
EggNet Track Reconstruction Pipeline
Paolo Calafiura, Jay Chan, Loic Delabrouille, Brandon Wang

Lawrence Berkeley National Laboratory

Krakow, Poland, October 24, 2024

Track reconstruction is a challenging task

2

Track #1

Track #2

Track #3Track #4

~O(104) particles per collision event
at HL-LHC
→ ~O(105) hits in ATLAS ITK

GNN-based track reconstruction pipelines

3

Mes
sa

ge

pa
ss

ing

Message
passing

Graph
Segmentation

Clustering

Point cloud Graph

Edge classification

Object condensation

Edge scores

Node embedding

Reconstructed tracks

Reconstructed tracks

Graph
construction

Track reconstruction as edge classification

4

Mes
sa

ge

pa
ss

ing

Graph
Segmentation

Point cloud Graph

Edge classification

E.g. ATLAS GNN4ITK pipeline (ATL-SOFT-PROC-2023-047)

CHEP talks:
Alina on GNN4ITK overview and computing performance
Daniel on Graph Segmentation

Edge scores Reconstructed tracksGraph
construction

https://cds.cern.ch/record/2882507
https://indico.cern.ch/event/1338689/contributions/6011080/
https://indico.cern.ch/event/1338689/contributions/6010082/

Track reconstruction as object condensation

5

Message
passing Clustering

Point cloud Graph

Object condensation

E.g. K. Lieret et. al. (arXiv:2312.03823), D. Murnane (EPJWC 295, 09016 (2024))

Node embedding Reconstructed tracks

Graph
construction

https://arxiv.org/abs/2312.03823
https://www.epj-conferences.org/articles/epjconf/abs/2024/05/epjconf_chep2024_09016/epjconf_chep2024_09016.html

GNN-based track reconstruction pipelines

6

Mes
sa

ge

pa
ss

ing

Message
passing

Graph
Segmentation

Clustering

Point cloud Graph

Edge classification

Object condensation

Edge scores

Node embedding

Reconstructed tracks

Reconstructed tracks

Graph
construction

Graph reconstruction required as a first step in pipeline

7

Mes
sa

ge

pa
ss

ing

Message
passing

Graph
Segmentation

Clustering

Point cloud Graph

Edge classification

Object condensation

Edge scores

Node embedding

Reconstructed tracks

Reconstructed tracks

Graph
construction

Graph reconstruction required as a first step in pipeline

8

Mes
sa

ge

pa
ss

ing

Message
passing

Graph
Segmentation

Clustering

Point cloud Graph

Edge classification

Object condensation

Edge scores

Node embedding

Reconstructed tracks

Reconstructed tracks

Graph
construction

Effectiveness of message passing affected by
the graph quality (true edge efficiency & purity)

EggNet tracking pipeline

9

Graph
construction

Point cloud Graph

Edge classification

Clustering

Mes
sa

ge

pa
ss

ing

Graph
Segmentation

Object condensation

Node embedding Reconstructed tracks

Message
passingEggNet

(Evolving graph +
message passing)

Recursive

Iteratively improve graph and better facilitate
message passing

EggNet

10

Input node
features

Output node
latent embedding

EggNet

11

Input node
features

Output node
latent embedding

First iteration: learn
node embedding with
deep sets

EggNet

12

Input node
features

Output node
latent embedding

Evolutional
KNN graph

K-nearest-neighbor (KNN):
Connect each node to its k closest
nodes in the embedding space

EggNet

13

Output node
latent embedding

Graph attention block consists of
a series of graph-attention-style
message passings

Input node
features

EggNet

14

Output node
latent embedding

Evolutional
KNN graph

Update embedding

Update graph

Input node
features

Contrastive loss

15

L(e) = ye d2
e + (1 − ye) max2(0, m − de)

Attractive loss for positive pair y = 1
(hits come from the same particle)

For each pair of nodes (edge):

Repulsive loss for negative pair y = 0
(hits come from different particles)

d = Euclidean distance between two hits

Ltot = < L(esignal) > + < L(erandom) > + < L(eKNN) >

Signal edges (hits
from same particles)

Random edges
(randomly select 2 hits)

KNN edges for “hard
negative mining”

Three categories of edges:

~10x #nodes Select 105 10x #nodes

DBSCAN and track performance

16

Efftrack =
N reco

particles

Nparticles

DBSCAN

Node embedding Track label

A matched track = (>50% hits in this track candidate come from same particle)

rfake =
Ntracks − N matched

tracks

Ntracks
rduplicate =

N matched
tracks − N reco

particles

N reco
particles

Evaluate track performance with the standard ATLAS definition (arXiv: 2103.06995)

https://arxiv.org/abs/2103.06995

Test case with TrackML dataset

17

● Formulated in the Kaggle TrackML challenge (HL-LHC like detector)
● Each event ~O(104) particles; ~O(105) hits

https://www.epj-conferences.org/articles/epjconf/pdf/2019/19/epjconf_chep2018_06037.pdf

DBSCAN track performance (pT = 1 GeV hard cuts)

18

Track performance vs 𝜺 (DBSCAN)

0.9956

0.0129

0.0005

arXiv:2407.13925

● Remove hits associated with particles of pT<1GeV
for simplicity
○ Reduce graph size to ~O(104) nodes

● EggNet outperforms prebuilt-graph-based methods
with ≥3 iterations

EggNet (i ≤ 4)

https://arxiv.org/pdf/2407.13925

DBSCAN track performance (full TrackML events)

19

Track performance vs 𝜺 (DBSCAN) Track efficiency vs pT

0.9587

0.0276

0.0019

𝜺 = 0.1

Computing challenges

20

Training time Inference time

● Computing performance evaluated on an NVIDIA A100 80GB GPU
● KNN and DBSCAN ran on GPU (cuml library) -> ~6x speed up compared to CPU
● Computing time mainly comes from graph attention and KNN
● KNN scales quadratically with number of spacepoints
● High demands on GPU memory. An event with ~150k spacepoints requires ~50GB GPU memory

GPU memory

 k

Number of spacepoint: 103891

Training on segmented subgraphs

21

ɸ

● Only look at a subset of spacepoints at a time
● Train with the subgraphs segmented by ɸ (fixed range at a random central value)
● Significantly reduce GPU memory requirement as well as training time
● Obtain similar track performance to training with full graphs
● Can potentially perform inference on segmented graphs as well (future work)

Δɸ = 2𝜋/10

Δɸ = 2𝜋/10

Summary

22

● Propose a one-shot object-condensation tracking algorithm using an Evolving-
graph-based Graph Attention Network
○ Better facilitate message passing with updated graphs
○ Test it with full trackML events; achieve excellent track performance

● Next step: address challenges in computational cost
○ Scalability of KNN: exploring approximate algorithm with GPU implementation
○ High demands on GPU memory: training on segmented graphs give similar

physics performance

Backups

23

Nearest Neighboring Algorithms

24

● Significant (>6x) speed up of KNN performed on
GPU (cuml and Faiss) compared to CPU
implementation (torch_geometric)

● Yet to explore approximate nearest neighboring
(ANN) algorithms
○ Faiss ANN
○ Annoy (only CPU implementation available)

Message passing for track reconstruction

25

Node #1

Node #2

Node #0

Node #3

Edge #01

Edge #02

Edge #03

Node update:
nk+1

0 = fn(nk
o, agg(ek

0j))
Edge update:

ek+1
01 = fe(ek

o1, nk
0, nk

1)

Learn key node / edge features from the whole graph structure in an event

agg ∋ {sum, mean, max…}
^ weighted sum (attention)

Hits = Nodes

EggNet

26

Input node
features

Output node latent
representation

Density-Based Spatial Clustering of Applications with
Noise

27

Idea: a cluster in data space is a contiguous region of high point density,
separated from other such clusters by contiguous regions of low point density

