
CHEP 2024, October 19th-25th

Extending ALICE's GPU tracking capabilities
Towards a comprehensive accelerated barrel reconstruction

Matteo Concas, for the ALICE collaboration

mailto:matteo.concas@cern.ch

Matteo Concas, for the ALICE collaboration - CHEP 2024

ALICE reconstruction in Run 3

๏ Trigger-less acquisition: continuous readout
• The stream of data is split into O(ms) timeframes.
• Lint >10 nb-1 of Pb-Pb data at 50kHz: 50x more than Run 2.

๏ Reconstruction is two-stepped
• Synchronous phase (beam circulating): for calibration and data compression.
• Asynchronous phase (no beam): full processing and production of the AODs.

2

~2 ms o
f TPC tra

cks
in PbPb @50 kH

z

Matteo Concas, for the ALICE collaboration - CHEP 2024

ITS reconstruction in Run 3

๏ A new upgraded Inner Tracking System
• Provides spatial information in the form of clusters of fired pixels.

๏ Continuous readout: continuous track reconstruction
• The atomic time unit is the ITS Readout Frame (ROF): ~4µs.

๏ Standalone vertex seeding and tracking algorithm
• During the asynchronous phase is sensitive to secondaries and tracks lower pT.
• Extensions and adjustments still happen to address, e.g. resource footprint.

3

Timeframe
ROF 0 ROF 1 ROF ... ROF N

- clusters
- vertices
- tracklets
- cells
- roads
- tracks

- clusters
- vertices
- tracklets
- cells
- roads
- tracks

...

- clusters
- vertices
- tracklets
- cells
- roads
- tracks

ITS tracking

Various intermediate data formats of the ITS tracking.
Finally we would like to load clusters on the GPU ad download only the tracks

Matteo Concas, for the ALICE collaboration - CHEP 2024

The optimistic scenario

๏ ALICE uses GPUs in production to accelerate the processing
• During the synchronous TPC processing, the GPU occupancy goes beyond 99%.

๏ In the asynchronous phase, the fraction of available GPU increases
• Running additional reconstruction steps on GPU would optimise the resource usage.

๏ ALICE is working towards having full-barrel tracking on GPU[1]

4

Processing step % of time
TPC Processing 52.39 %
ITS Tracking 12.65 %
Secondary Vertexing 8.97 %
MCH 5.28 %
TRD Tracking 4.39 %
TOF Matching 2.85 %
ITS TPC Matching 2.64 %
Entropy Decoding 2.63 %
AOD Production 1.72 %
Quality Control 1.64 %
Rest 4.84 %

Asynchronous processing of Pb-Pb @ 47kHz:
Relative percentages change with different interaction rate

[1] Improvements of the GPU Processing Framework for ALICE (D. Rohr)

https://indi.to/ckkTw

Matteo Concas, for the ALICE collaboration - CHEP 2024

Integrate GPU usage for the ITS in O2

๏ GPU reconstruction workflow steers any GPU-related task.

๏ Framework[1] for a centralised management of the GPUs
• Dynamically load the required libraries as additional plug-in components.
• It abstracts access to the GPU resources and singletons.

๏ There is flexibility in designing the porting of more components
• ITS GPU tracking is a standalone library pluggable into the primary GPU framework!

5

ITS tracking workflow
GPU reconstruction instance

Reco Chains

ITS reco chain

Reco chain ...

ITS CPU library

ITS CUDA library

ITS HIP library...

Available if GPU autodetection

[...]
ITSVertexer* = GPUChain.getITSTraits(GPU/CPU);
ITSTracker* = GPUChain.getITSTraits(GPU/CPU);
ITSVertexer->doVertexing(); // unique entrypoint
ITSTracker->doTracking(); // unique entrypoint
[...]

Sketch of the integration of the ITS GPU libraries
as plugins for the framework

Matteo Concas, for the ALICE collaboration - CHEP 2024

ITS tracking on GPU

๏ Hybrid implementation
• Choice of which step to run on CPU or GPU to facilitate the debugging.

๏ Currently migrating from a standalone implementation 🚧
• Previously: manual memory allocation and independent access to GPU.
• Now: integrating steps within the GPU main framework

๏ Track fitting is now ported and fully operational
• Propagation utility, the critical component, is provided by the central framework.

๏ Support for AMD and Nvidia
• Plain CUDA codebase, automatically translated to HIP at compile time.

6

Tracker

Tracklet Finder ✅ standalone

Tracklet duplicate finder ✅ standalone

Cell finder ✅ standalone

Cell neighbour finder ✅ (*) standalone

Track fitting ✅ (*) integrated

Vertexer

Tracklet Finder ✅ standalone

Tracklet Selection ✅ standalone

Vertex Fitter ✅ standalone

Teardown of the ITS tracking reconstruction steps.
In light blue are the standalone routines.

In yellow are the Framework-compatible ones.

(*) Recent improvements and refactoring of the CPU algorithm footprint broke the hybrid compatibility.
GPU code is being updated accordingly.

Matteo Concas, for the ALICE collaboration - CHEP 2024

Cornerstones of the GPU pattern recognition

๏ Cellular Automaton: provides track candidates to the fitting
• Highest memory usage: due to the combinatorial nature of the algorithm.

๏ Total available memory is partitioned into chunks
• Timeframes are fractioned and processed in chunks.

๏ Multi-stream processing of bunches of ROFs
• Each tracking instance is almost independent of the others (shared borders).
• I/O operations on one stream are hidden behind kernel executions.

๏ Finalised already[2], it is being integrated with the framework

7

GPU DRAM memory
total

usable dedicated

chunk 1 chunk 2 chunk 3

Host registered memory

Layer 0: clusters

Layer 1: clusters

...

Layer N: clusters

...

views views views

Threads:
- I/O
- Kernels

stream
 1

stream
 3

stream
 2

Memory partition in the multi-streamed ITS pattern recognition part

[2] CHEP 2023 reminder

https://indico.jlab.org/event/459/contributions/11383/

Matteo Concas, for the ALICE collaboration - CHEP 2024

Comparing results with deterministic mode

๏ Results discrepancy in CPU vs GPU typically expected
• Due to inherently different computing architectures.
• Usually accepted and added to the systematics.

๏ A deterministic mode is available for O2

• It just requires a re-compilation.

๏ Ensures perfect consistency of the output
• It kills the performance, and it is to be used for checks.
• A potent debugging tool: spotted several bugs and hiccups.

8Comparison of pT distribution of raw reconstructed tracks using ITS CPU and GPU with CUDA and HIP

Matteo Concas, for the ALICE collaboration - CHEP 2024

ITS track fitting on GPU

๏ A timeframe of data is processed at once
• In Pb-Pb, the number of fits is up to ~300K/TF.
• At the highest Pb-Pb rate, memory is up to 500 MB.

๏ ITS tracking runs with up to 20 threads
• GPU has a broader computing scaling for the ITS fitting.

๏ Is this useful already for Run 3?
• Having just the ITS fitting on GPU would help.

9

Time comparison for ITS track fitting per timeframe on CPU using 20 threads and GPU as a
function of the average hadronic interaction rate.

Matteo Concas, for the ALICE collaboration - CHEP 2024

In the optimistic scenario

๏ Track fitting was the most impactful step to the CPU time

๏ Refactoring increased the relevance of pre-selection part
• To reduce the memory footprint and cope with Grid job constraints.
• Pre-selections are inherently parallel and use fits!

๏ Porting the pre-selections on GPU: ~50% of the total time
• Moving it to GPU would improve our resource efficiency.

10

Showcase of the elapsed wall time for one thread CPU (purple) vs GPU(light blue).

Timeframe index

C
PU

 ti
m

e
(s

)

Matteo Concas, for the ALICE collaboration - CHEP 2024

Secondary vertexing on GPU

๏ DCAfitter: a well-established tool used across O2 code
• Associate tracks using relative DCAs with different minimisation options.

๏ C++ class successfully ported and usable on GPU
• Dependency from ROOT SMatrix: A minimal copy of it ported to O2.
• It is not yet possible to use deterministic mode for the validation.

๏ Currently a proof of concept, but promising results already
• Speedup will be measured on actual use cases.
• A first toy demonstrator has been used in a physics analysis as a p.o.c.

11

0 10 20 30 40 50 60 70 80 90 100

10

210

310

410

510

610

chi2.chi2 distribution2χComparison of the DCAFitter

10

210

310

410

510

610

co
un

ts

0 10 20 30 40 50 60 70 80 90 100
2χ

0.5
1

1.5
2

2.5
3

3.5

 distribution2χComparison of the DCAFitter

10

210

310

410

510

610

co
un

ts

0 10 20 30 40 50 60 70 80 90 100
2χ

0.51
1.52
2.53
3.54
4.5

 distribution2χComparison of the DCAFitter

GPU
CPU
GPU
CPU
GPU
CPU
GPU
CPU
GPU
CPU
GPU
CPU
GPU
CPU

10

210

310

410

510

610

co
un

ts

0 10 20 30 40 50 60 70 80 90 100
2χ

0.5
1

1.5
2

2.5
3ra

tio

Comparison of the χ2 distribution on a synthetic test of 1M fits.
Results are promising but need to be better understood.

Matteo Concas, for the ALICE collaboration - CHEP 2024

Conclusions and outlook

๏ ALICE is pursuing the optimistic scenario for GPU processing
• The target is to have the full barrel tracking running on GPUs.

๏ ITS has a GPU implementation for all of the components of the tracker
• ITS Track fitting is the most promising and already integrated: we aim to move it to the GPU.
• A good check is to target the asynchronous reconstruction of PbPb 2024 with GPU track fitting.

๏ DCA fitter has been successfully ported on the GPU
• It is spread across many O2 use cases, including the secondary vertex reconstruction.
• Its adoption in some combinatorics-dominated physics analyses would be a nice by-product.

12

Backup

Matteo Concas, for the ALICE collaboration - CHEP 2024

ALICE data processing for Run 3

๏ Online reconstruction and calibration for data compression
• Synchronous: TPC full reconstruction and calibration.
• Asynchronous: all compressed data are reconstructed.
• Single computing framework for online-offline computing: O2.

๏ Operate part of the reconstruction on GPUs is mandatory
• Minimise the cost/performance ratio for online farm
• 250x Event Processing Nodes (EPNs), 8x AMD MI50 GPUs

๏ Efficient utilisation of available computing resources is desired
• A larger fraction of GPUs available during the asynchronous phase

14

> 900 GB/s

Permanent storage

Readout nodes

> 3.5 TB/s

Detector Data links

Asynchronous processing
(during no-beam periods)

Disk buffer 120PB

Synchronous processing
(during data taking)

EP
N

 fa
rm

T0
/T

1
FL

P
AL

IC
E

Co
m

pr
es

se
d

ra
w

 d
at

a
(C

TF
)

Ra
w

 d
at

a
(T

F)
AO

Ds

~130 GB/s

Matteo Concas, for the ALICE collaboration - CHEP 2024

ITS vertexing and tracking

๏ Primary vertex seeding
• Combinatorial matching followed by linear extrapolations of tracklets.
• Unsupervised clustering to find the collision point(s).

๏ Track finding and track fitting
• It uses vertex position to reduce the combinatorics in matching the hits.
• Connect segments of tracks, the cells, into a tree of candidates: roads.
• Kalman filter to fit tracks from candidates.

๏ The algorithm is decomposable into multiple parallelisable steps
• Each ROF can be processed independently(*).
• In-frame combinatorics can be processed simultaneously.

15

(*) Information from adjacent ROFs can be used to recover from information splitting

charged particle leaves hits

cell

tracklet

roads

clusters

vertex

Matteo Concas, for the ALICE collaboration - CHEP 2024

Heterogeneous-Compute Interface for Portability
๏ Support GPUs from two main vendors:

• CUDA language and runtime for Nvidia
• HIP language and ROCm runtime for AMD

๏ HIP: a C++ Runtime API and Kernel language
• Portable AMD and NVIDIA applications from single source code
• It is shaped around CUDA APIs to ease translation
• CUDA libraries, like Thrust and CUB, have their HIP versions using ROCm

๏ ROCm has tools to translate CUDA to HIP automatically
• hipify-clang: based on Clang, actual code translation
• hipify-perl: script for line-by-line code conversion

๏ Strategy: maintain only the CUDA code and generate HIP

16

Matteo Concas, for the ALICE collaboration - CHEP 2024

Cross-platform on-the-fly code generation

๏ The O2 compilation via CMake, provides
• Platform autodetection and production of corresponding target libraries
• Custom commands setting dependencies between targets

๏ HIP code is generated in place from CUDA sources
• Build source of targets parsing CUDA files and generating HIP versions
• Currently based on hipify-perl: is run on all .cu files to produce HIP

๏ Headers files are shared across both the compilations
• Negligible boilerplate (<0.1% LoCs) to cope with some architectural differences

17

// CUDA code
cudaMalloc(&A_d, Nbytes);
cudaMalloc(&C_d, Nbytes);
cudaMemcpy(A_d, A_h, Nbytes, cudaMemcpyHostToDevice);

vector_square <<<512, 256>>> (C_d, A_d, N);
cudaMemcpy(C_h, C_d, Nbytes, cudaMemcpyDeviceToHost);

// HIP code, translated
hipMalloc(&A_d, Nbytes);
hipMalloc(&C_d, Nbytes);
hipMemcpy(A_d, A_h, Nbytes, hipMemcpyHostToDevice);

hipLaunchKernelGGL(vector_square, 512, 256, 0, 0, C_d, A_d, N);
hipMemcpy(C_h, C_d, Nbytes, hipMemcpyDeviceToHost);

Matteo Concas, for the ALICE collaboration - CHEP 2024

Scaling of the ITS fitting
๏ Showcase of the scaling of the computing time for the track fitting

18

Time comparison for ITS track fitting per timeframe on CPU using 20 threads and GPU as a function of the number of seeding vertices (left) and validated track multiplicity (right).

