A Multi-Objective Optimization Tool for Track Reconstruction in CMS

Simone Rossi Tisbeni (CERN-UniBO-INFN)

Aya Arabiat (UTD), Adriano Di Florio (CC-IN2P3), Chris Hoang (UCSD), Enrico Lusiani (INFN), Felice Pantaleo (CERN)

On behalf of the CMS Collaboration

CHEP 2024

27th International Conference on Computing in High Energy Physics 24 Oct 2024 - Krakow(PL)

Tracking at HLT

- CMS trigger: two levels Level 1 (hardware) and High Level Trigger (HLT) (software)
 Input rate: ~100kHz, Output rate: few kHz
- Track reconstruction is one of the first (and most important) steps of HLT
- Full tracks (pixel+strips) seeded by pixel-only tracks
- Pixel track reconstruction run on GPU with a Cellular Automaton algorithm (>40 tunable parameters) Three main steps:
 - 1. doublets: pairs of compatible hits
 - 2. n-Tuplets: compatible hit pairs sharing a hit
 - 3. Fitting and selection
- Tuning is complex and time consuming

Parameters

Metrics

Compatibility checked (mainly) via geometrical cuts on the angle of the trajectory:

- 19 Cuts on Φ
- Cut on z0
- Hard Curvature Cut
- DCA in the inner layers
- DCA in the outer layers
- Cut on θ in Barrel region
- Cut on θ in Forward region

25 parameters in total

Reco track is **associated** to Sim if >75% of hits originate from it

Otherwise is considered fake

• Efficiency:
$$\frac{N_{ass(reco \rightarrow sim)}}{N_{sim}}$$

• Fake Rate:
$$\frac{N_{rec} - N_{ass(sim \rightarrow reco)}}{N_{rec}}$$

Doublet Cuts

Doublet pairs built from outer layer:

- Outer layer hit
- Inner hits
- Compatible hits

1. ϕ Cuts: windows in ϕ in X – Y One per layer pair

2. z0 Cut: window in Z in R - Z

CHEP2024 A Multi-Objective Optimization Tool for Track Reconstruction in CMS

Triplet Cuts

Triplets are built from doublets sharing a hit

- 3a. HardCurvCut: cut on minimum $p_{T} \label{eq:product}$
- 3b. DCA Cut: cut on maximum Distance of Closest Approach

4. θ Cut: cuts on maximum θ One for Barrel, one for forward

CMS DP-2024/084

CHEP2024 A Multi-Objective Optimization Tool for Track Reconstruction in CMS

The Optimizer

Framework to support multiple optimization algorithms

Common interface to the user

Support any objective function

Optimization can be done all in one go or step by step

Support stop and resume

```
import optimizer
def f1(x):
    return x**2
def f_2(x):
    subprocess.run(["cmsRun",...])
    eval = get_metrics(uproot.open(...))
    return eval
objectives = optimizer.Objective([f1, f2])
mopso = optimizer.MOPSO(objectives,
                         lower_bounds = [...],
                         upper_bounds = [\ldots],
                         num particles, ...)
mopso.optimize(num_iterations)
print(mopso.pareto front)
```

https://github.com/cms-patatrack/The-Optimizer

A Multi-Objective Optimization Tool for Track Reconstruction in CMS CHEP2024

Particle Swarm Optimization

PSO is a **population-based** optimization technique inspired by the social behaviour of birds flocking or fish schooling

Agents move through the parameters space, adjusting their positions based on local and global best position

•
$$v_{id}^{t+1} = w \times v_{id}^{t} + c_1 \times r_1^t \times (p_{id}^t - x_{id}^t) + c_2 \times r_1^t \times (g_d^t - x_{id}^t)$$

• $x_{id}^{t+1} = x_{id}^t + v_{id}^t$

 w, c_1 , and c_2 regulate **exploration** (finding new solutions) and **exploitation** (fine-tuning local solution)

07 /0T /17

8

Multi-Objective Optimization

Our problem requires optimizing two objective function at once (efficiency and fake rate)

An adaptation of PSO for multi-objective problems (two or more)

Conflicting Objectives: two or more objectives cannot be optimized simultaneously w/o compromising one or more of the other

There is **no single optimal solution**, but a **set of trade-off solutions**

Maintains a set of solutions (Pareto front) each iteration

Global and local best determined taken from collection of non-dominated solutions

CHEP2024 A Multi-Objective Optimization Tool for Track Reconstruction in CMS

Pareto Front

Set of **non-dominated** solutions in multiobjective optimization

Divides the solution space into a dominated region and an unfeasible region

A dominates B if is equal or better than B in all objectives and strictly better in at least one

Optimization results

Simulated $t\bar{t}$ sample (100 events) with superimposed pileup PU range [~ 15 ; ~ 85] with $< PU > \sim 50$ to mimic early 2023 conditions

The Pareto front (in black) obtained running the optimization with:

- 25 parameters
- total pixel tracks efficiency and fake rate as objective
- 150 iterations (~5 h)
- 200 agents
- $w, c_1, c_2 = 1$

Same efficiency, ~half the fake rate

CMS DP-2024/084

Efficiency

HLT pixel tracking efficiency for the default HLT pixel tracks (blue) and the tuned HLT pixel tracks (red)

Efficiency roughly the same as expected

A Multi-Objective Optimization Tool for Track Reconstruction in CMS CHEP2024

CMS DP-2024/084

ion in CMS

Efficiency (contd.)

HLT pixel tracking efficiency for the default HLT pixel tracks (blue) and the tuned HLT pixel tracks (red)

Efficiency roughly the same as expected

CMS DP-2024/084

A Multi-Objective Optimization Tool for Track Reconstruction in CMS CHEP2024

CMS DP-2024/084

Fake rates

HLT pixel tracking fake rates for the default HLT pixel tracks (blue) and the tuned HLT pixel tracks (red)

~2x Fake Rate reduction, as expected

13

A Multi-Objective Optimization Tool for Track Reconstruction in CMS CHEP2024

CMS DP-2024/084

HLT pixel tracking fake rates for the default HLT pixel tracks (blue) and the tuned HLT pixel tracks (red)

~2x Fake Rate reduction, as expected

Oscillating behaviour due to pixel modules

Full HLT Tracks

Pixel tracks used as seed for Full tracks (pixel+strip)

Full track quality selection applied:

Larger reduction of fake rate on seeds leads to smaller reduction of fake rate on full tracks

Fake Rate

Results

- **Tuned** results have **compatible efficiency** WRT **default**
- Fake rate is reduced by 50% for pixel tracks.
- Almost identical performance for Full Tracks
- Preliminary timing measurement on >10000 events 8 concurrent jobs, 32 threads 24 streams
 2 x AMD EPYC 7763 "Milan" CPUs
 256 GB of system memory
 2 x NVIDIA T4 GPUs
 - Sample late 2023 Run $< PU > \cong 61.5$

Speedup of ~9.5% for pixel track reconstruction Speedup of ~5.5% for the full HLT online reconstruction

CHEP2024 A Multi-Objective Optimization Tool for Track Reconstruction in CMS

Other use-cases

- Tested for mkFit (<u>CMS-DP-2022-018</u>) scoring and filtering on Run3 results. Plan to use for Phase 2
- Initial work on Line Segment Tracking (<u>CMS-DP-2024-014</u>) reconstruction optimization. Preliminary results shown at 16th Patatrack Hackathon.
- Application of MOPSO to TICL (<u>Talk</u> on Tuesday by W. Redjeb) in HGCAL. To be extended with the reconstruction in the Barrel region.
- Testing Pixeltrack on TrackML (different detector geometry) with promising results
- Testing Reinforcement Learning algorithm to learn when to avoid "useless" evaluation of the objective functions

MOPSO allows parameters tuning in short amount of time

Preliminary results for HLT pixel tracking are compatible with validation

Optimization result in a **~continuous set of solutions**

Same optimizer can be used for different use cases

Conclusion

Optimization can be used to adapt algorithms to new problems without rewriting them

If interested <u>contact me</u> or the <u>CMS Patatrack team</u>

https://github.com/cms-patatrack/The-Optimizer

Thank you

19

Detector conditions

The detector conditions are simulated to include an issue affecting the Barrel Pixel Layers 3 and 4 (BPix3 and BPix4) since TS1 in 2023

27 modulesin BPix3 and BPix4 became inoperable due to a problem distributing the LHC clock to the modules

These modules have been turned off since this incident

To better cope with this issue an additional pixel doublets recovery iteration has been added to the HLT tracking sequence

CMS DP-2024/084

Default vs Tuned

	default	tuned	Relative change
CAThetaCutBarrel	0.002	0.001180	-41%
CAThetaCutForward	0.003	0.001997	-33%
hardCurvCut	0.0328407225	0.0302418577150	-8%
dcaCutInnerTriplet	0.15	0.599431310369406556	+300%
dcaCutOuterTriplet	0.25	0.373806768941585710	+50%
cellZ0Cut	12.0	8.846	-26%
phiCuts	[522, 730, 730, 522, 626, 626, 522, 522, 626, 626, 626, 522, 522, 522, 522, 522, 522, 522, 522,	[661, 598, 595, 718, 707, 858, 656, 832, 677, 411, 650, 767, 703, 682, 637, 601, 675, 745, 797]	[+27%, -18%, -18%, +38%, +13%, +37%, +26%, +59%, +8%, -34%, +4%, +47%, +35%, +31%, +22%, +15%, +29%, +43%, +53%]