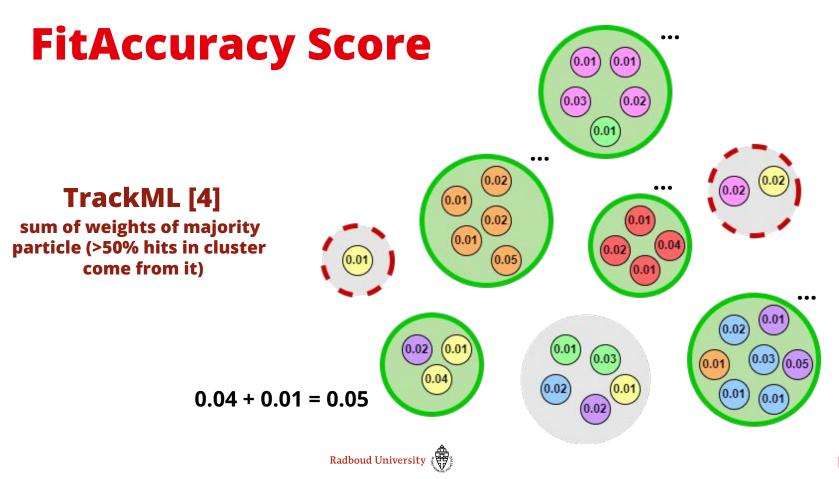
EncCla, EncReg, U-net: radial coefficient pitch coefficient azimuthal coefficient



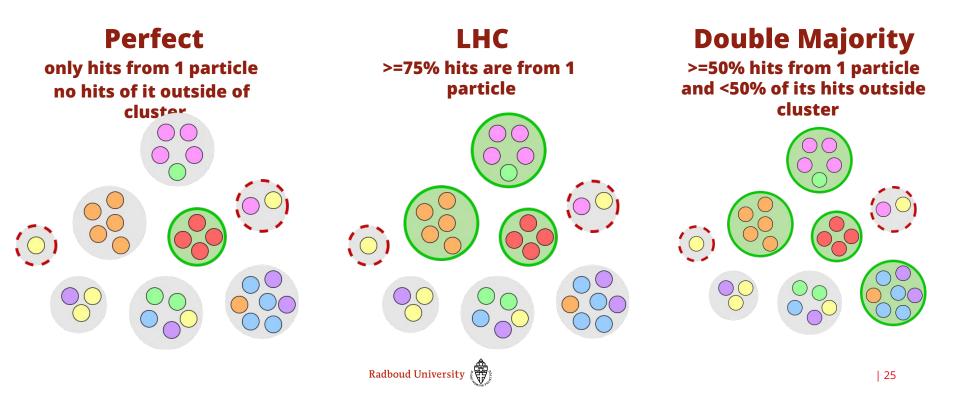
TrackML-derived Datasets [4]

	TML:10-50	TML:200-500	
Max nr. hits per event	700	5000	


EncCla: phi, theta, q, p EncReg: sin(phi), q, cos(phi), theta


| 20

Results



FitAccuracy Scores [11]

	FitAccuracy score				
Data set	EncDec	EncCla	EncReg	EncReg-FA	U-Net
REDVID - 10-50 linear tracks	93%	93%	97%	-	68%
REDVID - 10-50 helical tracks	85%	93%	92%	-	62%
REDVID - 50-100 helical tracks	85%	88%	85%	-	57%
TrackML - 10-50 tracks	26%	94%	93%	-	-
TrackML - 200-500 tracks	-	78%	70%	67%	-

* FA = Flash attention

Other Efficiency Scores [5]

Physics Performance of EncReg

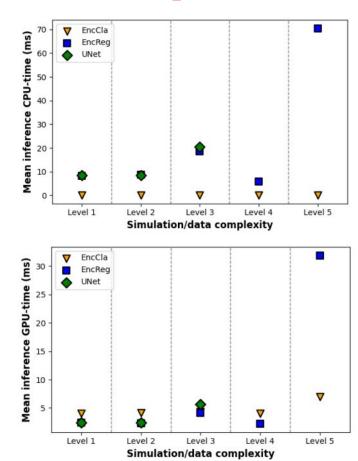

	3D-lin:10-50	3D-hel:10-50	3D-hel:50-100	TML:10-50	TML:200-500
TrackML score	0.97	0.92	0.85	0.932	0.7 (0.67)
ϵ^{perf}	0.94	0.78	0.6	0.78	0.4(0.36)
ϵ^{DM}	0.97	0.94	0.89	0.91	0.75(0.72)
ϵ^{LHC}	0.98	0.96	0.92	0.97	0.82(0.79)

Table 6.2: Summary of the ϵ^{perf} , ϵ^{DM} , ϵ^{LHC} and TrackML scores obtained by the Transformer Regressor models for the 5 used datasets. For the models trained on TML:200-500, the result with Flash attention is in parentheses.

Run on Nvidia A100 GPU

Computational Performance

Data set	Model	Inference (mean) CPU side	Inference (mean) GPU side	Inference (mean) Wall-clock
	EncDec	n/a	n/a	41 s
REDVID - 10-50 linear tracks	EncCla	0.1 ms	4.0 ms	
	EncReg	8.3 ms	2.4 ms	•
	U-Net	8.5 ms	2.4 ms	2
REDVID - 10-50 helical tracks	EncDec	n/a	n/a	19 :
	EncCla	0.1 ms	4.1 ms	
	EncReg	8.7 ms	2.3 ms	•
	U-Net	8.6 ms	2.4 ms	
REDVID - 50-100 helical tracks	EncDec	n/a	n/a	27
	EncCla	0.1 ms	4.3 ms	
	EncReg	18.6 ms	4.1 ms	-
	U-Net	20.4 ms	5.6 ms	
	EncDec	n/a	n/a	16
TrackML - 10-50 tracks	EncCla	0.1 ms	4.0 ms	
TrackML - 10-50 tracks	EncReg	5.8 ms	2.2 ms	
	U-Net	n/a	n/a	
TrackML - 200-500 tracks	EncDec	n/a	n/a	
	EncCla	0.1 ms	7.0 ms	
	EncReg	70.5 ms	31.9 ms	-
	EncReg-FA	72.2 ms	3.6 ms	
	U-Net	n/a	n/a	

"OHING SE

Transformers for tracking: promising and worth further research!

https://arxiv.org/abs/2407.07179

Thank you. Questions?

References

[1] Braun, N. "Combinatorial Kalman filter and high level trigger reconstruction for the Belle II experiment." Springer, 2019.

[2] ATLAS Collaboration. "Fast track reconstruction for HL-LHC." Tech. Rep. ATL-PHYS-PUB-2019-041, CERN, Geneva, 2019.

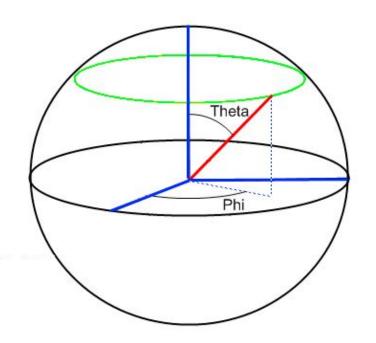
[3] Apollinari, Giorgio, Lucio Rossi, and Oliver Brüning. "High luminosity LHC project description." No. CERN-ACC-2014-0321. 2014.

[4] Amrouche, Sabrina, et al. "The tracking machine learning challenge: throughput phase." Computing and Software for Big Science 7.1 (2023): 1.

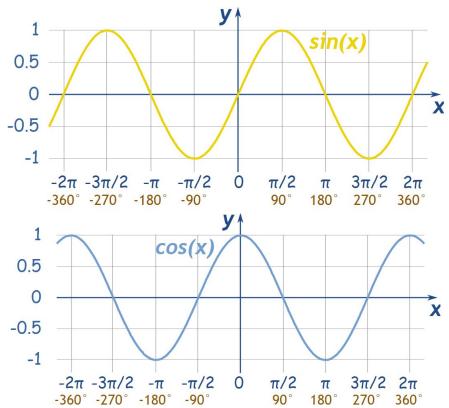
[5] Ju, Xiangyang, et al. "Performance of a geometric deep learning pipeline for HL-LHC particle tracking." The European Physical Journal C 81 (2021): 1-14.

[6] Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems, 30 (2017).

[7] Dao, Tri, et al. "Flashattention: Fast and memory-efficient exact attention with io-awareness." Advances in Neural Information Processing Systems 35 (2022): 16344-16359.


[8] Stewart, Geoffrey, and Mahmood Al-Khassaweneh. "An implementation of the HDBSCAN* clustering algorithm." Applied Sciences 12.5 (2022): 2405.

[9] Reduced Simulations for High-Energy Physics, a Middle Ground for Data-Driven Physics Research, Uraz Odyurt, Stephen Nicholas Swatman, Ana-Lucia Varbanescu, Sascha Caron, 2023


[10] Lieret, Kilian, et al. "High Pileup Particle Tracking with Object Condensation." arXiv preprint arXiv:2312.03823 (2023).

[11] Caron, Sascha, et al. "TrackFormers: In Search of Transformer-Based Particle Tracking for the High-Luminosity LHC Era." (2024) <u>https://arxiv.org/abs/2407.07179</u>

Rotational Invariance of Phi

Radboud University

Rotational Invariance of Phi

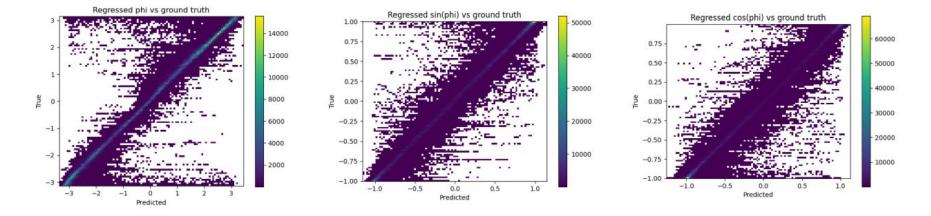
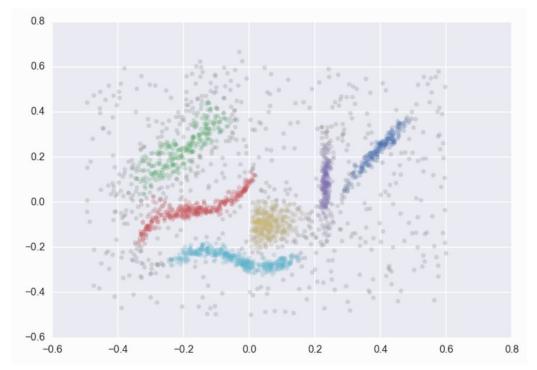
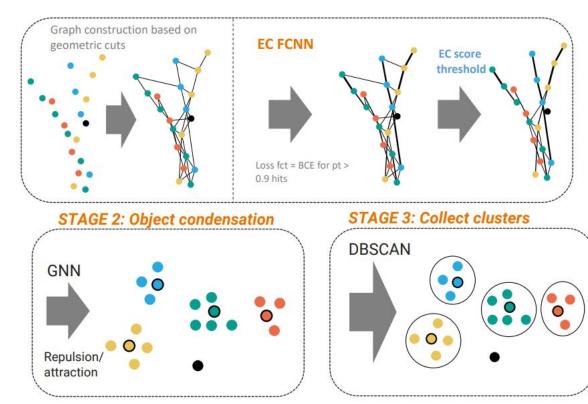



Figure B.1: Visualization of the regressed ϕ plotted against the actual ϕ for a model trained to regress θ, ϕ, q (left), and of the regressed $\cos(\phi), \sin(\phi)$ plotted against the actual values for a model trained to regress $\theta, \sin(\phi), \cos(\phi), q$ (middle, right). The models were trained on the TML:10-50 dataset.

HDBSCAN [8]


- No pre-specified number of clusters
- No assumptions about the data and cluster distribution
- Time complexity in O(n^2)

Graph Neural Networks

Lieret et al. [10]

Memory Bottleneck

• MHA – memory intensive

- L x H matrices of S x S floating point values
- L nr. layers, H nr. heads, S sequence length

• Flash attention [7]

- Splitting matrix in blocks and doing calculations separately, then combining results
- 3x faster and 20x more memory efficient

Refiner Network

Autoregressive model

Adds hits to reconstructed tracks that were missed by the pipeline

• Binary classifier network

 Determines whether each hit of a cluster truly belongs there

• Regressor network

- Transformer Regressor, but per-cluster not per-event
- Hits with track parameters too different from the rest of the group get removed

