

EggNet Track Reconstruction Pipeline

Paolo Calafiura, Jay Chan, Loic Delabrouille, Brandon Wang

Lawrence Berkeley National Laboratory

Krakow, Poland, October 24, 2024

Track reconstruction is a challenging task

GNN-based track reconstruction pipelines

Track reconstruction as edge classification

Track reconstruction as object condensation

GNN-based track reconstruction pipelines

Graph reconstruction required as a first step in pipeline

Graph reconstruction required as a first step in pipeline

EggNet tracking pipeline

13

BERKELEY LAB 14

Contrastive loss

For each pair of nodes (edge):

$$L(e) = \underbrace{y_e \ d_e^2}_{I} + (1 - y_e) \ max^2(0, \ m - d_e)$$

Attractive loss for positive pair y = 1 (hits come from the same particle) Repulsive loss for negative pair y = 0 (hits come from different particles)

15

d = Euclidean distance between two hits

Three categories of edges:

DBSCAN and track performance

Evaluate track performance with the standard ATLAS definition (arXiv: 2103.06995)

A matched track = (>50% hits in this track candidate come from same particle)

Test case with TrackML dataset

- Formulated in the <u>Kaggle TrackML challenge</u> (HL-LHC like detector)
- Each event $\sim O(10^4)$ particles; $\sim O(10^5)$ hits

DBSCAN track performance (pT = 1 GeV hard cuts)

Track performance vs ε (DBSCAN)

Метнор	Efficiency	DUP. RATE	ΓΑΚΕ RΑ ΤΕ
EC	0.9898 ± 0.0009	0.0421 ± 0.0011	0.0012 ± 0.0000
OC	0.9902 ± 0.0007	0.0328 ± 0.0007	0.0015 ± 0.0001
EGGNET ($i \leq 1$)	0.7454 ± 0.0027	0.2202 ± 0.0024	0.0099 ± 0.0004
EGGNET ($i \leq 2$)	0.9905 ± 0.0005	0.0179 ± 0.0006	0.0011 ± 0.0000
EGGNET ($i \leq 3$)	0.9940 ± 0.0002	0.0117 ± 0.0003	$\boldsymbol{0.0005 \pm 0.0000}$
EggNet ($i \leq 4$)	$\textbf{0.9956} \pm \textbf{0.0003}$	0.0129 ± 0.0002	0.0006 ± 0.0000

arXiv:2407.13925

- Remove hits associated with particles of pT<1GeV for simplicity
 - Reduce graph size to $\sim O(10^4)$ nodes
- EggNet outperforms prebuilt-graph-based methods with ≥3 iterations

DBSCAN track performance (full TrackML events)

Track performance vs ε (DBSCAN)

TrackML Dataset TrackML Dataset Efficiency Efficiency (Rate) 1.2 $p_T > 1 \text{GeV}$ Track Efficiency $p_T > 1 \text{GeV}$ 1 10 Duplication rate DBSCAN (min_samples = 3) DBSCAN (*c*=0.1, min_samples=3) $\varepsilon = 0.1$ Fake rate Efficiency: 0.9587 1 05 Duplication rate: 0.0276 1.0 Fake rate: 0.0019 0.9587 1.00 0.8 0.95 0.6 0.90 0.85 0.4 0.80 0.0276 0.2 0.75 0.0019 0.70 0.0 0.2 0.4 10¹ 0.1 0.5 10 ε p_T [GeV]

Track efficiency vs pT

Computing challenges

- Computing performance evaluated on an NVIDIA A100 80GB GPU
- KNN and DBSCAN ran on GPU (cuml library) -> ~6x speed up compared to CPU
- Computing time mainly comes from graph attention and KNN
- KNN scales quadratically with number of spacepoints
- High demands on GPU memory. An event with ~150k spacepoints requires ~50GB GPU memory

Training on segmented subgraphs

- Only look at a subset of spacepoints at a time
- Train with the subgraphs segmented by ϕ (fixed range at a random central value)
- Significantly reduce GPU memory requirement as well as training time
- Obtain similar track performance to training with full graphs
- Can potentially perform inference on segmented graphs as well (future work)

21

Summary

- Propose a one-shot object-condensation tracking algorithm using an Evolvinggraph-based Graph Attention Network
 - Better facilitate message passing with updated graphs
 - Test it with full trackML events; achieve excellent track performance
- Next step: address challenges in computational cost
 - Scalability of KNN: exploring approximate algorithm with GPU implementation
 - High demands on GPU memory: training on segmented graphs give similar physics performance

Backups

Nearest Neighboring Algorithms

- Significant (>6x) speed up of KNN performed on GPU (cuml and Faiss) compared to CPU implementation (torch_geometric)
- Yet to explore approximate nearest neighboring (ANN) algorithms
 - Faiss ANN
 - Annoy (only CPU implementation available)

Message passing for track reconstruction

Learn key node / edge features from the whole graph structure in an event

25

26

Density-Based Spatial Clustering of Applications with Noise

Idea: a cluster in data space is a contiguous region of high point density, separated from other such clusters by contiguous regions of low point density

