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ALICE reconstruction in Run 3

๏ Trigger-less acquisition: continuous readout 
• The stream of data is split into O(ms) timeframes. 
• Lint >10 nb-1 of Pb-Pb data at 50kHz: 50x more than Run 2. 

๏ Reconstruction is two-stepped 
• Synchronous phase (beam circulating): for calibration and data compression. 
• Asynchronous phase (no beam): full processing and production of the AODs.
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ITS reconstruction in Run 3

๏ A new upgraded Inner Tracking System 
• Provides spatial information in the form of clusters of fired pixels. 

๏ Continuous readout: continuous track reconstruction 
• The atomic time unit is the ITS Readout Frame (ROF): ~4µs. 

๏ Standalone vertex seeding and tracking algorithm 
• During the asynchronous phase is sensitive to secondaries and tracks lower pT. 
• Extensions and adjustments still happen to address, e.g. resource footprint.
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ITS tracking

Various intermediate data formats of the ITS tracking. 
Finally we would like to load clusters on the GPU ad download only the tracks
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The optimistic scenario

๏ ALICE uses GPUs in production to accelerate the processing 
• During the synchronous TPC processing, the GPU occupancy goes beyond 99%.  

๏ In the asynchronous phase, the fraction of available GPU increases 
• Running additional reconstruction steps on GPU would optimise the resource usage. 

๏ ALICE is working towards having full-barrel tracking on GPU[1]
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Processing step % of time
TPC Processing 52.39 %
ITS Tracking 12.65 %
Secondary Vertexing 8.97 %
MCH 5.28 %
TRD Tracking 4.39 %
TOF Matching 2.85 %
ITS TPC Matching 2.64 %
Entropy Decoding 2.63 %
AOD Production 1.72 %
Quality Control 1.64 %
Rest 4.84 %

Asynchronous processing of Pb-Pb @ 47kHz:  
Relative percentages change with different interaction rate

[1] Improvements of the GPU Processing Framework for ALICE (D. Rohr)

https://indi.to/ckkTw
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Integrate GPU usage for the ITS in O2

๏ GPU reconstruction workflow steers any GPU-related task. 

๏ Framework[1] for a centralised management of the GPUs 
• Dynamically load the required libraries as additional plug-in components. 
• It abstracts access to the GPU resources and singletons. 

๏ There is flexibility in designing the porting of more components 
• ITS GPU tracking is a standalone library pluggable into the primary GPU framework!
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ITS tracking workflow
GPU reconstruction instance

Reco Chains

ITS reco chain

Reco chain ...

ITS CPU library

ITS CUDA library

ITS HIP library...

Available if GPU autodetection

[...] 
ITSVertexer* = GPUChain.getITSTraits(GPU/CPU); 
ITSTracker* = GPUChain.getITSTraits(GPU/CPU); 
ITSVertexer->doVertexing(); // unique entrypoint 
ITSTracker->doTracking();   // unique entrypoint 
[...]

Sketch of the integration of the ITS GPU libraries 
as plugins for the framework
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ITS tracking on GPU

๏ Hybrid implementation 
• Choice of which step to run on CPU or GPU to facilitate the debugging. 

๏ Currently migrating from a standalone implementation 🚧 
• Previously: manual memory allocation and independent access to GPU. 
• Now: integrating steps within the GPU main framework  

๏ Track fitting is now ported and fully operational 
• Propagation utility, the critical component, is provided by the central framework. 

๏ Support for AMD and Nvidia 
• Plain CUDA codebase, automatically translated to HIP at compile time.
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Tracker

Tracklet Finder ✅ standalone

Tracklet duplicate finder ✅ standalone

Cell finder ✅ standalone

Cell neighbour finder ✅ (*) standalone

Track fitting ✅ (*) integrated

Vertexer

Tracklet Finder ✅ standalone

Tracklet Selection ✅ standalone

Vertex Fitter ✅ standalone

Teardown of the ITS tracking reconstruction steps. 
In light blue are the standalone routines. 

In yellow are the Framework-compatible ones.

(*) Recent improvements and refactoring of the CPU algorithm footprint broke the hybrid compatibility. 
GPU code is being updated accordingly.
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Cornerstones of the GPU pattern recognition 

๏ Cellular Automaton: provides track candidates to the fitting 
• Highest memory usage: due to the combinatorial nature of the algorithm. 

๏ Total available memory is partitioned into chunks 
• Timeframes are fractioned and processed in chunks. 

๏ Multi-stream processing of bunches of ROFs 
• Each tracking instance is almost independent of the others (shared borders). 
• I/O operations on one stream are hidden behind kernel executions. 

๏ Finalised already[2], it is being integrated with the framework
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GPU DRAM memory
total

usable dedicated

chunk 1 chunk 2 chunk 3

Host registered memory

Layer 0: clusters

Layer 1: clusters

... 

Layer N: clusters

...

views views views

Threads: 
- I/O 
- Kernels

stream
 1

stream
 3

stream
 2

Memory partition in the multi-streamed ITS pattern recognition part

[2] CHEP 2023 reminder

https://indico.jlab.org/event/459/contributions/11383/
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Comparing results with deterministic mode

๏ Results discrepancy in CPU vs GPU typically expected 
• Due to inherently different computing architectures. 
• Usually accepted and added to the systematics. 

๏ A deterministic mode is available for O2 

• It just requires a re-compilation. 

๏ Ensures perfect consistency of the output 
• It kills the performance, and it is to be used for checks. 
• A potent debugging tool: spotted several bugs and hiccups.

8Comparison of pT distribution of raw reconstructed tracks using ITS CPU and GPU with CUDA and HIP
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ITS track fitting on GPU

๏ A timeframe of data is processed at once 
• In Pb-Pb, the number of fits is up to ~300K/TF. 
• At the highest Pb-Pb rate, memory is up to 500 MB. 

๏ ITS tracking runs with up to 20 threads 
• GPU has a broader computing scaling for the ITS fitting. 

๏ Is this useful already for Run 3? 
• Having just the ITS fitting on GPU would help.
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Time comparison for ITS track fitting per timeframe on CPU using 20 threads and GPU as a 
function of the average hadronic interaction rate.
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In the optimistic scenario

๏ Track fitting was the most impactful step to the CPU time 

๏ Refactoring increased the relevance of pre-selection part 
• To reduce the memory footprint and cope with Grid job constraints. 
• Pre-selections are inherently parallel and use fits! 

๏ Porting the pre-selections on GPU: ~50% of the total time 
• Moving it to GPU would improve our resource efficiency.
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Showcase of the elapsed wall time for one thread CPU (purple) vs GPU(light blue).
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Secondary vertexing on GPU

๏ DCAfitter: a well-established tool used across O2 code 
• Associate tracks using relative DCAs with different minimisation options. 

๏ C++ class successfully ported and usable on GPU 
• Dependency from ROOT SMatrix: A minimal copy of it ported to O2. 
• It is not yet possible to use deterministic mode for the validation. 

๏ Currently a proof of concept, but promising results already 
• Speedup will be measured on actual use cases. 
• A first toy demonstrator has been used in a physics analysis as a p.o.c.
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Comparison of the χ2 distribution on a synthetic test of 1M fits. 
Results are promising but need to be better understood.   
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Conclusions and outlook

๏ ALICE is pursuing the optimistic scenario for GPU processing 
• The target is to have the full barrel tracking running on GPUs. 

๏ ITS has a GPU implementation for all of the components of the tracker 
• ITS Track fitting is the most promising and already integrated: we aim to move it to the GPU. 
• A good check is to target the asynchronous reconstruction of PbPb 2024 with GPU track fitting. 

๏ DCA fitter has been successfully ported on the GPU 
• It is spread across many O2 use cases, including the secondary vertex reconstruction. 
• Its adoption in some combinatorics-dominated physics analyses would be a nice by-product.
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ALICE data processing for Run 3

๏ Online reconstruction and calibration for data compression 
• Synchronous: TPC full reconstruction and calibration. 
• Asynchronous: all compressed data are reconstructed. 
• Single computing framework for online-offline computing: O2. 

๏ Operate part of the reconstruction on GPUs is mandatory 
• Minimise the cost/performance ratio for online farm 
• 250x Event Processing Nodes (EPNs), 8x AMD MI50 GPUs 

๏ Efficient utilisation of available computing resources is desired 
• A larger fraction of GPUs available during the asynchronous phase  
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> 900 GB/s
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Detector Data links

Asynchronous processing 
(during no-beam periods)

Disk buffer 120PB

Synchronous processing 
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ITS vertexing and tracking 

๏ Primary vertex seeding 
• Combinatorial matching followed by linear extrapolations of tracklets. 
• Unsupervised clustering to find the collision point(s). 

๏ Track finding and track fitting 
• It uses vertex position to reduce the combinatorics in matching the hits. 
• Connect segments of tracks, the cells, into a tree of candidates: roads. 
• Kalman filter to fit tracks from candidates. 

๏ The algorithm is decomposable into multiple parallelisable steps 
• Each ROF can be processed independently(*). 
• In-frame combinatorics can be processed simultaneously.
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(*)  Information from adjacent ROFs can be used to recover from information splitting

charged particle leaves hits

cell

tracklet

roads

clusters

vertex
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Heterogeneous-Compute Interface for Portability
๏ Support GPUs from two main vendors: 

• CUDA language and runtime for Nvidia 
• HIP language and ROCm runtime for AMD  

๏ HIP: a C++ Runtime API and Kernel language  
• Portable AMD and NVIDIA applications from single source code 
• It is shaped around CUDA APIs to ease translation 
• CUDA libraries, like Thrust and CUB, have their HIP versions using ROCm 

๏ ROCm has tools to translate CUDA to HIP automatically 
• hipify-clang: based on Clang, actual code translation  
• hipify-perl: script for line-by-line code conversion 

๏ Strategy: maintain only the CUDA code and generate HIP

16
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Cross-platform on-the-fly code generation

๏ The O2 compilation via CMake, provides 
• Platform autodetection and production of corresponding target libraries 
• Custom commands setting dependencies between targets 

๏ HIP code is generated in place from CUDA sources 
• Build source of targets parsing CUDA files and generating HIP versions 
• Currently based on hipify-perl: is run on all .cu files to produce HIP 

๏ Headers files are shared across both the compilations  
• Negligible boilerplate (<0.1% LoCs) to cope with some architectural differences
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// CUDA code
cudaMalloc(&A_d, Nbytes);
cudaMalloc(&C_d, Nbytes);
cudaMemcpy(A_d, A_h, Nbytes, cudaMemcpyHostToDevice);

vector_square <<<512, 256>>> (C_d, A_d, N);
cudaMemcpy(C_h, C_d, Nbytes, cudaMemcpyDeviceToHost);

// HIP code, translated
hipMalloc(&A_d, Nbytes);
hipMalloc(&C_d, Nbytes);
hipMemcpy(A_d, A_h, Nbytes, hipMemcpyHostToDevice);

hipLaunchKernelGGL(vector_square, 512, 256, 0, 0, C_d, A_d, N);
hipMemcpy(C_h, C_d, Nbytes, hipMemcpyDeviceToHost);
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Scaling of the ITS fitting
๏ Showcase of the scaling of the computing time for the track fitting
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Time comparison for ITS track fitting per timeframe on CPU using 20 threads and GPU as a function of the number of seeding vertices (left) and validated track multiplicity (right).


