
Evolution of the ATLAS event data model for the HL-LHC

Scott Snyder
S. Swatman, A. Kraszahorkay, P. Gessinger

On behalf of the ATLAS Computing Activity

Brookhaven National Laboratory, Upton, NY, USA

Oct 21, 2024
CHEP 2024

Scott Snyder (BNL) Evolution of the ATLAS event data model for the HL-LHC Oct 21, 2024 1 / 17

Motivation

Run 4 of the LHC (HL-LHC) will be
starting in several years.

Will record data at a rate 7–10× more
than at present.
Would require an increase in
computing resources significantly more
than is expected.

Need aggressive software R&D to reduce
resource requirements.

2020 2022 2024 2026 2028 2030 2032 2034 2036

Year

0

10

20

30

40

50

ye
ar

s]
⋅

A
nn

ua
l C

P
U

 C
on

su
m

pt
io

n
 [M

H
S

06

=55)µRun 3 (=88-140)µRun 4 (=165-200)µRun 5 (

2022 Computing Model - CPU

Conservative R&D
Aggressive R&D
Sustained budget model
(+10% +20% capacity/year)

ATLAS Preliminary

[CERN-LGCC-2022-005]

Will discuss some recent developments to the ATLAS EDM motivated by reducing resource
requirements and/or by making it easier to share data with accelerators like GPUs.

Scott Snyder (BNL) Evolution of the ATLAS event data model for the HL-LHC Oct 21, 2024 2 / 17

https://cds.cern.ch/record/2802918

xAOD event data model
Analysis-level event data model (“xAOD”) uses a structure-of-array organization.

DataVector<T> holds pointers to objects. Acts like std::vector<T*>.
Attach data of arbitrary type to elements of DataVector.
Data stored as vectors, in separate “auxiliary store” object accessed via abstract interface.

Almost all analysis object data stored as auxiliary data rather than in T instances.
DataVector<Foo>

AuxElement 0

Foo

Foo

AuxElement 1

vector<int>
 "anInt"

vector<float>
 "aFloat"

IAuxStore

cache

Scott Snyder (BNL) Evolution of the ATLAS event data model for the HL-LHC Oct 21, 2024 3 / 17

I/O interaction
Most xAOD data kept in a ‘static’ store object.

Has a bunch of std::vector members.
Given to ROOT to save.

Static store can reference an additional ‘dynamic’ store.
Contains extra variables.
Storage managed dynamically, but also as std::vector instances.
I/O system treats each dynamic variable individually.

"extra"

...

TBranches

DataVector<Electron> IAuxStore IAuxStore

"pt" "eta"
...

ElectronAuxContainer AuxStoreInternal

Eles ElesAux.
ElesAuxDyn.
 extra

Scott Snyder (BNL) Evolution of the ATLAS event data model for the HL-LHC Oct 21, 2024 4 / 17

Accessor
xAOD variables usually accessed via an Accessor object.
Caches name lookup and type checks.

static const SG::Accessor<float> fvarAcc ("fvar");
DataVector<MyContainer> cont = ...;
MyClass& elt = *cont[0];

float f1 = fvarAcc (elt); // Read/write the variable for one element.
fvarAcc (elt) = calcFVar();

// Can also get the variable directly from the container.
float f2 = fvarAcc (cont, 0);

// Iterate over the variable for all container elements.
for (float f : fvarAcc.getDataSpan (cont)) { ... }

Scott Snyder (BNL) Evolution of the ATLAS event data model for the HL-LHC Oct 21, 2024 5 / 17

Nested (jagged) vectors
Sometimes we want to store a vector of values for each element in a container.

Where the number of entries may vary from element to element (jagged).
Usually stored as std::vector<T>.
So the variable will be held in a std::vector<std::vector<T> >.

But this is inefficient.
Multiple scattered memory allocations; three extra pointers per element.
More difficult to share with coprocessors like GPUs.

Can often do better by flattening the data to a single vector.
With a separate vector giving indices.
For example, {{3, 1, 2}, {4}, {6, 5}} might be stored as:
Payload: {3, 1, 2, 4, 6, 5}
Indices: {3, 4, 6} (End index of each inner vector.)

Scott Snyder (BNL) Evolution of the ATLAS event data model for the HL-LHC Oct 21, 2024 6 / 17

xAOD representation and linked variables
A jagged vector is represented by two xAOD variables.

std::vector<SG::JaggedVecElt<float> > fvec; // Contains single 32-bit index
std::vector<float> fvec_linked; // Vector payload data

First variable holds the end indices. It always has the same length as the container, like
ordinary xAOD variables.
Second variable holds the payload data, and is called a “linked” variable.
Unlike ordinary xAOD variables, its length is independent from that of the container. It is
associated with an ordinary xAOD variable, and is not referenced directly by user code.

Implies that a JaggedVecElt cannot be interpreted on its own, but only as part of an array.

Macro AUXVAR_JAGGEDVEC_DECL provided to properly declare the two members needed for a
static xAOD jagged vector.

Scott Snyder (BNL) Evolution of the ATLAS event data model for the HL-LHC Oct 21, 2024 7 / 17

Using jagged vectors
Accessor classes are specialized for JaggedVecElt.
Act like a std::vector. Can convert to/from a vector, and common vector operations (both
const/non-const) are supported.

static const SG::Accessor<SG::JaggedVecElt<float> > fvec("fvec");
DataVector<MyContainer> cont = ...;
MyClass& elt = *cont[0];

fvec(elt) = std::vector<float> {1.5, 2.5, 3.5};
assert (fvec(elt).size() == 3);
assert (fvec(elt)[1] == 2.5);
std::vector<float> v = fvec(elt);
fvec(elt).push_back(4.5);
for (float f : fvec(elt)) ...

Scott Snyder (BNL) Evolution of the ATLAS event data model for the HL-LHC Oct 21, 2024 8 / 17

Using jagged vectors (ranges)
Can also deal with a range over all the nested vectors in a container.
Acts like a std::vector<std::vector<T> >.

static const SG::Accessor<SG::JaggedVecElt<float> > fvec("fvec");
DataVector<MyContainer> cont = ...;

auto r = fvec.getDataSpan (cont);
std::cout << r[1].size() << " " << r[1][0];
r[2].push_back (4.5);
for (auto v : r) {

for (float& f : v) {
std::cout << " " << f;
f += 1;

}
}

Scott Snyder (BNL) Evolution of the ATLAS event data model for the HL-LHC Oct 21, 2024 9 / 17

Packed links
ATLAS EDM has two ways of storing persistent references between containers in the
event store.

DataLink<CONT> references a container of type CONT.
ElementLink<CONT> references an element of a container of type CONT.

The transient representation of ElementLink takes four words.
For some HL-LHC tracking applications, this can take a significant amount of memory.

Can this memory footprint be reduced?
Store a list of unique DataLinks to the containers involved along with a list of (container,
element) index pairs.

(Similar to the pre-xAOD ElementLinkVector class.)

Scott Snyder (BNL) Evolution of the ATLAS event data model for the HL-LHC Oct 21, 2024 10 / 17

Packed link variables
A packed link is again represented by two xAOD variables.

// Each PackedLink holds an 8-bit index into plinks_linked and a
// 24-bit element index.
std::vector<SG::PackedLink<CONT> > plinks;

// Links for each unique container referenced.
std::vector<DataLink<CONT> > plinks_linked;

The list of DataLinks is again a linked variable.
The first entry in plinks_linked is a null link, so a null element link can be consistently
represented as a PackedLink containing all 0’s.

Again, macros are provided for declaring static PackedLink members.

Scott Snyder (BNL) Evolution of the ATLAS event data model for the HL-LHC Oct 21, 2024 11 / 17

Using packed links
Accessor classes are specialized for PackedLink and vector<PackedLink>.
Acts like a (vector of) ElementLink.

static const SG::Accessor<SG::PackedLink<Cont> > plink("plink");
static const SG::Accessor<std::vector<SG::PackedLink<Cont> > > pvec("pvec");
DataVector<Cont> cont = ...;
MyClass& elt = ...;

plink(elt) = ElementLink<Cont> (cont, 1);
plinkvec(elt).push_back (ElementLink<Cont> (cont, 2));
assert (plink(elt).index() == 1);
assert (plinkvec(elt).size() == 1);
assert (plinkvec(elt)[0].index() == 2);
for (ElementLink<MyContainer> el : plinkvec(elt)) ...

Range-based access works as well.
Scott Snyder (BNL) Evolution of the ATLAS event data model for the HL-LHC Oct 21, 2024 12 / 17

Flexible memory allocation
Can change the allocator used for the std::vector holding variables.
In particular, std::pmr::polymorphic_allocator can be used instead of std::allocator.

// Auxiliary store class.
class MyClassAuxContainer_v1 : public xAOD::AuxContainerBase {

using xAOD::AuxContainerBase::xAOD::AuxContainerBase;
// Define an auxilary variable of type int using a polymorphic_allocator.
AUXVAR_DECL (int, anInt, std::pmr::polymorphic_allocator);
// This will declare a member
// std::vector<int, std::polymorphic_allocator<int> > anInt;
// and also set up the needed registration.

};
// Making an instance.
std::pmr::memory_resource* res = ...;
auto auxstore = std::make_unique<MyClassAuxContainer_v1> (res);

Scott Snyder (BNL) Evolution of the ATLAS event data model for the HL-LHC Oct 21, 2024 13 / 17

Further comments

I/O for the new features mentioned here is fully functional for TTree.
Changing allocator on a container is both backwards and forwards compatible.

Testing with RNtuple in progress.
Not supported:

Schema evolution of dynamic variables.
Non-default allocators.

Some of these features were only fully available very recently.
So no performance information as of yet.

Scott Snyder (BNL) Evolution of the ATLAS event data model for the HL-LHC Oct 21, 2024 14 / 17

Vecmem [J. Phys.: Conf. Ser. 2438 012050]

Library for managing memory in heterogeneous systems.
Part of ATLAS/ACTS R&D on parallelization.
Provides C++17 memory resources to manage device memory for CUDA, SYCL, and HIP.
Plus STL-like containers to use in device code as well as support for types with
structure-of-arrays organization.

Allows collaboration between host xAOD-based code and device non-xAOD code.
Possible extra copy on host not significant compared to moving data between host and
device.
Could also take advantage of xAOD allocator support to use Vecmem to directly manage
xAOD memory on the host in such a way that it is shared with accelerators.

Scott Snyder (BNL) Evolution of the ATLAS event data model for the HL-LHC Oct 21, 2024 15 / 17

http://doi.org/10.1088/1742-6596/2438/1/012050

Summary

Several new features added to the ATLAS EDM
Jagged vectors: storing nested vector xAOD variables using a flattened (jagged)
representation.
Packed links: Compact in-memory storage for vectors of links between objects in the
event store.
Arbitrary allocators: Allows managing the allocation of xAOD data via the C++17
memory_resource interface.

Full integration in Athena ongoing.
Including Python-based columnar analysis.

Vecmem library provides efficient interoperation between host and GPU code.

Scott Snyder (BNL) Evolution of the ATLAS event data model for the HL-LHC Oct 21, 2024 16 / 17

IAuxStore
A key feature is the ability to change the auxiliary store implementation through the abstract
interface. Some types used:
Each xAOD type has a static auxiliary store chained to a dynamic store.
In trigger: implementation specialized for storage in raw data stream.
On input: implementation allowing on-demand reading of items.
“Shallow copy” store: records writes, forwards reads for unknown items to another store.

ShallowAuxContainer

AuxStoreInternal

DataVector<T>

shallow copy

DataVector<T>

original

parent

internal

"eta"

"pt" "eta"

...

TAuxContainer

"extra"
Overrides

 original

 item

Adds new

 item

Scott Snyder (BNL) Evolution of the ATLAS event data model for the HL-LHC Oct 21, 2024 17 / 17

